Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     __m128i          vfitab;
78     __m128i          ifour       = _mm_set1_epi32(4);
79     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
80     real             *vftab;
81     __m128d          dummy_mask,cutoff_mask;
82     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
83     __m128d          one     = _mm_set1_pd(1.0);
84     __m128d          two     = _mm_set1_pd(2.0);
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = _mm_set1_pd(fr->epsfac);
97     charge           = mdatoms->chargeA;
98
99     invsqrta         = fr->invsqrta;
100     dvda             = fr->dvda;
101     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
102     gbtab            = fr->gbtab.data;
103     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109
110     outeriter        = 0;
111     inneriter        = 0;
112
113     /* Start outer loop over neighborlists */
114     for(iidx=0; iidx<nri; iidx++)
115     {
116         /* Load shift vector for this list */
117         i_shift_offset   = DIM*shiftidx[iidx];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
129
130         fix0             = _mm_setzero_pd();
131         fiy0             = _mm_setzero_pd();
132         fiz0             = _mm_setzero_pd();
133
134         /* Load parameters for i particles */
135         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
136         isai0            = _mm_load1_pd(invsqrta+inr+0);
137
138         /* Reset potential sums */
139         velecsum         = _mm_setzero_pd();
140         vgbsum           = _mm_setzero_pd();
141         dvdasum          = _mm_setzero_pd();
142
143         /* Start inner kernel loop */
144         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
145         {
146
147             /* Get j neighbor index, and coordinate index */
148             jnrA             = jjnr[jidx];
149             jnrB             = jjnr[jidx+1];
150             j_coord_offsetA  = DIM*jnrA;
151             j_coord_offsetB  = DIM*jnrB;
152
153             /* load j atom coordinates */
154             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
155                                               &jx0,&jy0,&jz0);
156
157             /* Calculate displacement vector */
158             dx00             = _mm_sub_pd(ix0,jx0);
159             dy00             = _mm_sub_pd(iy0,jy0);
160             dz00             = _mm_sub_pd(iz0,jz0);
161
162             /* Calculate squared distance and things based on it */
163             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
164
165             rinv00           = gmx_mm_invsqrt_pd(rsq00);
166
167             /* Load parameters for j particles */
168             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
169             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
170
171             /**************************
172              * CALCULATE INTERACTIONS *
173              **************************/
174
175             r00              = _mm_mul_pd(rsq00,rinv00);
176
177             /* Compute parameters for interactions between i and j atoms */
178             qq00             = _mm_mul_pd(iq0,jq0);
179
180             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
181             isaprod          = _mm_mul_pd(isai0,isaj0);
182             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
183             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
184
185             /* Calculate generalized born table index - this is a separate table from the normal one,
186              * but we use the same procedure by multiplying r with scale and truncating to integer.
187              */
188             rt               = _mm_mul_pd(r00,gbscale);
189             gbitab           = _mm_cvttpd_epi32(rt);
190 #ifdef __XOP__
191             gbeps            = _mm_frcz_pd(rt);
192 #else
193             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
194 #endif
195             gbitab           = _mm_slli_epi32(gbitab,2);
196
197             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
198             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
199             GMX_MM_TRANSPOSE2_PD(Y,F);
200             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
201             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
202             GMX_MM_TRANSPOSE2_PD(G,H);
203             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
204             VV               = _mm_macc_pd(gbeps,Fp,Y);
205             vgb              = _mm_mul_pd(gbqqfactor,VV);
206
207             twogbeps         = _mm_add_pd(gbeps,gbeps);
208             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
209             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
210             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
211             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
212             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
213             velec            = _mm_mul_pd(qq00,rinv00);
214             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
215
216             /* Update potential sum for this i atom from the interaction with this j atom. */
217             velecsum         = _mm_add_pd(velecsum,velec);
218             vgbsum           = _mm_add_pd(vgbsum,vgb);
219
220             fscal            = felec;
221
222             /* Update vectorial force */
223             fix0             = _mm_macc_pd(dx00,fscal,fix0);
224             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
225             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
226             
227             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
228                                                    _mm_mul_pd(dx00,fscal),
229                                                    _mm_mul_pd(dy00,fscal),
230                                                    _mm_mul_pd(dz00,fscal));
