Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d          dummy_mask,cutoff_mask;
94     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
95     __m128d          one     = _mm_set1_pd(1.0);
96     __m128d          two     = _mm_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     rcutoff_scalar   = fr->rvdw;
113     rcutoff          = _mm_set1_pd(rcutoff_scalar);
114     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
115
116     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
117     rvdw             = _mm_set1_pd(fr->rvdw);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         vvdwsum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinvsq00         = gmx_mm_inv_pd(rsq00);
177
178             /* Load parameters for j particles */
179             vdwjidx0A        = 2*vdwtype[jnrA+0];
180             vdwjidx0B        = 2*vdwtype[jnrB+0];
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             if (gmx_mm_any_lt(rsq00,rcutoff2))
187             {
188
189             /* Compute parameters for interactions between i and j atoms */
190             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
191                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
192
193             /* LENNARD-JONES DISPERSION/REPULSION */
194
195             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
196             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
197             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
198             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
199                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
200             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
201
202             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
203
204             /* Update potential sum for this i atom from the interaction with this j atom. */
205             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
206             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
207
208             fscal            = fvdw;
209
210             fscal            = _mm_and_pd(fscal,cutoff_mask);
211
212             /* Update vectorial force */
213             fix0             = _mm_macc_pd(dx00,fscal,fix0);
214             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
215             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
216             
217             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
218                                                    _mm_mul_pd(dx00,fscal),
219                                                    _mm_mul_pd(dy00,fscal),
220                                                    _mm_mul_pd(dz00,fscal));
221
222             }
223
224             /* Inner loop uses 44 flops */
225         }
226
227         if(jidx<j_index_end)
228         {
229
230             jnrA             = jjnr[jidx];
231             j_coord_offsetA  = DIM*jnrA;
232
233             /* load j atom coordinates */
234             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
235                                               &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm_sub_pd(ix0,jx0);
239             dy00             = _mm_sub_pd(iy0,jy0);
240             dz00             = _mm_sub_pd(iz0,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
244
245             rinvsq00         = gmx_mm_inv_pd(rsq00);
246
247             /* Load parameters for j particles */
248             vdwjidx0A        = 2*vdwtype[jnrA+0];
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             if (gmx_mm_any_lt(rsq00,rcutoff2))
255             {
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
259
260             /* LENNARD-JONES DISPERSION/REPULSION */
261
262             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
263             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
264             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
265             vvdw             = _mm_msub_pd(_mm_nmacc_pd(c12_00,_mm_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
266                                            _mm_mul_pd(_mm_nmacc_pd( c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
267             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
268
269             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             vvdw             = _mm_and_pd(vvdw,cutoff_mask);
273             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
274             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
275
276             fscal            = fvdw;
277
278             fscal            = _mm_and_pd(fscal,cutoff_mask);
279
280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
281
282             /* Update vectorial force */
283             fix0             = _mm_macc_pd(dx00,fscal,fix0);
284             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
285             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
286             
287             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
288                                                    _mm_mul_pd(dx00,fscal),
289                                                    _mm_mul_pd(dy00,fscal),
290                                                    _mm_mul_pd(dz00,fscal));
291
292             }
293
294             /* Inner loop uses 44 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
300                                               f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
305
306         /* Increment number of inner iterations */
307         inneriter                  += j_index_end - j_index_start;
308
309         /* Outer loop uses 7 flops */
310     }
311
312     /* Increment number of outer iterations */
313     outeriter        += nri;
314
315     /* Update outer/inner flops */
316
317     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*44);
318 }
319 /*
320  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
321  * Electrostatics interaction: None
322  * VdW interaction:            LennardJones
323  * Geometry:                   Particle-Particle
324  * Calculate force/pot:        Force
325  */
326 void
327 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_double
328                     (t_nblist                    * gmx_restrict       nlist,
329                      rvec                        * gmx_restrict          xx,
330                      rvec                        * gmx_restrict          ff,
331                      t_forcerec                  * gmx_restrict          fr,
332                      t_mdatoms                   * gmx_restrict     mdatoms,
333                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
334                      t_nrnb                      * gmx_restrict        nrnb)
335 {
336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
337      * just 0 for non-waters.
338      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
339      * jnr indices corresponding to data put in the four positions in the SIMD register.
