6e1f5c36932168d449e6d2dae516ac9a5eeb5662
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: None
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         vvdwsum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             /* Load parameters for j particles */
179             vdwjidx0A        = 2*vdwtype[jnrA+0];
180             vdwjidx0B        = 2*vdwtype[jnrB+0];
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             r00              = _mm_mul_pd(rsq00,rinv00);
187
188             /* Compute parameters for interactions between i and j atoms */
189             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
190                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
191
192             /* Calculate table index by multiplying r with table scale and truncate to integer */
193             rt               = _mm_mul_pd(r00,vftabscale);
194             vfitab           = _mm_cvttpd_epi32(rt);
195 #ifdef __XOP__
196             vfeps            = _mm_frcz_pd(rt);
197 #else
198             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
199 #endif
200             twovfeps         = _mm_add_pd(vfeps,vfeps);
201             vfitab           = _mm_slli_epi32(vfitab,3);
202
203             /* CUBIC SPLINE TABLE DISPERSION */
204             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
205             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
206             GMX_MM_TRANSPOSE2_PD(Y,F);
207             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
208             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
209             GMX_MM_TRANSPOSE2_PD(G,H);
210             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
211             VV               = _mm_macc_pd(vfeps,Fp,Y);
212             vvdw6            = _mm_mul_pd(c6_00,VV);
213             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
214             fvdw6            = _mm_mul_pd(c6_00,FF);
215
216             /* CUBIC SPLINE TABLE REPULSION */
217             vfitab           = _mm_add_epi32(vfitab,ifour);
218             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
219             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
220             GMX_MM_TRANSPOSE2_PD(Y,F);
221             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
222             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
223             GMX_MM_TRANSPOSE2_PD(G,H);
224             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
225             VV               = _mm_macc_pd(vfeps,Fp,Y);
226             vvdw12           = _mm_mul_pd(c12_00,VV);
227             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
228             fvdw12           = _mm_mul_pd(c12_00,FF);
229             vvdw             = _mm_add_pd(vvdw12,vvdw6);
230             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
234
235             fscal            = fvdw;
236
237             /* Update vectorial force */
238             fix0             = _mm_macc_pd(dx00,fscal,fix0);
239             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
240             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
241             
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
243                                                    _mm_mul_pd(dx00,fscal),
244                                                    _mm_mul_pd(dy00,fscal),
245                                                    _mm_mul_pd(dz00,fscal));
246
247             /* Inner loop uses 59 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_pd(ix0,jx0);
262             dy00             = _mm_sub_pd(iy0,jy0);
263             dz00             = _mm_sub_pd(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267
268             rinv00           = gmx_mm_invsqrt_pd(rsq00);
269
270             /* Load parameters for j particles */
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
281
282             /* Calculate table index by multiplying r with table scale and truncate to integer */
283             rt               = _mm_mul_pd(r00,vftabscale);
284             vfitab           = _mm_cvttpd_epi32(rt);
285 #ifdef __XOP__
286             vfeps            = _mm_frcz_pd(rt);
287 #else
288             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
289 #endif
290             twovfeps         = _mm_add_pd(vfeps,vfeps);
291             vfitab           = _mm_slli_epi32(vfitab,3);
292
293             /* CUBIC SPLINE TABLE DISPERSION */
294             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
295             F                = _mm_setzero_pd();
296             GMX_MM_TRANSPOSE2_PD(Y,F);
297             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
298             H                = _mm_setzero_pd();
299             GMX_MM_TRANSPOSE2_PD(G,H);
300             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
301             VV               = _mm_macc_pd(vfeps,Fp,Y);
302             vvdw6            = _mm_mul_pd(c6_00,VV);
303             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
304             fvdw6            = _mm_mul_pd(c6_00,FF);
305
306             /* CUBIC SPLINE TABLE REPULSION */
307             vfitab           = _mm_add_epi32(vfitab,ifour);
308             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
309             F                = _mm_setzero_pd();
310             GMX_MM_TRANSPOSE2_PD(Y,F);
311             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
312             H                = _mm_setzero_pd();
313             GMX_MM_TRANSPOSE2_PD(G,H);
314             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
315             VV               = _mm_macc_pd(vfeps,Fp,Y);
316             vvdw12           = _mm_mul_pd(c12_00,VV);
317             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
318             fvdw12           = _mm_mul_pd(c12_00,FF);
319             vvdw             = _mm_add_pd(vvdw12,vvdw6);
320             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
321
322             /* Update potential sum for this i atom from the interaction with this j atom. */
323             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
324             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
325
326             fscal            = fvdw;
327
328             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
329
330             /* Update vectorial force */
331             fix0             = _mm_macc_pd(dx00,fscal,fix0);
332             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
333             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
