6945b42a5efca6c0cd259c0400fca3832e2c9a35
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     krf              = _mm_set1_pd(fr->ic->k_rf);
115     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
116     crf              = _mm_set1_pd(fr->ic->c_rf);
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     vftab            = kernel_data->table_vdw->data;
122     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_pd(rcutoff_scalar);
127     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_pd();
155         fiy0             = _mm_setzero_pd();
156         fiz0             = _mm_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vvdwsum          = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm_sub_pd(ix0,jx0);
182             dy00             = _mm_sub_pd(iy0,jy0);
183             dz00             = _mm_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm_invsqrt_pd(rsq00);
189
190             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             if (gmx_mm_any_lt(rsq00,rcutoff2))
202             {
203
204             r00              = _mm_mul_pd(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm_mul_pd(iq0,jq0);
208             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* Calculate table index by multiplying r with table scale and truncate to integer */
212             rt               = _mm_mul_pd(r00,vftabscale);
213             vfitab           = _mm_cvttpd_epi32(rt);
214 #ifdef __XOP__
215             vfeps            = _mm_frcz_pd(rt);
216 #else
217             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
218 #endif
219             twovfeps         = _mm_add_pd(vfeps,vfeps);
220             vfitab           = _mm_slli_epi32(vfitab,3);
221
222             /* REACTION-FIELD ELECTROSTATICS */
223             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
224             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
225
226             /* CUBIC SPLINE TABLE DISPERSION */
227             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
228             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
229             GMX_MM_TRANSPOSE2_PD(Y,F);
230             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
231             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
232             GMX_MM_TRANSPOSE2_PD(G,H);
233             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
234             VV               = _mm_macc_pd(vfeps,Fp,Y);
235             vvdw6            = _mm_mul_pd(c6_00,VV);
236             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
237             fvdw6            = _mm_mul_pd(c6_00,FF);
238
239             /* CUBIC SPLINE TABLE REPULSION */
240             vfitab           = _mm_add_epi32(vfitab,ifour);
241             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
242             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
243             GMX_MM_TRANSPOSE2_PD(Y,F);
244             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
245             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
246             GMX_MM_TRANSPOSE2_PD(G,H);
247             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
248             VV               = _mm_macc_pd(vfeps,Fp,Y);
249             vvdw12           = _mm_mul_pd(c12_00,VV);
250             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
251             fvdw12           = _mm_mul_pd(c12_00,FF);
252             vvdw             = _mm_add_pd(vvdw12,vvdw6);
253             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
254
255             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velec            = _mm_and_pd(velec,cutoff_mask);
259             velecsum         = _mm_add_pd(velecsum,velec);
260             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
261             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
262
263             fscal            = _mm_add_pd(felec,fvdw);
264
265             fscal            = _mm_and_pd(fscal,cutoff_mask);
266
267             /* Update vectorial force */
268             fix0             = _mm_macc_pd(dx00,fscal,fix0);
269             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
270             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
271             
272             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
273                                                    _mm_mul_pd(dx00,fscal),
274                                                    _mm_mul_pd(dy00,fscal),
275                                                    _mm_mul_pd(dz00,fscal));
276
277             }
278
279             /* Inner loop uses 75 flops */
280         }
281
282         if(jidx<j_index_end)
283         {
284
285             jnrA             = jjnr[jidx];
286             j_coord_offsetA  = DIM*jnrA;
287
288             /* load j atom coordinates */
289             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
290                                               &jx0,&jy0,&jz0);
291
292             /* Calculate displacement vector */
293             dx00             = _mm_sub_pd(ix0,jx0);
294             dy00             = _mm_sub_pd(iy0,jy0);
295             dz00             = _mm_sub_pd(iz0,jz0);
296
297             /* Calculate squared distance and things based on it */
298             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
299
300             rinv00           = gmx_mm_invsqrt_pd(rsq00);