340      */
341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
343     int              jnrA,jnrB;
344     int              j_coord_offsetA,j_coord_offsetB;
345     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
346     real             rcutoff_scalar;
347     real             *shiftvec,*fshift,*x,*f;
348     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
349     int              vdwioffset0;
350     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
351     int              vdwjidx0A,vdwjidx0B;
352     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
353     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
354     int              nvdwtype;
355     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
356     int              *vdwtype;
357     real             *vdwparam;
358     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
359     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
360     __m128d          dummy_mask,cutoff_mask;
361     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
362     __m128d          one     = _mm_set1_pd(1.0);
363     __m128d          two     = _mm_set1_pd(2.0);
364     x                = xx[0];
365     f                = ff[0];
366
367     nri              = nlist->nri;
368     iinr             = nlist->iinr;
369     jindex           = nlist->jindex;
370     jjnr             = nlist->jjnr;
371     shiftidx         = nlist->shift;
372     gid              = nlist->gid;
373     shiftvec         = fr->shift_vec[0];
374     fshift           = fr->fshift[0];
375     nvdwtype         = fr->ntype;
376     vdwparam         = fr->nbfp;
377     vdwtype          = mdatoms->typeA;
378
379     rcutoff_scalar   = fr->rvdw;
380     rcutoff          = _mm_set1_pd(rcutoff_scalar);
381     rcutoff2         = _mm_mul_pd(rcutoff,rcutoff);
382
383     sh_vdw_invrcut6  = _mm_set1_pd(fr->ic->sh_invrc6);
384     rvdw             = _mm_set1_pd(fr->rvdw);
385
386     /* Avoid stupid compiler warnings */
387     jnrA = jnrB = 0;
388     j_coord_offsetA = 0;
389     j_coord_offsetB = 0;
390
391     outeriter        = 0;
392     inneriter        = 0;
393
394     /* Start outer loop over neighborlists */
395     for(iidx=0; iidx<nri; iidx++)
396     {
397         /* Load shift vector for this list */
398         i_shift_offset   = DIM*shiftidx[iidx];
399
400         /* Load limits for loop over neighbors */
401         j_index_start    = jindex[iidx];
402         j_index_end      = jindex[iidx+1];
403
404         /* Get outer coordinate index */
405         inr              = iinr[iidx];
406         i_coord_offset   = DIM*inr;
407
408         /* Load i particle coords and add shift vector */
409         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
410
411         fix0             = _mm_setzero_pd();
412         fiy0             = _mm_setzero_pd();
413         fiz0             = _mm_setzero_pd();
414
415         /* Load parameters for i particles */
416         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
417
418         /* Start inner kernel loop */
419         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
420         {
421
422             /* Get j neighbor index, and coordinate index */
423             jnrA             = jjnr[jidx];
424             jnrB             = jjnr[jidx+1];
425             j_coord_offsetA  = DIM*jnrA;
426             j_coord_offsetB  = DIM*jnrB;
427
428             /* load j atom coordinates */
429             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm_sub_pd(ix0,jx0);
434             dy00             = _mm_sub_pd(iy0,jy0);
435             dz00             = _mm_sub_pd(iz0,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
439
440             rinvsq00         = gmx_mm_inv_pd(rsq00);
441
442             /* Load parameters for j particles */
443             vdwjidx0A        = 2*vdwtype[jnrA+0];
444             vdwjidx0B        = 2*vdwtype[jnrB+0];
445
446             /**************************
447              * CALCULATE INTERACTIONS *
448              **************************/
449
450             if (gmx_mm_any_lt(rsq00,rcutoff2))
451             {
452
453             /* Compute parameters for interactions between i and j atoms */
454             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
455                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
456
457             /* LENNARD-JONES DISPERSION/REPULSION */
458
459             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
460             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
461
462             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
463
464             fscal            = fvdw;
465
466             fscal            = _mm_and_pd(fscal,cutoff_mask);
467
468             /* Update vectorial force */
469             fix0             = _mm_macc_pd(dx00,fscal,fix0);
470             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
471             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
472             
473             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
474                                                    _mm_mul_pd(dx00,fscal),
475                                                    _mm_mul_pd(dy00,fscal),
476                                                    _mm_mul_pd(dz00,fscal));
477
478             }
479
480             /* Inner loop uses 33 flops */
481         }
482
483         if(jidx<j_index_end)
484         {
485
486             jnrA             = jjnr[jidx];
487             j_coord_offsetA  = DIM*jnrA;
488
489             /* load j atom coordinates */
490             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
491                                               &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm_sub_pd(ix0,jx0);
495             dy00             = _mm_sub_pd(iy0,jy0);
496             dz00             = _mm_sub_pd(iz0,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
500
501             rinvsq00         = gmx_mm_inv_pd(rsq00);
502
503             /* Load parameters for j particles */
504             vdwjidx0A        = 2*vdwtype[jnrA+0];
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (gmx_mm_any_lt(rsq00,rcutoff2))
511             {
512
513             /* Compute parameters for interactions between i and j atoms */
514             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
515
516             /* LENNARD-JONES DISPERSION/REPULSION */
517
518             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
519             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
520
521             cutoff_mask      = _mm_cmplt_pd(rsq00,rcutoff2);
522
523             fscal            = fvdw;
524
525             fscal            = _mm_and_pd(fscal,cutoff_mask);
526
527             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
528
529             /* Update vectorial force */
530             fix0             = _mm_macc_pd(dx00,fscal,fix0);
531             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
532             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
533             
534             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
535                                                    _mm_mul_pd(dx00,fscal),
536                                                    _mm_mul_pd(dy00,fscal),
537                                                    _mm_mul_pd(dz00,fscal));
538
539             }
540
541             /* Inner loop uses 33 flops */
542         }
543
544         /* End of innermost loop */
545
546         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
547                                               f+i_coord_offset,fshift+i_shift_offset);
548
549         /* Increment number of inner iterations */
550         inneriter                  += j_index_end - j_index_start;
551
552         /* Outer loop uses 6 flops */
553     }
554
555     /* Increment number of outer iterations */
556     outeriter        += nri;
557
558     /* Update outer/inner flops */
559
560     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*33);
561 }