b25a69f5bd9b2764e5af840be9ffcc0c3a53f3cd
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          gbitab;
88     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     __m128d          minushalf = _mm_set1_pd(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
94     real             *vftab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->epsfac);
111     charge           = mdatoms->chargeA;
112
113     invsqrta         = fr->invsqrta;
114     dvda             = fr->dvda;
115     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
116     gbtab            = fr->gbtab.data;
117     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm_setzero_pd();
145         fiy0             = _mm_setzero_pd();
146         fiz0             = _mm_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
150         isai0            = _mm_load1_pd(invsqrta+inr+0);
151
152         /* Reset potential sums */
153         velecsum         = _mm_setzero_pd();
154         vgbsum           = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             r00              = _mm_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             qq00             = _mm_mul_pd(iq0,jq0);
193
194             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
195             isaprod          = _mm_mul_pd(isai0,isaj0);
196             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
197             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
198
199             /* Calculate generalized born table index - this is a separate table from the normal one,
200              * but we use the same procedure by multiplying r with scale and truncating to integer.
201              */
202             rt               = _mm_mul_pd(r00,gbscale);
203             gbitab           = _mm_cvttpd_epi32(rt);
204 #ifdef __XOP__
205             gbeps            = _mm_frcz_pd(rt);
206 #else
207             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
208 #endif
209             gbitab           = _mm_slli_epi32(gbitab,2);
210
211             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
212             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
213             GMX_MM_TRANSPOSE2_PD(Y,F);
214             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
215             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
216             GMX_MM_TRANSPOSE2_PD(G,H);
217             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
218             VV               = _mm_macc_pd(gbeps,Fp,Y);
219             vgb              = _mm_mul_pd(gbqqfactor,VV);
220
221             twogbeps         = _mm_add_pd(gbeps,gbeps);
222             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
223             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
224             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
225             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
226             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
227             velec            = _mm_mul_pd(qq00,rinv00);
228             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velecsum         = _mm_add_pd(velecsum,velec);
232             vgbsum           = _mm_add_pd(vgbsum,vgb);
233
234             fscal            = felec;
235
236             /* Update vectorial force */
237             fix0             = _mm_macc_pd(dx00,fscal,fix0);
238             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
239             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
240             
241             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
242                                                    _mm_mul_pd(dx00,fscal),
243                                                    _mm_mul_pd(dy00,fscal),
244                                                    _mm_mul_pd(dz00,fscal));
245
246             /* Inner loop uses 61 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             jnrA             = jjnr[jidx];
253             j_coord_offsetA  = DIM*jnrA;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
257                                               &jx0,&jy0,&jz0);
258
259             /* Calculate displacement vector */
260             dx00             = _mm_sub_pd(ix0,jx0);
261             dy00             = _mm_sub_pd(iy0,jy0);
262             dz00             = _mm_sub_pd(iz0,jz0);
263
264             /* Calculate squared distance and things based on it */
265             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
266
267             rinv00           = gmx_mm_invsqrt_pd(rsq00);
268
269             /* Load parameters for j particles */
270             jq0              = _mm_load_sd(charge+jnrA+0);
271             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r00              = _mm_mul_pd(rsq00,rinv00);
278
279             /* Compute parameters for interactions between i and j atoms */
280             qq00             = _mm_mul_pd(iq0,jq0);
281
282             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
283             isaprod          = _mm_mul_pd(isai0,isaj0);
284             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
285             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
286
287             /* Calculate generalized born table index - this is a separate table from the normal one,
288              * but we use the same procedure by multiplying r with scale and truncating to integer.