301
302             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
303
304             /* Load parameters for j particles */
305             jq0              = _mm_load_sd(charge+jnrA+0);
306             vdwjidx0A        = 2*vdwtype[jnrA+0];
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (gmx_mm_any_lt(rsq00,rcutoff2))
313             {
314
315             r00              = _mm_mul_pd(rsq00,rinv00);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq00             = _mm_mul_pd(iq0,jq0);
319             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
320
321             /* Calculate table index by multiplying r with table scale and truncate to integer */
322             rt               = _mm_mul_pd(r00,vftabscale);
323             vfitab           = _mm_cvttpd_epi32(rt);
324 #ifdef __XOP__
325             vfeps            = _mm_frcz_pd(rt);
326 #else
327             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
328 #endif
329             twovfeps         = _mm_add_pd(vfeps,vfeps);
330             vfitab           = _mm_slli_epi32(vfitab,3);
331
332             /* REACTION-FIELD ELECTROSTATICS */
333             velec            = _mm_mul_pd(qq00,_mm_sub_pd(_mm_macc_pd(krf,rsq00,rinv00),crf));
334             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
335
336             /* CUBIC SPLINE TABLE DISPERSION */
337             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
338             F                = _mm_setzero_pd();
339             GMX_MM_TRANSPOSE2_PD(Y,F);
340             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
341             H                = _mm_setzero_pd();
342             GMX_MM_TRANSPOSE2_PD(G,H);
343             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
344             VV               = _mm_macc_pd(vfeps,Fp,Y);
345             vvdw6            = _mm_mul_pd(c6_00,VV);
346             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
347             fvdw6            = _mm_mul_pd(c6_00,FF);
348
349             /* CUBIC SPLINE TABLE REPULSION */
350             vfitab           = _mm_add_epi32(vfitab,ifour);
351             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
352             F                = _mm_setzero_pd();
353             GMX_MM_TRANSPOSE2_PD(Y,F);
354             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
355             H                = _mm_setzero_pd();
356             GMX_MM_TRANSPOSE2_PD(G,H);
357             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
358             VV               = _mm_macc_pd(vfeps,Fp,Y);
359             vvdw12           = _mm_mul_pd(c12_00,VV);
360             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
361             fvdw12           = _mm_mul_pd(c12_00,FF);
362             vvdw             = _mm_add_pd(vvdw12,vvdw6);
363             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
364
365             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_and_pd(velec,cutoff_mask);
369             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
370             velecsum         = _mm_add_pd(velecsum,velec);
371             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
372             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
373             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
374
375             fscal            = _mm_add_pd(felec,fvdw);
376
377             fscal            = _mm_and_pd(fscal,cutoff_mask);
378
379             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
380
381             /* Update vectorial force */
382             fix0             = _mm_macc_pd(dx00,fscal,fix0);
383             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
384             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
385             
386             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
387                                                    _mm_mul_pd(dx00,fscal),
388                                                    _mm_mul_pd(dy00,fscal),
389                                                    _mm_mul_pd(dz00,fscal));
390
391             }
392
393             /* Inner loop uses 75 flops */
394         }
395
396         /* End of innermost loop */
397
398         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
399                                               f+i_coord_offset,fshift+i_shift_offset);
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
404         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 9 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*75);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
421  * Electrostatics interaction: ReactionField
422  * VdW interaction:            CubicSplineTable
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_double
428                     (t_nblist                    * gmx_restrict       nlist,
429                      rvec                        * gmx_restrict          xx,
430                      rvec                        * gmx_restrict          ff,
431                      t_forcerec                  * gmx_restrict          fr,
432                      t_mdatoms                   * gmx_restrict     mdatoms,
433                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
434                      t_nrnb                      * gmx_restrict        nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
437      * just 0 for non-waters.