231
232             /* Inner loop uses 61 flops */
233         }
234
235         if(jidx<j_index_end)
236         {
237
238             jnrA             = jjnr[jidx];
239             j_coord_offsetA  = DIM*jnrA;
240
241             /* load j atom coordinates */
242             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
243                                               &jx0,&jy0,&jz0);
244
245             /* Calculate displacement vector */
246             dx00             = _mm_sub_pd(ix0,jx0);
247             dy00             = _mm_sub_pd(iy0,jy0);
248             dz00             = _mm_sub_pd(iz0,jz0);
249
250             /* Calculate squared distance and things based on it */
251             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
252
253             rinv00           = gmx_mm_invsqrt_pd(rsq00);
254
255             /* Load parameters for j particles */
256             jq0              = _mm_load_sd(charge+jnrA+0);
257             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             r00              = _mm_mul_pd(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm_mul_pd(iq0,jq0);
267
268             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
269             isaprod          = _mm_mul_pd(isai0,isaj0);
270             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
271             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
272
273             /* Calculate generalized born table index - this is a separate table from the normal one,
274              * but we use the same procedure by multiplying r with scale and truncating to integer.
275              */
276             rt               = _mm_mul_pd(r00,gbscale);
277             gbitab           = _mm_cvttpd_epi32(rt);
278 #ifdef __XOP__
279             gbeps            = _mm_frcz_pd(rt);
280 #else
281             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
282 #endif
283             gbitab           = _mm_slli_epi32(gbitab,2);
284
285             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
286             F                = _mm_setzero_pd();
287             GMX_MM_TRANSPOSE2_PD(Y,F);
288             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
289             H                = _mm_setzero_pd();
290             GMX_MM_TRANSPOSE2_PD(G,H);
291             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
292             VV               = _mm_macc_pd(gbeps,Fp,Y);
293             vgb              = _mm_mul_pd(gbqqfactor,VV);
294
295             twogbeps         = _mm_add_pd(gbeps,gbeps);
296             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
297             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
298             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
299             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
300             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
301             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
302             velec            = _mm_mul_pd(qq00,rinv00);
303             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
307             velecsum         = _mm_add_pd(velecsum,velec);
308             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
309             vgbsum           = _mm_add_pd(vgbsum,vgb);
310
311             fscal            = felec;
312
313             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
314
315             /* Update vectorial force */
316             fix0             = _mm_macc_pd(dx00,fscal,fix0);
317             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
318             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
319             
320             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
321                                                    _mm_mul_pd(dx00,fscal),
322                                                    _mm_mul_pd(dy00,fscal),
323                                                    _mm_mul_pd(dz00,fscal));
324
325             /* Inner loop uses 61 flops */
326         }
327
328         /* End of innermost loop */
329
330         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
331                                               f+i_coord_offset,fshift+i_shift_offset);
332
333         ggid                        = gid[iidx];
334         /* Update potential energies */
335         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
336         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
337         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
338         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
339
340         /* Increment number of inner iterations */
341         inneriter                  += j_index_end - j_index_start;
342
343         /* Outer loop uses 9 flops */
344     }
345
346     /* Increment number of outer iterations */
347     outeriter        += nri;
348
349     /* Update outer/inner flops */
350
351     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
352 }
353 /*
354  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
355  * Electrostatics interaction: GeneralizedBorn
356  * VdW interaction:            None
357  * Geometry:                   Particle-Particle
358  * Calculate force/pot:        Force
359  */
360 void
361 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
362                     (t_nblist * gmx_restrict                nlist,
363                      rvec * gmx_restrict                    xx,
364                      rvec * gmx_restrict                    ff,
365                      t_forcerec * gmx_restrict              fr,
366                      t_mdatoms * gmx_restrict               mdatoms,
367                      nb_kernel_data_t * gmx_restrict        kernel_data,
368                      t_nrnb * gmx_restrict                  nrnb)
369 {
370     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
371      * just 0 for non-waters.
