Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
89     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     rcutoff_scalar   = fr->ic->rvdw;
110     rcutoff          = _mm_set1_pd(rcutoff_scalar);
111     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
112
113     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
114     rvdw             = _mm_set1_pd(fr->ic->rvdw);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
140
141         fix0             = _mm_setzero_pd();
142         fiy0             = _mm_setzero_pd();
143         fiz0             = _mm_setzero_pd();
144
145         /* Load parameters for i particles */
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         vvdwsum          = _mm_setzero_pd();
150
151         /* Start inner kernel loop */
152         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
153         {
154
155             /* Get j neighbor index, and coordinate index */
156             jnrA             = jjnr[jidx];
157             jnrB             = jjnr[jidx+1];
158             j_coord_offsetA  = DIM*jnrA;
159             j_coord_offsetB  = DIM*jnrB;
160
161             /* load j atom coordinates */
162             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
163                                               &jx0,&jy0,&jz0);
164
165             /* Calculate displacement vector */
166             dx00             = _mm_sub_pd(ix0,jx0);
167             dy00             = _mm_sub_pd(iy0,jy0);
168             dz00             = _mm_sub_pd(iz0,jz0);
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
172
173             rinvsq00         = avx128fma_inv_d(rsq00);
174
175             /* Load parameters for j particles */
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             if (gmx_mm_any_lt(rsq00,rcutoff2))
184             {
185
186             /* Compute parameters for interactions between i and j atoms */
187             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
188                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
189
190             /* LENNARD-JONES DISPERSION/REPULSION */
191
192             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
193             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
194             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
195             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
196                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
197             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
198
199             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
200
201             /* Update potential sum for this i atom from the interaction with this j atom. */
202             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
203             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
204
205             fscal            = fvdw;
206
207             fscal            = _mm_and_pd(fscal,cutoff_mask);
208
209             /* Update vectorial force */
210             fix0             = _mm_macc_pd(dx00,fscal,fix0);
211             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
212             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
213             
214             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
215                                                    _mm_mul_pd(dx00,fscal),
216                                                    _mm_mul_pd(dy00,fscal),
217                                                    _mm_mul_pd(dz00,fscal));
218
219             }
220
221             /* Inner loop uses 44 flops */
222         }
223
224         if(jidx<j_index_end)
225         {
226
227             jnrA             = jjnr[jidx];
228             j_coord_offsetA  = DIM*jnrA;
229
230             /* load j atom coordinates */
231             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
232                                               &jx0,&jy0,&jz0);
233
234             /* Calculate displacement vector */
235             dx00             = _mm_sub_pd(ix0,jx0);
236             dy00             = _mm_sub_pd(iy0,jy0);
237             dz00             = _mm_sub_pd(iz0,jz0);
238
239             /* Calculate squared distance and things based on it */
240             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
241
242             rinvsq00         = avx128fma_inv_d(rsq00);
243
244             /* Load parameters for j particles */
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm_any_lt(rsq00,rcutoff2))
252             {
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
256
257             /* LENNARD-JONES DISPERSION/REPULSION */
258
259             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
260             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
261             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
262             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
263                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
264             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
270             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
271             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
272
273             fscal            = fvdw;
274
275             fscal            = _mm_and_pd(fscal,cutoff_mask);
276
277             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
278
279             /* Update vectorial force */
280             fix0             = _mm_macc_pd(dx00,fscal,fix0);
281             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
283             
284             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
285                                                    _mm_mul_pd(dx00,fscal),
286                                                    _mm_mul_pd(dy00,fscal),
287                                                    _mm_mul_pd(dz00,fscal));
288
289             }
290
291             /* Inner loop uses 44 flops */
292         }
293
294         /* End of innermost loop */
295
296         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
297                                               f+i_coord_offset,fshift+i_shift_offset);
298
299         ggid                        = gid[iidx];
300         /* Update potential energies */
301         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
302
303         /* Increment number of inner iterations */
304         inneriter                  += j_index_end - j_index_start;
305
306         /* Outer loop uses 7 flops */
307     }
308
309     /* Increment number of outer iterations */
310     outeriter        += nri;
311
312     /* Update outer/inner flops */
313
314     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*44);
315 }
316 /*
317  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
318  * Electrostatics interaction: None
319  * VdW interaction:            LennardJones
320  * Geometry:                   Particle-Particle
321  * Calculate force/pot:        Force
322  */
323 void
324 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
325                     (t_nblist                    * gmx_restrict       nlist,
326                      rvec                        * gmx_restrict          xx,
327                      rvec                        * gmx_restrict          ff,
328                      struct t_forcerec           * gmx_restrict          fr,
329                      t_mdatoms                   * gmx_restrict     mdatoms,
330                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
331                      t_nrnb                      * gmx_restrict        nrnb)
332 {
333     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
334      * just 0 for non-waters.
335      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
336      * jnr indices corresponding to data put in the four positions in the SIMD register.
