Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: None
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     int              nvdwtype;
85     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
89     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
90     __m128i          vfitab;
91     __m128i          ifour       = _mm_set1_epi32(4);
92     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
93     real             *vftab;
94     __m128d          dummy_mask,cutoff_mask;
95     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96     __m128d          one     = _mm_set1_pd(1.0);
97     __m128d          two     = _mm_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
140
141         fix0             = _mm_setzero_pd();
142         fiy0             = _mm_setzero_pd();
143         fiz0             = _mm_setzero_pd();
144
145         /* Load parameters for i particles */
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         vvdwsum          = _mm_setzero_pd();
150
151         /* Start inner kernel loop */
152         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
153         {
154
155             /* Get j neighbor index, and coordinate index */
156             jnrA             = jjnr[jidx];
157             jnrB             = jjnr[jidx+1];
158             j_coord_offsetA  = DIM*jnrA;
159             j_coord_offsetB  = DIM*jnrB;
160
161             /* load j atom coordinates */
162             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
163                                               &jx0,&jy0,&jz0);
164
165             /* Calculate displacement vector */
166             dx00             = _mm_sub_pd(ix0,jx0);
167             dy00             = _mm_sub_pd(iy0,jy0);
168             dz00             = _mm_sub_pd(iz0,jz0);
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
172
173             rinv00           = avx128fma_invsqrt_d(rsq00);
174
175             /* Load parameters for j particles */
176             vdwjidx0A        = 2*vdwtype[jnrA+0];
177             vdwjidx0B        = 2*vdwtype[jnrB+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             r00              = _mm_mul_pd(rsq00,rinv00);
184
185             /* Compute parameters for interactions between i and j atoms */
186             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
187                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
188
189             /* Calculate table index by multiplying r with table scale and truncate to integer */
190             rt               = _mm_mul_pd(r00,vftabscale);
191             vfitab           = _mm_cvttpd_epi32(rt);
192 #ifdef __XOP__
193             vfeps            = _mm_frcz_pd(rt);
194 #else
195             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
196 #endif
197             twovfeps         = _mm_add_pd(vfeps,vfeps);
198             vfitab           = _mm_slli_epi32(vfitab,3);
199
200             /* CUBIC SPLINE TABLE DISPERSION */
201             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
202             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
203             GMX_MM_TRANSPOSE2_PD(Y,F);
204             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
205             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
206             GMX_MM_TRANSPOSE2_PD(G,H);
207             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
208             VV               = _mm_macc_pd(vfeps,Fp,Y);
209             vvdw6            = _mm_mul_pd(c6_00,VV);
210             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
211             fvdw6            = _mm_mul_pd(c6_00,FF);
212
213             /* CUBIC SPLINE TABLE REPULSION */
214             vfitab           = _mm_add_epi32(vfitab,ifour);
215             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
216             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
217             GMX_MM_TRANSPOSE2_PD(Y,F);
218             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
219             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
220             GMX_MM_TRANSPOSE2_PD(G,H);
221             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
222             VV               = _mm_macc_pd(vfeps,Fp,Y);
223             vvdw12           = _mm_mul_pd(c12_00,VV);
224             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
225             fvdw12           = _mm_mul_pd(c12_00,FF);
226             vvdw             = _mm_add_pd(vvdw12,vvdw6);
227             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
231
232             fscal            = fvdw;
233
234             /* Update vectorial force */
235             fix0             = _mm_macc_pd(dx00,fscal,fix0);
236             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
237             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
238             
239             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
240                                                    _mm_mul_pd(dx00,fscal),
241                                                    _mm_mul_pd(dy00,fscal),
242                                                    _mm_mul_pd(dz00,fscal));
243
244             /* Inner loop uses 59 flops */
245         }
246
247         if(jidx<j_index_end)
248         {
249
250             jnrA             = jjnr[jidx];
251             j_coord_offsetA  = DIM*jnrA;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
