Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
98     real             *vftab;
99     __m128d          dummy_mask,cutoff_mask;
100     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
101     __m128d          one     = _mm_set1_pd(1.0);
102     __m128d          two     = _mm_set1_pd(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_pd(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_pd(fr->ic->k_rf);
117     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_pd(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->rcoulomb;
128     rcutoff          = _mm_set1_pd(rcutoff_scalar);
129     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm_any_lt(rsq00,rcutoff2))
204             {
205
206             r00              = _mm_mul_pd(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
212
213             /* Calculate table index by multiplying r with table scale and truncate to integer */
214             rt               = _mm_mul_pd(r00,vftabscale);
215             vfitab           = _mm_cvttpd_epi32(rt);
216 #ifdef __XOP__
217             vfeps            = _mm_frcz_pd(rt);
218 #else
219             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
220 #endif
221             twovfeps         = _mm_add_pd(vfeps,vfeps);
222             vfitab           = _mm_slli_epi32(vfitab,3);
223
224             /* REACTION-FIELD ELECTROSTATICS */
225             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
226             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
227
228             /* CUBIC SPLINE TABLE DISPERSION */
229             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
230             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
231             GMX_MM_TRANSPOSE2_PD(Y,F);
232             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
233             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(G,H);
235             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
236             VV               = _mm_macc_pd(vfeps,Fp,Y);
237             vvdw6            = _mm_mul_pd(c6_00,VV);
238             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
239             fvdw6            = _mm_mul_pd(c6_00,FF);
240
241             /* CUBIC SPLINE TABLE REPULSION */
242             vfitab           = _mm_add_epi32(vfitab,ifour);
243             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
244             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
245             GMX_MM_TRANSPOSE2_PD(Y,F);
246             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
247             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
248             GMX_MM_TRANSPOSE2_PD(G,H);
249             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
250             VV               = _mm_macc_pd(vfeps,Fp,Y);
251             vvdw12           = _mm_mul_pd(c12_00,VV);
252             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
253             fvdw12           = _mm_mul_pd(c12_00,FF);
254             vvdw             = _mm_add_pd(vvdw12,vvdw6);
255             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
256
257             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velec            = _mm_and_pd(velec,cutoff_mask);
261             velecsum         = _mm_add_pd(velecsum,velec);
262             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
263             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
264
265             fscal            = _mm_add_pd(felec,fvdw);
266
267             fscal            = _mm_and_pd(fscal,cutoff_mask);
268
269             /* Update vectorial force */
270             fix0             = _mm_macc_pd(dx00,fscal,fix0);
271             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
272             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
273             
274             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
275                                                    _mm_mul_pd(dx00,fscal),
276                                                    _mm_mul_pd(dy00,fscal),
277                                                    _mm_mul_pd(dz00,fscal));
278
279             }
280
281             /* Inner loop uses 75 flops */
282         }
283
284         if(jidx<j_index_end)
285         {
286
287             jnrA             = jjnr[jidx];
288             j_coord_offsetA  = DIM*jnrA;
289
290             /* load j atom coordinates */
291             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
292                                               &jx0,&jy0,&jz0);
293
294             /* Calculate displacement vector */
295             dx00             = _mm_sub_pd(ix0,jx0);
296             dy00             = _mm_sub_pd(iy0,jy0);
297             dz00             = _mm_sub_pd(iz0,jz0);
298
299             /* Calculate squared distance and things based on it */
300             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
301
302             rinv00           = gmx_mm_invsqrt_pd(rsq00);
303
304             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
305
306             /* Load parameters for j particles */
307             jq0              = _mm_load_sd(charge+jnrA+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm_any_lt(rsq00,rcutoff2))
315             {
316
317             r00              = _mm_mul_pd(rsq00,rinv00);
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _mm_mul_pd(iq0,jq0);
321             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