289              */
290             rt               = _mm_mul_pd(r00,gbscale);
291             gbitab           = _mm_cvttpd_epi32(rt);
292 #ifdef __XOP__
293             gbeps            = _mm_frcz_pd(rt);
294 #else
295             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
296 #endif
297             gbitab           = _mm_slli_epi32(gbitab,2);
298
299             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
300             F                = _mm_setzero_pd();
301             GMX_MM_TRANSPOSE2_PD(Y,F);
302             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
303             H                = _mm_setzero_pd();
304             GMX_MM_TRANSPOSE2_PD(G,H);
305             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
306             VV               = _mm_macc_pd(gbeps,Fp,Y);
307             vgb              = _mm_mul_pd(gbqqfactor,VV);
308
309             twogbeps         = _mm_add_pd(gbeps,gbeps);
310             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
311             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
312             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
313             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
314             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
315             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
316             velec            = _mm_mul_pd(qq00,rinv00);
317             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
321             velecsum         = _mm_add_pd(velecsum,velec);
322             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
323             vgbsum           = _mm_add_pd(vgbsum,vgb);
324
325             fscal            = felec;
326
327             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
328
329             /* Update vectorial force */
330             fix0             = _mm_macc_pd(dx00,fscal,fix0);
331             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
332             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
333             
334             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
335                                                    _mm_mul_pd(dx00,fscal),
336                                                    _mm_mul_pd(dy00,fscal),
337                                                    _mm_mul_pd(dz00,fscal));
338
339             /* Inner loop uses 61 flops */
340         }
341
342         /* End of innermost loop */
343
344         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
345                                               f+i_coord_offset,fshift+i_shift_offset);
346
347         ggid                        = gid[iidx];
348         /* Update potential energies */
349         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
350         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
351         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
352         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
353
354         /* Increment number of inner iterations */
355         inneriter                  += j_index_end - j_index_start;
356
357         /* Outer loop uses 9 flops */
358     }
359
360     /* Increment number of outer iterations */
361     outeriter        += nri;
362
363     /* Update outer/inner flops */
364
365     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
366 }
367 /*
368  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
369  * Electrostatics interaction: GeneralizedBorn
370  * VdW interaction:            None
371  * Geometry:                   Particle-Particle
372  * Calculate force/pot:        Force
373  */
374 void
375 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
376                     (t_nblist                    * gmx_restrict       nlist,
377                      rvec                        * gmx_restrict          xx,
378                      rvec                        * gmx_restrict          ff,
379                      t_forcerec                  * gmx_restrict          fr,
380                      t_mdatoms                   * gmx_restrict     mdatoms,
381                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
382                      t_nrnb                      * gmx_restrict        nrnb)
383 {
384     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
385      * just 0 for non-waters.
386      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
387      * jnr indices corresponding to data put in the four positions in the SIMD register.
388      */
389     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
390     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
391     int              jnrA,jnrB;
392     int              j_coord_offsetA,j_coord_offsetB;
393     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
394     real             rcutoff_scalar;
395     real             *shiftvec,*fshift,*x,*f;
396     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
397     int              vdwioffset0;
398     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
399     int              vdwjidx0A,vdwjidx0B;
400     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
401     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
402     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
403     real             *charge;
404     __m128i          gbitab;
405     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
406     __m128d          minushalf = _mm_set1_pd(-0.5);
407     real             *invsqrta,*dvda,*gbtab;
408     __m128i          vfitab;
409     __m128i          ifour       = _mm_set1_epi32(4);
410     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
411     real             *vftab;
412     __m128d          dummy_mask,cutoff_mask;
413     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
414     __m128d          one     = _mm_set1_pd(1.0);
415     __m128d          two     = _mm_set1_pd(2.0);
416     x                = xx[0];
417     f                = ff[0];
418
419     nri              = nlist->nri;
420     iinr             = nlist->iinr;
421     jindex           = nlist->jindex;
422     jjnr             = nlist->jjnr;
423     shiftidx         = nlist->shift;
424     gid              = nlist->gid;
425     shiftvec         = fr->shift_vec[0];
426     fshift           = fr->fshift[0];
427     facel            = _mm_set1_pd(fr->epsfac);
428     charge           = mdatoms->chargeA;
429
430     invsqrta         = fr->invsqrta;
431     dvda             = fr->dvda;
432     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
433     gbtab            = fr->gbtab.data;
434     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
435
436     /* Avoid stupid compiler warnings */
437     jnrA = jnrB = 0;
438     j_coord_offsetA = 0;
439     j_coord_offsetB = 0;
440
441     outeriter        = 0;
442     inneriter        = 0;
443
444     /* Start outer loop over neighborlists */
445     for(iidx=0; iidx<nri; iidx++)
446     {
447         /* Load shift vector for this list */
448         i_shift_offset   = DIM*shiftidx[iidx];
449
450         /* Load limits for loop over neighbors */
451         j_index_start    = jindex[iidx];
452         j_index_end      = jindex[iidx+1];
453
454         /* Get outer coordinate index */
455         inr              = iinr[iidx];
456         i_coord_offset   = DIM*inr;
457
458         /* Load i particle coords and add shift vector */
459         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
460
461         fix0             = _mm_setzero_pd();
462         fiy0             = _mm_setzero_pd();
463         fiz0             = _mm_setzero_pd();
464
465         /* Load parameters for i particles */
466         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
467         isai0            = _mm_load1_pd(invsqrta+inr+0);
468
469         dvdasum          = _mm_setzero_pd();
470
471         /* Start inner kernel loop */
472         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrA             = jjnr[jidx];
477             jnrB             = jjnr[jidx+1];
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm_sub_pd(ix0,jx0);
487             dy00             = _mm_sub_pd(iy0,jy0);
488             dz00             = _mm_sub_pd(iz0,jz0);
489
490             /* Calculate squared distance and things based on it */
491             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
492
493             rinv00           = gmx_mm_invsqrt_pd(rsq00);
494
495             /* Load parameters for j particles */
496             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
497             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             r00              = _mm_mul_pd(rsq00,rinv00);
504
505             /* Compute parameters for interactions between i and j atoms */
506             qq00             = _mm_mul_pd(iq0,jq0);
507
508             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
509             isaprod          = _mm_mul_pd(isai0,isaj0);
510             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
511             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
512
513             /* Calculate generalized born table index - this is a separate table from the normal one,
514              * but we use the same procedure by multiplying r with scale and truncating to integer.