337      */
338     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
339     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
340     int              jnrA,jnrB;
341     int              j_coord_offsetA,j_coord_offsetB;
342     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
343     real             rcutoff_scalar;
344     real             *shiftvec,*fshift,*x,*f;
345     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
346     int              vdwioffset0;
347     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
348     int              vdwjidx0A,vdwjidx0B;
349     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
350     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
351     int              nvdwtype;
352     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
353     int              *vdwtype;
354     real             *vdwparam;
355     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
356     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
357     __m128d          dummy_mask,cutoff_mask;
358     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
359     __m128d          one     = _mm_set1_pd(1.0);
360     __m128d          two     = _mm_set1_pd(2.0);
361     x                = xx[0];
362     f                = ff[0];
363
364     nri              = nlist->nri;
365     iinr             = nlist->iinr;
366     jindex           = nlist->jindex;
367     jjnr             = nlist->jjnr;
368     shiftidx         = nlist->shift;
369     gid              = nlist->gid;
370     shiftvec         = fr->shift_vec[0];
371     fshift           = fr->fshift[0];
372     nvdwtype         = fr->ntype;
373     vdwparam         = fr->nbfp;
374     vdwtype          = mdatoms->typeA;
375
376     rcutoff_scalar   = fr->ic->rvdw;
377     rcutoff          = _mm_set1_pd(rcutoff_scalar);
378     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
379
380     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
381     rvdw             = _mm_set1_pd(fr->ic->rvdw);
382
383     /* Avoid stupid compiler warnings */
384     jnrA = jnrB = 0;
385     j_coord_offsetA = 0;
386     j_coord_offsetB = 0;
387
388     outeriter        = 0;
389     inneriter        = 0;
390
391     /* Start outer loop over neighborlists */
392     for(iidx=0; iidx<nri; iidx++)
393     {
394         /* Load shift vector for this list */
395         i_shift_offset   = DIM*shiftidx[iidx];
396
397         /* Load limits for loop over neighbors */
398         j_index_start    = jindex[iidx];
399         j_index_end      = jindex[iidx+1];
400
401         /* Get outer coordinate index */
402         inr              = iinr[iidx];
403         i_coord_offset   = DIM*inr;
404
405         /* Load i particle coords and add shift vector */
406         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
407
408         fix0             = _mm_setzero_pd();
409         fiy0             = _mm_setzero_pd();
410         fiz0             = _mm_setzero_pd();
411
412         /* Load parameters for i particles */
413         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
414
415         /* Start inner kernel loop */
416         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
417         {
418
419             /* Get j neighbor index, and coordinate index */
420             jnrA             = jjnr[jidx];
421             jnrB             = jjnr[jidx+1];
422             j_coord_offsetA  = DIM*jnrA;
423             j_coord_offsetB  = DIM*jnrB;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               &jx0,&jy0,&jz0);
428
429             /* Calculate displacement vector */
430             dx00             = _mm_sub_pd(ix0,jx0);
431             dy00             = _mm_sub_pd(iy0,jy0);
432             dz00             = _mm_sub_pd(iz0,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
436
437             rinvsq00         = avx128fma_inv_d(rsq00);
438
439             /* Load parameters for j particles */
440             vdwjidx0A        = 2*vdwtype[jnrA+0];
441             vdwjidx0B        = 2*vdwtype[jnrB+0];
442
443             /**************************
444              * CALCULATE INTERACTIONS *
445              **************************/
446
447             if (gmx_mm_any_lt(rsq00,rcutoff2))
448             {
449
450             /* Compute parameters for interactions between i and j atoms */
451             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
452                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
453
454             /* LENNARD-JONES DISPERSION/REPULSION */
455
456             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
457             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
458
459             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
460
461             fscal            = fvdw;
462
463             fscal            = _mm_and_pd(fscal,cutoff_mask);
464
465             /* Update vectorial force */
466             fix0             = _mm_macc_pd(dx00,fscal,fix0);
467             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
468             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
469             
470             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
471                                                    _mm_mul_pd(dx00,fscal),
472                                                    _mm_mul_pd(dy00,fscal),
473                                                    _mm_mul_pd(dz00,fscal));
474
475             }
476
477             /* Inner loop uses 33 flops */
478         }
479
480         if(jidx<j_index_end)
481         {
482
483             jnrA             = jjnr[jidx];
484             j_coord_offsetA  = DIM*jnrA;
485
486             /* load j atom coordinates */
487             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
488                                               &jx0,&jy0,&jz0);
489
490             /* Calculate displacement vector */
491             dx00             = _mm_sub_pd(ix0,jx0);
492             dy00             = _mm_sub_pd(iy0,jy0);
493             dz00             = _mm_sub_pd(iz0,jz0);
494
495             /* Calculate squared distance and things based on it */
496             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
497
498             rinvsq00         = avx128fma_inv_d(rsq00);
499
500             /* Load parameters for j particles */
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             if (gmx_mm_any_lt(rsq00,rcutoff2))
508             {
509
510             /* Compute parameters for interactions between i and j atoms */
511             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
512
513             /* LENNARD-JONES DISPERSION/REPULSION */
514
515             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
516             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
517
518             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
519
520             fscal            = fvdw;
521
522             fscal            = _mm_and_pd(fscal,cutoff_mask);
523
524             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
525
526             /* Update vectorial force */
527             fix0             = _mm_macc_pd(dx00,fscal,fix0);
528             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
529             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
530             
531             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
532                                                    _mm_mul_pd(dx00,fscal),
533                                                    _mm_mul_pd(dy00,fscal),
534                                                    _mm_mul_pd(dz00,fscal));
535
536             }
537
538             /* Inner loop uses 33 flops */
539         }
540
541         /* End of innermost loop */
542
543         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
544                                               f+i_coord_offset,fshift+i_shift_offset);
545
546         /* Increment number of inner iterations */
547         inneriter                  += j_index_end - j_index_start;
548
549         /* Outer loop uses 6 flops */
550     }
551
552     /* Increment number of outer iterations */
553     outeriter        += nri;
554
555     /* Update outer/inner flops */
556
557     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*33);
558 }