322
323             /* Calculate table index by multiplying r with table scale and truncate to integer */
324             rt               = _mm_mul_pd(r00,vftabscale);
325             vfitab           = _mm_cvttpd_epi32(rt);
326 #ifdef __XOP__
327             vfeps            = _mm_frcz_pd(rt);
328 #else
329             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
330 #endif
331             twovfeps         = _mm_add_pd(vfeps,vfeps);
332             vfitab           = _mm_slli_epi32(vfitab,3);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
336             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
337
338             /* CUBIC SPLINE TABLE DISPERSION */
339             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
340             F                = _mm_setzero_pd();
341             GMX_MM_TRANSPOSE2_PD(Y,F);
342             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
343             H                = _mm_setzero_pd();
344             GMX_MM_TRANSPOSE2_PD(G,H);
345             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
346             VV               = _mm_macc_pd(vfeps,Fp,Y);
347             vvdw6            = _mm_mul_pd(c6_00,VV);
348             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
349             fvdw6            = _mm_mul_pd(c6_00,FF);
350
351             /* CUBIC SPLINE TABLE REPULSION */
352             vfitab           = _mm_add_epi32(vfitab,ifour);
353             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
354             F                = _mm_setzero_pd();
355             GMX_MM_TRANSPOSE2_PD(Y,F);
356             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
357             H                = _mm_setzero_pd();
358             GMX_MM_TRANSPOSE2_PD(G,H);
359             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
360             VV               = _mm_macc_pd(vfeps,Fp,Y);
361             vvdw12           = _mm_mul_pd(c12_00,VV);
362             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
363             fvdw12           = _mm_mul_pd(c12_00,FF);
364             vvdw             = _mm_add_pd(vvdw12,vvdw6);
365             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
366
367             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm_and_pd(velec,cutoff_mask);
371             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
372             velecsum         = _mm_add_pd(velecsum,velec);
373             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
374             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
375             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
376
377             fscal            = _mm_add_pd(felec,fvdw);
378
379             fscal            = _mm_and_pd(fscal,cutoff_mask);
380
381             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
382
383             /* Update vectorial force */
384             fix0             = _mm_macc_pd(dx00,fscal,fix0);
385             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
386             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
387             
388             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
389                                                    _mm_mul_pd(dx00,fscal),
390                                                    _mm_mul_pd(dy00,fscal),
391                                                    _mm_mul_pd(dz00,fscal));
392
393             }
394
395             /* Inner loop uses 75 flops */
396         }
397
398         /* End of innermost loop */
399
400         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
401                                               f+i_coord_offset,fshift+i_shift_offset);
402
403         ggid                        = gid[iidx];
404         /* Update potential energies */
405         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
406         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
407
408         /* Increment number of inner iterations */
409         inneriter                  += j_index_end - j_index_start;
410
411         /* Outer loop uses 9 flops */
412     }
413
414     /* Increment number of outer iterations */
415     outeriter        += nri;
416
417     /* Update outer/inner flops */
418
419     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
420 }
421 /*
422  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
423  * Electrostatics interaction: ReactionField
424  * VdW interaction:            CubicSplineTable
425  * Geometry:                   Particle-Particle
426  * Calculate force/pot:        Force
427  */
428 void
429 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
430                     (t_nblist                    * gmx_restrict       nlist,
431                      rvec                        * gmx_restrict          xx,
432                      rvec                        * gmx_restrict          ff,
433                      t_forcerec                  * gmx_restrict          fr,
434                      t_mdatoms                   * gmx_restrict     mdatoms,
435                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
436                      t_nrnb                      * gmx_restrict        nrnb)
437 {
438     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
439      * just 0 for non-waters.
440      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
441      * jnr indices corresponding to data put in the four positions in the SIMD register.
