Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: None
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     int              nvdwtype;
86     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
90     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
94     real             *vftab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     vftab            = kernel_data->table_vdw->data;
115     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         vvdwsum          = _mm_setzero_pd();
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
154         {
155
156             /* Get j neighbor index, and coordinate index */
157             jnrA             = jjnr[jidx];
158             jnrB             = jjnr[jidx+1];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161
162             /* load j atom coordinates */
163             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
164                                               &jx0,&jy0,&jz0);
165
166             /* Calculate displacement vector */
167             dx00             = _mm_sub_pd(ix0,jx0);
168             dy00             = _mm_sub_pd(iy0,jy0);
169             dz00             = _mm_sub_pd(iz0,jz0);
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
173
174             rinv00           = gmx_mm_invsqrt_pd(rsq00);
175
176             /* Load parameters for j particles */
177             vdwjidx0A        = 2*vdwtype[jnrA+0];
178             vdwjidx0B        = 2*vdwtype[jnrB+0];
179
180             /**************************
181              * CALCULATE INTERACTIONS *
182              **************************/
183
184             r00              = _mm_mul_pd(rsq00,rinv00);
185
186             /* Compute parameters for interactions between i and j atoms */
187             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
188                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
189
190             /* Calculate table index by multiplying r with table scale and truncate to integer */
191             rt               = _mm_mul_pd(r00,vftabscale);
192             vfitab           = _mm_cvttpd_epi32(rt);
193 #ifdef __XOP__
194             vfeps            = _mm_frcz_pd(rt);
195 #else
196             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
197 #endif
198             twovfeps         = _mm_add_pd(vfeps,vfeps);
199             vfitab           = _mm_slli_epi32(vfitab,3);
200
201             /* CUBIC SPLINE TABLE DISPERSION */
202             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
203             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
204             GMX_MM_TRANSPOSE2_PD(Y,F);
205             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
206             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
207             GMX_MM_TRANSPOSE2_PD(G,H);
208             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
209             VV               = _mm_macc_pd(vfeps,Fp,Y);
210             vvdw6            = _mm_mul_pd(c6_00,VV);
211             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
212             fvdw6            = _mm_mul_pd(c6_00,FF);
213
214             /* CUBIC SPLINE TABLE REPULSION */
215             vfitab           = _mm_add_epi32(vfitab,ifour);
216             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
217             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
218             GMX_MM_TRANSPOSE2_PD(Y,F);
219             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
220             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(G,H);
222             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
223             VV               = _mm_macc_pd(vfeps,Fp,Y);
224             vvdw12           = _mm_mul_pd(c12_00,VV);
225             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
226             fvdw12           = _mm_mul_pd(c12_00,FF);
227             vvdw             = _mm_add_pd(vvdw12,vvdw6);
228             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
232
233             fscal            = fvdw;
234
235             /* Update vectorial force */
236             fix0             = _mm_macc_pd(dx00,fscal,fix0);
237             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
238             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
239             
240             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
241                                                    _mm_mul_pd(dx00,fscal),
242                                                    _mm_mul_pd(dy00,fscal),
243                                                    _mm_mul_pd(dz00,fscal));
244
245             /* Inner loop uses 59 flops */
246         }
247
248         if(jidx<j_index_end)
249         {
250
251             jnrA             = jjnr[jidx];
252             j_coord_offsetA  = DIM*jnrA;
253
254             /* load j atom coordinates */
255             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256                                               &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm_sub_pd(ix0,jx0);
260             dy00             = _mm_sub_pd(iy0,jy0);
261             dz00             = _mm_sub_pd(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265
266             rinv00           = gmx_mm_invsqrt_pd(rsq00);
267
268             /* Load parameters for j particles */
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270
271             /**************************
272              * CALCULATE INTERACTIONS *
273              **************************/
274
275             r00              = _mm_mul_pd(rsq00,rinv00);
276
277             /* Compute parameters for interactions between i and j atoms */
278             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
279
280             /* Calculate table index by multiplying r with table scale and truncate to integer */
281             rt               = _mm_mul_pd(r00,vftabscale);
282             vfitab           = _mm_cvttpd_epi32(rt);
283 #ifdef __XOP__
284             vfeps            = _mm_frcz_pd(rt);
285 #else
286             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
287 #endif
288             twovfeps         = _mm_add_pd(vfeps,vfeps);
289             vfitab           = _mm_slli_epi32(vfitab,3);
290
291             /* CUBIC SPLINE TABLE DISPERSION */
292             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
293             F                = _mm_setzero_pd();
294             GMX_MM_TRANSPOSE2_PD(Y,F);
295             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
296             H                = _mm_setzero_pd();
297             GMX_MM_TRANSPOSE2_PD(G,H);
298             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
299             VV               = _mm_macc_pd(vfeps,Fp,Y);