438      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB;
444     int              j_coord_offsetA,j_coord_offsetB;
445     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
446     real             rcutoff_scalar;
447     real             *shiftvec,*fshift,*x,*f;
448     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
449     int              vdwioffset0;
450     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
451     int              vdwjidx0A,vdwjidx0B;
452     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
453     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
454     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
455     real             *charge;
456     int              nvdwtype;
457     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
458     int              *vdwtype;
459     real             *vdwparam;
460     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
461     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
462     __m128i          vfitab;
463     __m128i          ifour       = _mm_set1_epi32(4);
464     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
465     real             *vftab;
466     __m128d          dummy_mask,cutoff_mask;
467     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
468     __m128d          one     = _mm_set1_pd(1.0);
469     __m128d          two     = _mm_set1_pd(2.0);
470     x                = xx[0];
471     f                = ff[0];
472
473     nri              = nlist->nri;
474     iinr             = nlist->iinr;
475     jindex           = nlist->jindex;
476     jjnr             = nlist->jjnr;
477     shiftidx         = nlist->shift;
478     gid              = nlist->gid;
479     shiftvec         = fr->shift_vec[0];
480     fshift           = fr->fshift[0];
481     facel            = _mm_set1_pd(fr->epsfac);
482     charge           = mdatoms->chargeA;
483     krf              = _mm_set1_pd(fr->ic->k_rf);
484     krf2             = _mm_set1_pd(fr->ic->k_rf*2.0);
485     crf              = _mm_set1_pd(fr->ic->c_rf);
486     nvdwtype         = fr->ntype;
487     vdwparam         = fr->nbfp;
488     vdwtype          = mdatoms->typeA;
489
490     vftab            = kernel_data->table_vdw->data;
491     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
492
493     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
494     rcutoff_scalar   = fr->rcoulomb;
495     rcutoff          = _mm_set1_pd(rcutoff_scalar);
496     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
497
498     /* Avoid stupid compiler warnings */
499     jnrA = jnrB = 0;
500     j_coord_offsetA = 0;
501     j_coord_offsetB = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     /* Start outer loop over neighborlists */
507     for(iidx=0; iidx<nri; iidx++)
508     {
509         /* Load shift vector for this list */
510         i_shift_offset   = DIM*shiftidx[iidx];
511
512         /* Load limits for loop over neighbors */
513         j_index_start    = jindex[iidx];
514         j_index_end      = jindex[iidx+1];
515
516         /* Get outer coordinate index */
517         inr              = iinr[iidx];
518         i_coord_offset   = DIM*inr;
519
520         /* Load i particle coords and add shift vector */
521         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
522
523         fix0             = _mm_setzero_pd();
524         fiy0             = _mm_setzero_pd();
525         fiz0             = _mm_setzero_pd();
526
527         /* Load parameters for i particles */
528         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             j_coord_offsetA  = DIM*jnrA;
539             j_coord_offsetB  = DIM*jnrB;
540
541             /* load j atom coordinates */
542             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
543                                               &jx0,&jy0,&jz0);
544
545             /* Calculate displacement vector */
546             dx00             = _mm_sub_pd(ix0,jx0);
547             dy00             = _mm_sub_pd(iy0,jy0);
548             dz00             = _mm_sub_pd(iz0,jz0);
549
550             /* Calculate squared distance and things based on it */
551             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
552
553             rinv00           = gmx_mm_invsqrt_pd(rsq00);
554
555             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
556
557             /* Load parameters for j particles */
558             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
559             vdwjidx0A        = 2*vdwtype[jnrA+0];
560             vdwjidx0B        = 2*vdwtype[jnrB+0];
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm_any_lt(rsq00,rcutoff2))
567             {
568
569             r00              = _mm_mul_pd(rsq00,rinv00);
570
571             /* Compute parameters for interactions between i and j atoms */
572             qq00             = _mm_mul_pd(iq0,jq0);
573             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
574                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm_mul_pd(r00,vftabscale);
578             vfitab           = _mm_cvttpd_epi32(rt);
579 #ifdef __XOP__
580             vfeps            = _mm_frcz_pd(rt);
581 #else
582             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
583 #endif
584             twovfeps         = _mm_add_pd(vfeps,vfeps);
585             vfitab           = _mm_slli_epi32(vfitab,3);
586
587             /* REACTION-FIELD ELECTROSTATICS */
588             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
589
590             /* CUBIC SPLINE TABLE DISPERSION */
591             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
592             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
593             GMX_MM_TRANSPOSE2_PD(Y,F);
594             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
595             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
596             GMX_MM_TRANSPOSE2_PD(G,H);
597             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
598             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
599             fvdw6            = _mm_mul_pd(c6_00,FF);
600
601             /* CUBIC SPLINE TABLE REPULSION */
602             vfitab           = _mm_add_epi32(vfitab,ifour);