372      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
373      * jnr indices corresponding to data put in the four positions in the SIMD register.
374      */
375     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
376     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
377     int              jnrA,jnrB;
378     int              j_coord_offsetA,j_coord_offsetB;
379     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
380     real             rcutoff_scalar;
381     real             *shiftvec,*fshift,*x,*f;
382     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
383     int              vdwioffset0;
384     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
385     int              vdwjidx0A,vdwjidx0B;
386     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
387     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
388     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
389     real             *charge;
390     __m128i          gbitab;
391     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
392     __m128d          minushalf = _mm_set1_pd(-0.5);
393     real             *invsqrta,*dvda,*gbtab;
394     __m128i          vfitab;
395     __m128i          ifour       = _mm_set1_epi32(4);
396     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
397     real             *vftab;
398     __m128d          dummy_mask,cutoff_mask;
399     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
400     __m128d          one     = _mm_set1_pd(1.0);
401     __m128d          two     = _mm_set1_pd(2.0);
402     x                = xx[0];
403     f                = ff[0];
404
405     nri              = nlist->nri;
406     iinr             = nlist->iinr;
407     jindex           = nlist->jindex;
408     jjnr             = nlist->jjnr;
409     shiftidx         = nlist->shift;
410     gid              = nlist->gid;
411     shiftvec         = fr->shift_vec[0];
412     fshift           = fr->fshift[0];
413     facel            = _mm_set1_pd(fr->epsfac);
414     charge           = mdatoms->chargeA;
415
416     invsqrta         = fr->invsqrta;
417     dvda             = fr->dvda;
418     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
419     gbtab            = fr->gbtab.data;
420     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
421
422     /* Avoid stupid compiler warnings */
423     jnrA = jnrB = 0;
424     j_coord_offsetA = 0;
425     j_coord_offsetB = 0;
426
427     outeriter        = 0;
428     inneriter        = 0;
429
430     /* Start outer loop over neighborlists */
431     for(iidx=0; iidx<nri; iidx++)
432     {
433         /* Load shift vector for this list */
434         i_shift_offset   = DIM*shiftidx[iidx];
435
436         /* Load limits for loop over neighbors */
437         j_index_start    = jindex[iidx];
438         j_index_end      = jindex[iidx+1];
439
440         /* Get outer coordinate index */
441         inr              = iinr[iidx];
442         i_coord_offset   = DIM*inr;
443
444         /* Load i particle coords and add shift vector */
445         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
446
447         fix0             = _mm_setzero_pd();
448         fiy0             = _mm_setzero_pd();
449         fiz0             = _mm_setzero_pd();
450
451         /* Load parameters for i particles */
452         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
453         isai0            = _mm_load1_pd(invsqrta+inr+0);
454
455         dvdasum          = _mm_setzero_pd();
456
457         /* Start inner kernel loop */
458         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrA             = jjnr[jidx];
463             jnrB             = jjnr[jidx+1];
464             j_coord_offsetA  = DIM*jnrA;
465             j_coord_offsetB  = DIM*jnrB;
466
467             /* load j atom coordinates */
468             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
469                                               &jx0,&jy0,&jz0);
470
471             /* Calculate displacement vector */
472             dx00             = _mm_sub_pd(ix0,jx0);
473             dy00             = _mm_sub_pd(iy0,jy0);
474             dz00             = _mm_sub_pd(iz0,jz0);
475
476             /* Calculate squared distance and things based on it */
477             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
478
479             rinv00           = gmx_mm_invsqrt_pd(rsq00);
480
481             /* Load parameters for j particles */
482             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
483             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             r00              = _mm_mul_pd(rsq00,rinv00);
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq00             = _mm_mul_pd(iq0,jq0);
493
494             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
495             isaprod          = _mm_mul_pd(isai0,isaj0);
496             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
497             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
498
499             /* Calculate generalized born table index - this is a separate table from the normal one,
500              * but we use the same procedure by multiplying r with scale and truncating to integer.