334             
335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
336                                                    _mm_mul_pd(dx00,fscal),
337                                                    _mm_mul_pd(dy00,fscal),
338                                                    _mm_mul_pd(dz00,fscal));
339
340             /* Inner loop uses 59 flops */
341         }
342
343         /* End of innermost loop */
344
345         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
346                                               f+i_coord_offset,fshift+i_shift_offset);
347
348         ggid                        = gid[iidx];
349         /* Update potential energies */
350         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
351
352         /* Increment number of inner iterations */
353         inneriter                  += j_index_end - j_index_start;
354
355         /* Outer loop uses 7 flops */
356     }
357
358     /* Increment number of outer iterations */
359     outeriter        += nri;
360
361     /* Update outer/inner flops */
362
363     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*59);
364 }
365 /*
366  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
367  * Electrostatics interaction: None
368  * VdW interaction:            CubicSplineTable
369  * Geometry:                   Particle-Particle
370  * Calculate force/pot:        Force
371  */
372 void
373 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_128_fma_double
374                     (t_nblist                    * gmx_restrict       nlist,
375                      rvec                        * gmx_restrict          xx,
376                      rvec                        * gmx_restrict          ff,
377                      t_forcerec                  * gmx_restrict          fr,
378                      t_mdatoms                   * gmx_restrict     mdatoms,
379                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
380                      t_nrnb                      * gmx_restrict        nrnb)
381 {
382     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
383      * just 0 for non-waters.
384      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
385      * jnr indices corresponding to data put in the four positions in the SIMD register.
386      */
387     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
388     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
389     int              jnrA,jnrB;
390     int              j_coord_offsetA,j_coord_offsetB;
391     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
392     real             rcutoff_scalar;
393     real             *shiftvec,*fshift,*x,*f;
394     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
395     int              vdwioffset0;
396     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
397     int              vdwjidx0A,vdwjidx0B;
398     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
399     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
400     int              nvdwtype;
401     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
402     int              *vdwtype;
403     real             *vdwparam;
404     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
405     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
406     __m128i          vfitab;
407     __m128i          ifour       = _mm_set1_epi32(4);
408     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
409     real             *vftab;
410     __m128d          dummy_mask,cutoff_mask;
411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412     __m128d          one     = _mm_set1_pd(1.0);
413     __m128d          two     = _mm_set1_pd(2.0);
414     x                = xx[0];
415     f                = ff[0];
416
417     nri              = nlist->nri;
418     iinr             = nlist->iinr;
419     jindex           = nlist->jindex;
420     jjnr             = nlist->jjnr;
421     shiftidx         = nlist->shift;
422     gid              = nlist->gid;
423     shiftvec         = fr->shift_vec[0];
424     fshift           = fr->fshift[0];
425     nvdwtype         = fr->ntype;
426     vdwparam         = fr->nbfp;
427     vdwtype          = mdatoms->typeA;
428
429     vftab            = kernel_data->table_vdw->data;
430     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
431
432     /* Avoid stupid compiler warnings */
433     jnrA = jnrB = 0;
434     j_coord_offsetA = 0;
435     j_coord_offsetB = 0;
436
437     outeriter        = 0;
438     inneriter        = 0;
439
440     /* Start outer loop over neighborlists */
441     for(iidx=0; iidx<nri; iidx++)
442     {
443         /* Load shift vector for this list */
444         i_shift_offset   = DIM*shiftidx[iidx];
445
446         /* Load limits for loop over neighbors */
447         j_index_start    = jindex[iidx];
448         j_index_end      = jindex[iidx+1];
449
450         /* Get outer coordinate index */
451         inr              = iinr[iidx];
452         i_coord_offset   = DIM*inr;
453
454         /* Load i particle coords and add shift vector */
455         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
456
457         fix0             = _mm_setzero_pd();
458         fiy0             = _mm_setzero_pd();
459         fiz0             = _mm_setzero_pd();
460
461         /* Load parameters for i particles */
462         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
463
464         /* Start inner kernel loop */
465         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
466         {
467
468             /* Get j neighbor index, and coordinate index */
469             jnrA             = jjnr[jidx];
470             jnrB             = jjnr[jidx+1];
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473
474             /* load j atom coordinates */
475             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
476                                               &jx0,&jy0,&jz0);
477
478             /* Calculate displacement vector */
479             dx00             = _mm_sub_pd(ix0,jx0);
480             dy00             = _mm_sub_pd(iy0,jy0);
481             dz00             = _mm_sub_pd(iz0,jz0);
482
483             /* Calculate squared distance and things based on it */
484             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
485
486             rinv00           = gmx_mm_invsqrt_pd(rsq00);
487
488             /* Load parameters for j particles */
489             vdwjidx0A        = 2*vdwtype[jnrA+0];
490             vdwjidx0B        = 2*vdwtype[jnrB+0];
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r00              = _mm_mul_pd(rsq00,rinv00);