603             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
605             GMX_MM_TRANSPOSE2_PD(Y,F);
606             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
607             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
608             GMX_MM_TRANSPOSE2_PD(G,H);
609             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
610             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
611             fvdw12           = _mm_mul_pd(c12_00,FF);
612             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
613
614             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
615
616             fscal            = _mm_add_pd(felec,fvdw);
617
618             fscal            = _mm_and_pd(fscal,cutoff_mask);
619
620             /* Update vectorial force */
621             fix0             = _mm_macc_pd(dx00,fscal,fix0);
622             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
623             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
624             
625             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
626                                                    _mm_mul_pd(dx00,fscal),
627                                                    _mm_mul_pd(dy00,fscal),
628                                                    _mm_mul_pd(dz00,fscal));
629
630             }
631
632             /* Inner loop uses 60 flops */
633         }
634
635         if(jidx<j_index_end)
636         {
637
638             jnrA             = jjnr[jidx];
639             j_coord_offsetA  = DIM*jnrA;
640
641             /* load j atom coordinates */
642             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
643                                               &jx0,&jy0,&jz0);
644
645             /* Calculate displacement vector */
646             dx00             = _mm_sub_pd(ix0,jx0);
647             dy00             = _mm_sub_pd(iy0,jy0);
648             dz00             = _mm_sub_pd(iz0,jz0);
649
650             /* Calculate squared distance and things based on it */
651             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
652
653             rinv00           = gmx_mm_invsqrt_pd(rsq00);
654
655             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
656
657             /* Load parameters for j particles */
658             jq0              = _mm_load_sd(charge+jnrA+0);
659             vdwjidx0A        = 2*vdwtype[jnrA+0];
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             if (gmx_mm_any_lt(rsq00,rcutoff2))
666             {
667
668             r00              = _mm_mul_pd(rsq00,rinv00);
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq00             = _mm_mul_pd(iq0,jq0);
672             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
673
674             /* Calculate table index by multiplying r with table scale and truncate to integer */
675             rt               = _mm_mul_pd(r00,vftabscale);
676             vfitab           = _mm_cvttpd_epi32(rt);
677 #ifdef __XOP__
678             vfeps            = _mm_frcz_pd(rt);
679 #else
680             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
681 #endif
682             twovfeps         = _mm_add_pd(vfeps,vfeps);
683             vfitab           = _mm_slli_epi32(vfitab,3);
684
685             /* REACTION-FIELD ELECTROSTATICS */
686             felec            = _mm_mul_pd(qq00,_mm_msub_pd(rinv00,rinvsq00,krf2));
687
688             /* CUBIC SPLINE TABLE DISPERSION */
689             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
690             F                = _mm_setzero_pd();
691             GMX_MM_TRANSPOSE2_PD(Y,F);
692             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
693             H                = _mm_setzero_pd();
694             GMX_MM_TRANSPOSE2_PD(G,H);
695             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
696             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
697             fvdw6            = _mm_mul_pd(c6_00,FF);
698
699             /* CUBIC SPLINE TABLE REPULSION */
700             vfitab           = _mm_add_epi32(vfitab,ifour);
701             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
702             F                = _mm_setzero_pd();
703             GMX_MM_TRANSPOSE2_PD(Y,F);
704             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
705             H                = _mm_setzero_pd();
706             GMX_MM_TRANSPOSE2_PD(G,H);
707             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
708             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
709             fvdw12           = _mm_mul_pd(c12_00,FF);
710             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
711
712             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
713
714             fscal            = _mm_add_pd(felec,fvdw);
715
716             fscal            = _mm_and_pd(fscal,cutoff_mask);
717
718             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
719
720             /* Update vectorial force */
721             fix0             = _mm_macc_pd(dx00,fscal,fix0);
722             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
723             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
724             
725             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
726                                                    _mm_mul_pd(dx00,fscal),
727                                                    _mm_mul_pd(dy00,fscal),
728                                                    _mm_mul_pd(dz00,fscal));
729
730             }
731
732             /* Inner loop uses 60 flops */
733         }
734
735         /* End of innermost loop */
736
737         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
738                                               f+i_coord_offset,fshift+i_shift_offset);
739
740         /* Increment number of inner iterations */
741         inneriter                  += j_index_end - j_index_start;
742
743         /* Outer loop uses 7 flops */
744     }
745
746     /* Increment number of outer iterations */
747     outeriter        += nri;
748
749     /* Update outer/inner flops */
750
751     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
752 }