501              */
502             rt               = _mm_mul_pd(r00,gbscale);
503             gbitab           = _mm_cvttpd_epi32(rt);
504 #ifdef __XOP__
505             gbeps            = _mm_frcz_pd(rt);
506 #else
507             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
508 #endif
509             gbitab           = _mm_slli_epi32(gbitab,2);
510
511             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
512             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
513             GMX_MM_TRANSPOSE2_PD(Y,F);
514             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
515             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
516             GMX_MM_TRANSPOSE2_PD(G,H);
517             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
518             VV               = _mm_macc_pd(gbeps,Fp,Y);
519             vgb              = _mm_mul_pd(gbqqfactor,VV);
520
521             twogbeps         = _mm_add_pd(gbeps,gbeps);
522             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
523             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
524             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
525             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
526             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
527             velec            = _mm_mul_pd(qq00,rinv00);
528             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
529
530             fscal            = felec;
531
532             /* Update vectorial force */
533             fix0             = _mm_macc_pd(dx00,fscal,fix0);
534             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
535             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
536             
537             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
538                                                    _mm_mul_pd(dx00,fscal),
539                                                    _mm_mul_pd(dy00,fscal),
540                                                    _mm_mul_pd(dz00,fscal));
541
542             /* Inner loop uses 59 flops */
543         }
544
545         if(jidx<j_index_end)
546         {
547
548             jnrA             = jjnr[jidx];
549             j_coord_offsetA  = DIM*jnrA;
550
551             /* load j atom coordinates */
552             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
553                                               &jx0,&jy0,&jz0);
554
555             /* Calculate displacement vector */
556             dx00             = _mm_sub_pd(ix0,jx0);
557             dy00             = _mm_sub_pd(iy0,jy0);
558             dz00             = _mm_sub_pd(iz0,jz0);
559
560             /* Calculate squared distance and things based on it */
561             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
562
563             rinv00           = gmx_mm_invsqrt_pd(rsq00);
564
565             /* Load parameters for j particles */
566             jq0              = _mm_load_sd(charge+jnrA+0);
567             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             r00              = _mm_mul_pd(rsq00,rinv00);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq00             = _mm_mul_pd(iq0,jq0);
577
578             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
579             isaprod          = _mm_mul_pd(isai0,isaj0);
580             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
581             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
582
583             /* Calculate generalized born table index - this is a separate table from the normal one,
584              * but we use the same procedure by multiplying r with scale and truncating to integer.
585              */
586             rt               = _mm_mul_pd(r00,gbscale);
587             gbitab           = _mm_cvttpd_epi32(rt);
588 #ifdef __XOP__
589             gbeps            = _mm_frcz_pd(rt);
590 #else
591             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
592 #endif
593             gbitab           = _mm_slli_epi32(gbitab,2);
594
595             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
596             F                = _mm_setzero_pd();
597             GMX_MM_TRANSPOSE2_PD(Y,F);
598             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
599             H                = _mm_setzero_pd();
600             GMX_MM_TRANSPOSE2_PD(G,H);
601             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
602             VV               = _mm_macc_pd(gbeps,Fp,Y);
603             vgb              = _mm_mul_pd(gbqqfactor,VV);
604
605             twogbeps         = _mm_add_pd(gbeps,gbeps);
606             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
607             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
608             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
609             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
610             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
611             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
612             velec            = _mm_mul_pd(qq00,rinv00);
613             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
614
615             fscal            = felec;
616
617             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
618
619             /* Update vectorial force */
620             fix0             = _mm_macc_pd(dx00,fscal,fix0);
621             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
622             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
623             
624             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
625                                                    _mm_mul_pd(dx00,fscal),
626                                                    _mm_mul_pd(dy00,fscal),
627                                                    _mm_mul_pd(dz00,fscal));
628
629             /* Inner loop uses 59 flops */
630         }
631
632         /* End of innermost loop */
633
634         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
635                                               f+i_coord_offset,fshift+i_shift_offset);
636
637         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
638         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
639
640         /* Increment number of inner iterations */
641         inneriter                  += j_index_end - j_index_start;
642
643         /* Outer loop uses 7 flops */
644     }
645
646     /* Increment number of outer iterations */
647     outeriter        += nri;
648
649     /* Update outer/inner flops */
650
651     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
652 }