497
498             /* Compute parameters for interactions between i and j atoms */
499             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
500                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm_mul_pd(r00,vftabscale);
504             vfitab           = _mm_cvttpd_epi32(rt);
505 #ifdef __XOP__
506             vfeps            = _mm_frcz_pd(rt);
507 #else
508             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
509 #endif
510             twovfeps         = _mm_add_pd(vfeps,vfeps);
511             vfitab           = _mm_slli_epi32(vfitab,3);
512
513             /* CUBIC SPLINE TABLE DISPERSION */
514             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
515             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
516             GMX_MM_TRANSPOSE2_PD(Y,F);
517             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
518             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
519             GMX_MM_TRANSPOSE2_PD(G,H);
520             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
521             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
522             fvdw6            = _mm_mul_pd(c6_00,FF);
523
524             /* CUBIC SPLINE TABLE REPULSION */
525             vfitab           = _mm_add_epi32(vfitab,ifour);
526             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
527             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
528             GMX_MM_TRANSPOSE2_PD(Y,F);
529             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
530             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
531             GMX_MM_TRANSPOSE2_PD(G,H);
532             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
533             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
534             fvdw12           = _mm_mul_pd(c12_00,FF);
535             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
536
537             fscal            = fvdw;
538
539             /* Update vectorial force */
540             fix0             = _mm_macc_pd(dx00,fscal,fix0);
541             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
542             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
543             
544             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
545                                                    _mm_mul_pd(dx00,fscal),
546                                                    _mm_mul_pd(dy00,fscal),
547                                                    _mm_mul_pd(dz00,fscal));
548
549             /* Inner loop uses 51 flops */
550         }
551
552         if(jidx<j_index_end)
553         {
554
555             jnrA             = jjnr[jidx];
556             j_coord_offsetA  = DIM*jnrA;
557
558             /* load j atom coordinates */
559             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
560                                               &jx0,&jy0,&jz0);
561
562             /* Calculate displacement vector */
563             dx00             = _mm_sub_pd(ix0,jx0);
564             dy00             = _mm_sub_pd(iy0,jy0);
565             dz00             = _mm_sub_pd(iz0,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
569
570             rinv00           = gmx_mm_invsqrt_pd(rsq00);
571
572             /* Load parameters for j particles */
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r00              = _mm_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
583
584             /* Calculate table index by multiplying r with table scale and truncate to integer */
585             rt               = _mm_mul_pd(r00,vftabscale);
586             vfitab           = _mm_cvttpd_epi32(rt);
587 #ifdef __XOP__
588             vfeps            = _mm_frcz_pd(rt);
589 #else
590             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
591 #endif
592             twovfeps         = _mm_add_pd(vfeps,vfeps);
593             vfitab           = _mm_slli_epi32(vfitab,3);
594
595             /* CUBIC SPLINE TABLE DISPERSION */
596             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
597             F                = _mm_setzero_pd();
598             GMX_MM_TRANSPOSE2_PD(Y,F);
599             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
600             H                = _mm_setzero_pd();
601             GMX_MM_TRANSPOSE2_PD(G,H);
602             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
603             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
604             fvdw6            = _mm_mul_pd(c6_00,FF);
605
606             /* CUBIC SPLINE TABLE REPULSION */
607             vfitab           = _mm_add_epi32(vfitab,ifour);
608             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
609             F                = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(Y,F);
611             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
612             H                = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(G,H);
614             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
615             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
616             fvdw12           = _mm_mul_pd(c12_00,FF);
617             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
618
619             fscal            = fvdw;
620
621             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
622
623             /* Update vectorial force */
624             fix0             = _mm_macc_pd(dx00,fscal,fix0);
625             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
626             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
627             
628             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
629                                                    _mm_mul_pd(dx00,fscal),
630                                                    _mm_mul_pd(dy00,fscal),
631                                                    _mm_mul_pd(dz00,fscal));
632
633             /* Inner loop uses 51 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
639                                               f+i_coord_offset,fshift+i_shift_offset);
640
641         /* Increment number of inner iterations */
642         inneriter                  += j_index_end - j_index_start;
643
644         /* Outer loop uses 6 flops */
645     }
646
647     /* Increment number of outer iterations */
648     outeriter        += nri;
649
650     /* Update outer/inner flops */
651
652     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*51);
653 }