300             vvdw6            = _mm_mul_pd(c6_00,VV);
301             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
302             fvdw6            = _mm_mul_pd(c6_00,FF);
303
304             /* CUBIC SPLINE TABLE REPULSION */
305             vfitab           = _mm_add_epi32(vfitab,ifour);
306             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
307             F                = _mm_setzero_pd();
308             GMX_MM_TRANSPOSE2_PD(Y,F);
309             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
310             H                = _mm_setzero_pd();
311             GMX_MM_TRANSPOSE2_PD(G,H);
312             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
313             VV               = _mm_macc_pd(vfeps,Fp,Y);
314             vvdw12           = _mm_mul_pd(c12_00,VV);
315             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
316             fvdw12           = _mm_mul_pd(c12_00,FF);
317             vvdw             = _mm_add_pd(vvdw12,vvdw6);
318             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
322             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
323
324             fscal            = fvdw;
325
326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
327
328             /* Update vectorial force */
329             fix0             = _mm_macc_pd(dx00,fscal,fix0);
330             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
331             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
332             
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334                                                    _mm_mul_pd(dx00,fscal),
335                                                    _mm_mul_pd(dy00,fscal),
336                                                    _mm_mul_pd(dz00,fscal));
337
338             /* Inner loop uses 59 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 7 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
365  * Electrostatics interaction: None
366  * VdW interaction:            CubicSplineTable
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
372                     (t_nblist                    * gmx_restrict       nlist,
373                      rvec                        * gmx_restrict          xx,
374                      rvec                        * gmx_restrict          ff,
375                      t_forcerec                  * gmx_restrict          fr,
376                      t_mdatoms                   * gmx_restrict     mdatoms,
377                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378                      t_nrnb                      * gmx_restrict        nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB;
388     int              j_coord_offsetA,j_coord_offsetB;
389     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
390     real             rcutoff_scalar;
391     real             *shiftvec,*fshift,*x,*f;
392     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393     int              vdwioffset0;
394     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395     int              vdwjidx0A,vdwjidx0B;
396     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398     int              nvdwtype;
399     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
400     int              *vdwtype;
401     real             *vdwparam;
402     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
403     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
404     __m128i          vfitab;
405     __m128i          ifour       = _mm_set1_epi32(4);
406     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
407     real             *vftab;
408     __m128d          dummy_mask,cutoff_mask;
409     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
410     __m128d          one     = _mm_set1_pd(1.0);
411     __m128d          two     = _mm_set1_pd(2.0);
412     x                = xx[0];
413     f                = ff[0];
414
415     nri              = nlist->nri;
416     iinr             = nlist->iinr;
417     jindex           = nlist->jindex;
418     jjnr             = nlist->jjnr;
419     shiftidx         = nlist->shift;
420     gid              = nlist->gid;
421     shiftvec         = fr->shift_vec[0];
422     fshift           = fr->fshift[0];
423     nvdwtype         = fr->ntype;
424     vdwparam         = fr->nbfp;
425     vdwtype          = mdatoms->typeA;
426
427     vftab            = kernel_data->table_vdw->data;
428     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
429
430     /* Avoid stupid compiler warnings */
431     jnrA = jnrB = 0;
432     j_coord_offsetA = 0;
433     j_coord_offsetB = 0;
434
435     outeriter        = 0;
436     inneriter        = 0;
437
438     /* Start outer loop over neighborlists */
439     for(iidx=0; iidx<nri; iidx++)
440     {
441         /* Load shift vector for this list */
442         i_shift_offset   = DIM*shiftidx[iidx];
443
444         /* Load limits for loop over neighbors */
445         j_index_start    = jindex[iidx];
446         j_index_end      = jindex[iidx+1];
447
448         /* Get outer coordinate index */
449         inr              = iinr[iidx];
450         i_coord_offset   = DIM*inr;
451
452         /* Load i particle coords and add shift vector */
453         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
454
455         fix0             = _mm_setzero_pd();
456         fiy0             = _mm_setzero_pd();
457         fiz0             = _mm_setzero_pd();
458
459         /* Load parameters for i particles */
460         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
461
462         /* Start inner kernel loop */
463         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrA             = jjnr[jidx];
468             jnrB             = jjnr[jidx+1];
469             j_coord_offsetA  = DIM*jnrA;
470             j_coord_offsetB  = DIM*jnrB;
471
472             /* load j atom coordinates */
473             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
474                                               &jx0,&jy0,&jz0);
475
476             /* Calculate displacement vector */
477             dx00             = _mm_sub_pd(ix0,jx0);
478             dy00             = _mm_sub_pd(iy0,jy0);
479             dz00             = _mm_sub_pd(iz0,jz0);
480
481             /* Calculate squared distance and things based on it */
482             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
483
484             rinv00           = gmx_mm_invsqrt_pd(rsq00);
485
486             /* Load parameters for j particles */
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488             vdwjidx0B        = 2*vdwtype[jnrB+0];
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r00              = _mm_mul_pd(rsq00,rinv00);
495
496             /* Compute parameters for interactions between i and j atoms */