255                                               &jx0,&jy0,&jz0);
256
257             /* Calculate displacement vector */
258             dx00             = _mm_sub_pd(ix0,jx0);
259             dy00             = _mm_sub_pd(iy0,jy0);
260             dz00             = _mm_sub_pd(iz0,jz0);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264
265             rinv00           = avx128fma_invsqrt_d(rsq00);
266
267             /* Load parameters for j particles */
268             vdwjidx0A        = 2*vdwtype[jnrA+0];
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             r00              = _mm_mul_pd(rsq00,rinv00);
275
276             /* Compute parameters for interactions between i and j atoms */
277             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
278
279             /* Calculate table index by multiplying r with table scale and truncate to integer */
280             rt               = _mm_mul_pd(r00,vftabscale);
281             vfitab           = _mm_cvttpd_epi32(rt);
282 #ifdef __XOP__
283             vfeps            = _mm_frcz_pd(rt);
284 #else
285             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
286 #endif
287             twovfeps         = _mm_add_pd(vfeps,vfeps);
288             vfitab           = _mm_slli_epi32(vfitab,3);
289
290             /* CUBIC SPLINE TABLE DISPERSION */
291             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm_setzero_pd();
293             GMX_MM_TRANSPOSE2_PD(Y,F);
294             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
295             H                = _mm_setzero_pd();
296             GMX_MM_TRANSPOSE2_PD(G,H);
297             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
298             VV               = _mm_macc_pd(vfeps,Fp,Y);
299             vvdw6            = _mm_mul_pd(c6_00,VV);
300             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
301             fvdw6            = _mm_mul_pd(c6_00,FF);
302
303             /* CUBIC SPLINE TABLE REPULSION */
304             vfitab           = _mm_add_epi32(vfitab,ifour);
305             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
306             F                = _mm_setzero_pd();
307             GMX_MM_TRANSPOSE2_PD(Y,F);
308             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
309             H                = _mm_setzero_pd();
310             GMX_MM_TRANSPOSE2_PD(G,H);
311             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
312             VV               = _mm_macc_pd(vfeps,Fp,Y);
313             vvdw12           = _mm_mul_pd(c12_00,VV);
314             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
315             fvdw12           = _mm_mul_pd(c12_00,FF);
316             vvdw             = _mm_add_pd(vvdw12,vvdw6);
317             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
321             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
322
323             fscal            = fvdw;
324
325             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
326
327             /* Update vectorial force */
328             fix0             = _mm_macc_pd(dx00,fscal,fix0);
329             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
330             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
331             
332             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
333                                                    _mm_mul_pd(dx00,fscal),
334                                                    _mm_mul_pd(dy00,fscal),
335                                                    _mm_mul_pd(dz00,fscal));
336
337             /* Inner loop uses 59 flops */
338         }
339
340         /* End of innermost loop */
341
342         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
343                                               f+i_coord_offset,fshift+i_shift_offset);
344
345         ggid                        = gid[iidx];
346         /* Update potential energies */
347         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
348
349         /* Increment number of inner iterations */
350         inneriter                  += j_index_end - j_index_start;
351
352         /* Outer loop uses 7 flops */
353     }
354
355     /* Increment number of outer iterations */
356     outeriter        += nri;
357
358     /* Update outer/inner flops */
359
360     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
361 }
362 /*
363  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
364  * Electrostatics interaction: None
365  * VdW interaction:            CubicSplineTable
366  * Geometry:                   Particle-Particle
367  * Calculate force/pot:        Force
368  */
369 void
370 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
371                     (t_nblist                    * gmx_restrict       nlist,
372                      rvec                        * gmx_restrict          xx,
373                      rvec                        * gmx_restrict          ff,
374                      struct t_forcerec           * gmx_restrict          fr,
375                      t_mdatoms                   * gmx_restrict     mdatoms,
376                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
377                      t_nrnb                      * gmx_restrict        nrnb)
378 {
379     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
380      * just 0 for non-waters.