442      */
443     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
444     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
445     int              jnrA,jnrB;
446     int              j_coord_offsetA,j_coord_offsetB;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             rcutoff_scalar;
449     real             *shiftvec,*fshift,*x,*f;
450     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
451     int              vdwioffset0;
452     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
453     int              vdwjidx0A,vdwjidx0B;
454     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
455     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
456     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
457     real             *charge;
458     int              nvdwtype;
459     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
460     int              *vdwtype;
461     real             *vdwparam;
462     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
463     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
464     __m128i          vfitab;
465     __m128i          ifour       = _mm_set1_epi32(4);
466     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
467     real             *vftab;
468     __m128d          dummy_mask,cutoff_mask;
469     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
470     __m128d          one     = _mm_set1_pd(1.0);
471     __m128d          two     = _mm_set1_pd(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     facel            = _mm_set1_pd(fr->epsfac);
484     charge           = mdatoms->chargeA;
485     krf              = _mm_set1_pd(fr->ic->k_rf);
486     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
487     crf              = _mm_set1_pd(fr->ic->c_rf);
488     nvdwtype         = fr->ntype;
489     vdwparam         = fr->nbfp;
490     vdwtype          = mdatoms->typeA;
491
492     vftab            = kernel_data->table_vdw->data;
493     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
494
495     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
496     rcutoff_scalar   = fr->rcoulomb;
497     rcutoff          = _mm_set1_pd(rcutoff_scalar);
498     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
499
500     /* Avoid stupid compiler warnings */
501     jnrA = jnrB = 0;
502     j_coord_offsetA = 0;
503     j_coord_offsetB = 0;
504
505     outeriter        = 0;
506     inneriter        = 0;
507
508     /* Start outer loop over neighborlists */
509     for(iidx=0; iidx<nri; iidx++)
510     {
511         /* Load shift vector for this list */
512         i_shift_offset   = DIM*shiftidx[iidx];
513
514         /* Load limits for loop over neighbors */
515         j_index_start    = jindex[iidx];
516         j_index_end      = jindex[iidx+1];
517
518         /* Get outer coordinate index */
519         inr              = iinr[iidx];
520         i_coord_offset   = DIM*inr;
521
522         /* Load i particle coords and add shift vector */
523         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
524
525         fix0             = _mm_setzero_pd();
526         fiy0             = _mm_setzero_pd();
527         fiz0             = _mm_setzero_pd();
528
529         /* Load parameters for i particles */
530         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
531         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542
543             /* load j atom coordinates */
544             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
545                                               &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm_sub_pd(ix0,jx0);
549             dy00             = _mm_sub_pd(iy0,jy0);
550             dz00             = _mm_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm_invsqrt_pd(rsq00);
556
557             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
561             vdwjidx0A        = 2*vdwtype[jnrA+0];
562             vdwjidx0B        = 2*vdwtype[jnrB+0];
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (gmx_mm_any_lt(rsq00,rcutoff2))
569             {
570
571             r00              = _mm_mul_pd(rsq00,rinv00);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq00             = _mm_mul_pd(iq0,jq0);
575             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
576                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
577
578             /* Calculate table index by multiplying r with table scale and truncate to integer */
579             rt               = _mm_mul_pd(r00,vftabscale);
580             vfitab           = _mm_cvttpd_epi32(rt);
581 #ifdef __XOP__
582             vfeps            = _mm_frcz_pd(rt);
583 #else
584             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
585 #endif
586             twovfeps         = _mm_add_pd(vfeps,vfeps);
587             vfitab           = _mm_slli_epi32(vfitab,3);
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
591
592             /* CUBIC SPLINE TABLE DISPERSION */
593             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
594             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
595             GMX_MM_TRANSPOSE2_PD(Y,F);
596             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
597             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
598             GMX_MM_TRANSPOSE2_PD(G,H);
599             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
600             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
601             fvdw6            = _mm_mul_pd(c6_00,FF);
602
603             /* CUBIC SPLINE TABLE REPULSION */
604             vfitab           = _mm_add_epi32(vfitab,ifour);
605             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
606             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
607             GMX_MM_TRANSPOSE2_PD(Y,F);
608             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
609             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
610             GMX_MM_TRANSPOSE2_PD(G,H);