497             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
498                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
499
500             /* Calculate table index by multiplying r with table scale and truncate to integer */
501             rt               = _mm_mul_pd(r00,vftabscale);
502             vfitab           = _mm_cvttpd_epi32(rt);
503 #ifdef __XOP__
504             vfeps            = _mm_frcz_pd(rt);
505 #else
506             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
507 #endif
508             twovfeps         = _mm_add_pd(vfeps,vfeps);
509             vfitab           = _mm_slli_epi32(vfitab,3);
510
511             /* CUBIC SPLINE TABLE DISPERSION */
512             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
513             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
514             GMX_MM_TRANSPOSE2_PD(Y,F);
515             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
516             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
517             GMX_MM_TRANSPOSE2_PD(G,H);
518             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
519             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
520             fvdw6            = _mm_mul_pd(c6_00,FF);
521
522             /* CUBIC SPLINE TABLE REPULSION */
523             vfitab           = _mm_add_epi32(vfitab,ifour);
524             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
525             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
526             GMX_MM_TRANSPOSE2_PD(Y,F);
527             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
528             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
529             GMX_MM_TRANSPOSE2_PD(G,H);
530             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
531             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
532             fvdw12           = _mm_mul_pd(c12_00,FF);
533             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
534
535             fscal            = fvdw;
536
537             /* Update vectorial force */
538             fix0             = _mm_macc_pd(dx00,fscal,fix0);
539             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
540             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
541             
542             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
543                                                    _mm_mul_pd(dx00,fscal),
544                                                    _mm_mul_pd(dy00,fscal),
545                                                    _mm_mul_pd(dz00,fscal));
546
547             /* Inner loop uses 51 flops */
548         }
549
550         if(jidx<j_index_end)
551         {
552
553             jnrA             = jjnr[jidx];
554             j_coord_offsetA  = DIM*jnrA;
555
556             /* load j atom coordinates */
557             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
558                                               &jx0,&jy0,&jz0);
559
560             /* Calculate displacement vector */
561             dx00             = _mm_sub_pd(ix0,jx0);
562             dy00             = _mm_sub_pd(iy0,jy0);
563             dz00             = _mm_sub_pd(iz0,jz0);
564
565             /* Calculate squared distance and things based on it */
566             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
567
568             rinv00           = gmx_mm_invsqrt_pd(rsq00);
569
570             /* Load parameters for j particles */
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm_mul_pd(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
581
582             /* Calculate table index by multiplying r with table scale and truncate to integer */
583             rt               = _mm_mul_pd(r00,vftabscale);
584             vfitab           = _mm_cvttpd_epi32(rt);
585 #ifdef __XOP__
586             vfeps            = _mm_frcz_pd(rt);
587 #else
588             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
589 #endif
590             twovfeps         = _mm_add_pd(vfeps,vfeps);
591             vfitab           = _mm_slli_epi32(vfitab,3);
592
593             /* CUBIC SPLINE TABLE DISPERSION */
594             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
595             F                = _mm_setzero_pd();
596             GMX_MM_TRANSPOSE2_PD(Y,F);
597             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
598             H                = _mm_setzero_pd();
599             GMX_MM_TRANSPOSE2_PD(G,H);
600             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
601             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
602             fvdw6            = _mm_mul_pd(c6_00,FF);
603
604             /* CUBIC SPLINE TABLE REPULSION */
605             vfitab           = _mm_add_epi32(vfitab,ifour);
606             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
607             F                = _mm_setzero_pd();
608             GMX_MM_TRANSPOSE2_PD(Y,F);
609             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
610             H                = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(G,H);
612             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
613             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
614             fvdw12           = _mm_mul_pd(c12_00,FF);
615             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
616
617             fscal            = fvdw;
618
619             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
620
621             /* Update vectorial force */
622             fix0             = _mm_macc_pd(dx00,fscal,fix0);
623             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
624             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
625             
626             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
627                                                    _mm_mul_pd(dx00,fscal),
628                                                    _mm_mul_pd(dy00,fscal),
629                                                    _mm_mul_pd(dz00,fscal));
630
631             /* Inner loop uses 51 flops */
632         }
633
634         /* End of innermost loop */
635
636         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
637                                               f+i_coord_offset,fshift+i_shift_offset);
638
639         /* Increment number of inner iterations */
640         inneriter                  += j_index_end - j_index_start;
641
642         /* Outer loop uses 6 flops */
643     }
644
645     /* Increment number of outer iterations */
646     outeriter        += nri;
647
648     /* Update outer/inner flops */
649
650     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*51);
651 }