381      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
382      * jnr indices corresponding to data put in the four positions in the SIMD register.
383      */
384     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
385     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
386     int              jnrA,jnrB;
387     int              j_coord_offsetA,j_coord_offsetB;
388     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
389     real             rcutoff_scalar;
390     real             *shiftvec,*fshift,*x,*f;
391     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
392     int              vdwioffset0;
393     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
394     int              vdwjidx0A,vdwjidx0B;
395     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
396     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
397     int              nvdwtype;
398     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
399     int              *vdwtype;
400     real             *vdwparam;
401     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
402     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
403     __m128i          vfitab;
404     __m128i          ifour       = _mm_set1_epi32(4);
405     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
406     real             *vftab;
407     __m128d          dummy_mask,cutoff_mask;
408     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
409     __m128d          one     = _mm_set1_pd(1.0);
410     __m128d          two     = _mm_set1_pd(2.0);
411     x                = xx[0];
412     f                = ff[0];
413
414     nri              = nlist->nri;
415     iinr             = nlist->iinr;
416     jindex           = nlist->jindex;
417     jjnr             = nlist->jjnr;
418     shiftidx         = nlist->shift;
419     gid              = nlist->gid;
420     shiftvec         = fr->shift_vec[0];
421     fshift           = fr->fshift[0];
422     nvdwtype         = fr->ntype;
423     vdwparam         = fr->nbfp;
424     vdwtype          = mdatoms->typeA;
425
426     vftab            = kernel_data->table_vdw->data;
427     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
428
429     /* Avoid stupid compiler warnings */
430     jnrA = jnrB = 0;
431     j_coord_offsetA = 0;
432     j_coord_offsetB = 0;
433
434     outeriter        = 0;
435     inneriter        = 0;
436
437     /* Start outer loop over neighborlists */
438     for(iidx=0; iidx<nri; iidx++)
439     {
440         /* Load shift vector for this list */
441         i_shift_offset   = DIM*shiftidx[iidx];
442
443         /* Load limits for loop over neighbors */
444         j_index_start    = jindex[iidx];
445         j_index_end      = jindex[iidx+1];
446
447         /* Get outer coordinate index */
448         inr              = iinr[iidx];
449         i_coord_offset   = DIM*inr;
450
451         /* Load i particle coords and add shift vector */
452         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
453
454         fix0             = _mm_setzero_pd();
455         fiy0             = _mm_setzero_pd();
456         fiz0             = _mm_setzero_pd();
457
458         /* Load parameters for i particles */
459         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
460
461         /* Start inner kernel loop */
462         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
463         {
464
465             /* Get j neighbor index, and coordinate index */
466             jnrA             = jjnr[jidx];
467             jnrB             = jjnr[jidx+1];
468             j_coord_offsetA  = DIM*jnrA;
469             j_coord_offsetB  = DIM*jnrB;
470
471             /* load j atom coordinates */
472             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
473                                               &jx0,&jy0,&jz0);
474
475             /* Calculate displacement vector */
476             dx00             = _mm_sub_pd(ix0,jx0);
477             dy00             = _mm_sub_pd(iy0,jy0);
478             dz00             = _mm_sub_pd(iz0,jz0);
479
480             /* Calculate squared distance and things based on it */
481             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
482
483             rinv00           = avx128fma_invsqrt_d(rsq00);
484
485             /* Load parameters for j particles */
486             vdwjidx0A        = 2*vdwtype[jnrA+0];
487             vdwjidx0B        = 2*vdwtype[jnrB+0];
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             r00              = _mm_mul_pd(rsq00,rinv00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
497                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
498
499             /* Calculate table index by multiplying r with table scale and truncate to integer */
500             rt               = _mm_mul_pd(r00,vftabscale);
501             vfitab           = _mm_cvttpd_epi32(rt);
502 #ifdef __XOP__
503             vfeps            = _mm_frcz_pd(rt);
504 #else
505             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
506 #endif
507             twovfeps         = _mm_add_pd(vfeps,vfeps);
508             vfitab           = _mm_slli_epi32(vfitab,3);
509
510             /* CUBIC SPLINE TABLE DISPERSION */
511             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
512             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