611             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
612             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
613             fvdw12           = _mm_mul_pd(c12_00,FF);
614             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
615
616             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
617
618             fscal            = _mm_add_pd(felec,fvdw);
619
620             fscal            = _mm_and_pd(fscal,cutoff_mask);
621
622             /* Update vectorial force */
623             fix0             = _mm_macc_pd(dx00,fscal,fix0);
624             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
625             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
626             
627             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
628                                                    _mm_mul_pd(dx00,fscal),
629                                                    _mm_mul_pd(dy00,fscal),
630                                                    _mm_mul_pd(dz00,fscal));
631
632             }
633
634             /* Inner loop uses 60 flops */
635         }
636
637         if(jidx<j_index_end)
638         {
639
640             jnrA             = jjnr[jidx];
641             j_coord_offsetA  = DIM*jnrA;
642
643             /* load j atom coordinates */
644             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
645                                               &jx0,&jy0,&jz0);
646
647             /* Calculate displacement vector */
648             dx00             = _mm_sub_pd(ix0,jx0);
649             dy00             = _mm_sub_pd(iy0,jy0);
650             dz00             = _mm_sub_pd(iz0,jz0);
651
652             /* Calculate squared distance and things based on it */
653             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
654
655             rinv00           = gmx_mm_invsqrt_pd(rsq00);
656
657             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
658
659             /* Load parameters for j particles */
660             jq0              = _mm_load_sd(charge+jnrA+0);
661             vdwjidx0A        = 2*vdwtype[jnrA+0];
662
663             /**************************
664              * CALCULATE INTERACTIONS *
665              **************************/
666
667             if (gmx_mm_any_lt(rsq00,rcutoff2))
668             {
669
670             r00              = _mm_mul_pd(rsq00,rinv00);
671
672             /* Compute parameters for interactions between i and j atoms */
673             qq00             = _mm_mul_pd(iq0,jq0);
674             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
675
676             /* Calculate table index by multiplying r with table scale and truncate to integer */
677             rt               = _mm_mul_pd(r00,vftabscale);
678             vfitab           = _mm_cvttpd_epi32(rt);
679 #ifdef __XOP__
680             vfeps            = _mm_frcz_pd(rt);
681 #else
682             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
683 #endif
684             twovfeps         = _mm_add_pd(vfeps,vfeps);
685             vfitab           = _mm_slli_epi32(vfitab,3);
686
687             /* REACTION-FIELD ELECTROSTATICS */
688             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
689
690             /* CUBIC SPLINE TABLE DISPERSION */
691             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
692             F                = _mm_setzero_pd();
693             GMX_MM_TRANSPOSE2_PD(Y,F);
694             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
695             H                = _mm_setzero_pd();
696             GMX_MM_TRANSPOSE2_PD(G,H);
697             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
698             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
699             fvdw6            = _mm_mul_pd(c6_00,FF);
700
701             /* CUBIC SPLINE TABLE REPULSION */
702             vfitab           = _mm_add_epi32(vfitab,ifour);
703             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
704             F                = _mm_setzero_pd();
705             GMX_MM_TRANSPOSE2_PD(Y,F);
706             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
707             H                = _mm_setzero_pd();
708             GMX_MM_TRANSPOSE2_PD(G,H);
709             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
710             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
711             fvdw12           = _mm_mul_pd(c12_00,FF);
712             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
713
714             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
715
716             fscal            = _mm_add_pd(felec,fvdw);
717
718             fscal            = _mm_and_pd(fscal,cutoff_mask);
719
720             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
721
722             /* Update vectorial force */
723             fix0             = _mm_macc_pd(dx00,fscal,fix0);
724             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
725             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
726             
727             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
728                                                    _mm_mul_pd(dx00,fscal),
729                                                    _mm_mul_pd(dy00,fscal),
730                                                    _mm_mul_pd(dz00,fscal));
731
732             }
733
734             /* Inner loop uses 60 flops */
735         }
736
737         /* End of innermost loop */
738
739         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
740                                               f+i_coord_offset,fshift+i_shift_offset);
741
742         /* Increment number of inner iterations */
743         inneriter                  += j_index_end - j_index_start;
744
745         /* Outer loop uses 7 flops */
746     }
747
748     /* Increment number of outer iterations */
749     outeriter        += nri;
750
751     /* Update outer/inner flops */
752
753     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
754 }