513             GMX_MM_TRANSPOSE2_PD(Y,F);
514             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
515             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
516             GMX_MM_TRANSPOSE2_PD(G,H);
517             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
518             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
519             fvdw6            = _mm_mul_pd(c6_00,FF);
520
521             /* CUBIC SPLINE TABLE REPULSION */
522             vfitab           = _mm_add_epi32(vfitab,ifour);
523             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
524             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
525             GMX_MM_TRANSPOSE2_PD(Y,F);
526             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
527             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
528             GMX_MM_TRANSPOSE2_PD(G,H);
529             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
530             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
531             fvdw12           = _mm_mul_pd(c12_00,FF);
532             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
533
534             fscal            = fvdw;
535
536             /* Update vectorial force */
537             fix0             = _mm_macc_pd(dx00,fscal,fix0);
538             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
539             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
540             
541             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
542                                                    _mm_mul_pd(dx00,fscal),
543                                                    _mm_mul_pd(dy00,fscal),
544                                                    _mm_mul_pd(dz00,fscal));
545
546             /* Inner loop uses 51 flops */
547         }
548
549         if(jidx<j_index_end)
550         {
551
552             jnrA             = jjnr[jidx];
553             j_coord_offsetA  = DIM*jnrA;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_pd(ix0,jx0);
561             dy00             = _mm_sub_pd(iy0,jy0);
562             dz00             = _mm_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinv00           = avx128fma_invsqrt_d(rsq00);
568
569             /* Load parameters for j particles */
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
580
581             /* Calculate table index by multiplying r with table scale and truncate to integer */
582             rt               = _mm_mul_pd(r00,vftabscale);
583             vfitab           = _mm_cvttpd_epi32(rt);
584 #ifdef __XOP__
585             vfeps            = _mm_frcz_pd(rt);
586 #else
587             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
588 #endif
589             twovfeps         = _mm_add_pd(vfeps,vfeps);
590             vfitab           = _mm_slli_epi32(vfitab,3);
591
592             /* CUBIC SPLINE TABLE DISPERSION */
593             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
594             F                = _mm_setzero_pd();
595             GMX_MM_TRANSPOSE2_PD(Y,F);
596             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
597             H                = _mm_setzero_pd();
598             GMX_MM_TRANSPOSE2_PD(G,H);
599             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
600             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
601             fvdw6            = _mm_mul_pd(c6_00,FF);
602
603             /* CUBIC SPLINE TABLE REPULSION */
604             vfitab           = _mm_add_epi32(vfitab,ifour);
605             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
606             F                = _mm_setzero_pd();
607             GMX_MM_TRANSPOSE2_PD(Y,F);
608             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
609             H                = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(G,H);
611             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
612             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
613             fvdw12           = _mm_mul_pd(c12_00,FF);
614             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
615
616             fscal            = fvdw;
617
618             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
619
620             /* Update vectorial force */
621             fix0             = _mm_macc_pd(dx00,fscal,fix0);
622             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
623             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
624             
625             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
626                                                    _mm_mul_pd(dx00,fscal),
627                                                    _mm_mul_pd(dy00,fscal),
628                                                    _mm_mul_pd(dz00,fscal));
629
630             /* Inner loop uses 51 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         /* Increment number of inner iterations */
639         inneriter                  += j_index_end - j_index_start;
640
641         /* Outer loop uses 6 flops */
642     }
643
644     /* Increment number of outer iterations */
645     outeriter        += nri;
646
647     /* Update outer/inner flops */
648
649     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*51);
650 }