515              */
516             rt               = _mm_mul_pd(r00,gbscale);
517             gbitab           = _mm_cvttpd_epi32(rt);
518 #ifdef __XOP__
519             gbeps            = _mm_frcz_pd(rt);
520 #else
521             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
522 #endif
523             gbitab           = _mm_slli_epi32(gbitab,2);
524
525             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
526             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
527             GMX_MM_TRANSPOSE2_PD(Y,F);
528             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
529             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
530             GMX_MM_TRANSPOSE2_PD(G,H);
531             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
532             VV               = _mm_macc_pd(gbeps,Fp,Y);
533             vgb              = _mm_mul_pd(gbqqfactor,VV);
534
535             twogbeps         = _mm_add_pd(gbeps,gbeps);
536             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
537             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
538             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
539             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
540             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
541             velec            = _mm_mul_pd(qq00,rinv00);
542             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
543
544             fscal            = felec;
545
546             /* Update vectorial force */
547             fix0             = _mm_macc_pd(dx00,fscal,fix0);
548             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
549             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
550             
551             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
552                                                    _mm_mul_pd(dx00,fscal),
553                                                    _mm_mul_pd(dy00,fscal),
554                                                    _mm_mul_pd(dz00,fscal));
555
556             /* Inner loop uses 59 flops */
557         }
558
559         if(jidx<j_index_end)
560         {
561
562             jnrA             = jjnr[jidx];
563             j_coord_offsetA  = DIM*jnrA;
564
565             /* load j atom coordinates */
566             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
567                                               &jx0,&jy0,&jz0);
568
569             /* Calculate displacement vector */
570             dx00             = _mm_sub_pd(ix0,jx0);
571             dy00             = _mm_sub_pd(iy0,jy0);
572             dz00             = _mm_sub_pd(iz0,jz0);
573
574             /* Calculate squared distance and things based on it */
575             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
576
577             rinv00           = gmx_mm_invsqrt_pd(rsq00);
578
579             /* Load parameters for j particles */
580             jq0              = _mm_load_sd(charge+jnrA+0);
581             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
582
583             /**************************
584              * CALCULATE INTERACTIONS *
585              **************************/
586
587             r00              = _mm_mul_pd(rsq00,rinv00);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq00             = _mm_mul_pd(iq0,jq0);
591
592             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
593             isaprod          = _mm_mul_pd(isai0,isaj0);
594             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
595             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
596
597             /* Calculate generalized born table index - this is a separate table from the normal one,
598              * but we use the same procedure by multiplying r with scale and truncating to integer.
599              */
600             rt               = _mm_mul_pd(r00,gbscale);
601             gbitab           = _mm_cvttpd_epi32(rt);
602 #ifdef __XOP__
603             gbeps            = _mm_frcz_pd(rt);
604 #else
605             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
606 #endif
607             gbitab           = _mm_slli_epi32(gbitab,2);
608
609             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
610             F                = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(Y,F);
612             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
613             H                = _mm_setzero_pd();
614             GMX_MM_TRANSPOSE2_PD(G,H);
615             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
616             VV               = _mm_macc_pd(gbeps,Fp,Y);
617             vgb              = _mm_mul_pd(gbqqfactor,VV);
618
619             twogbeps         = _mm_add_pd(gbeps,gbeps);
620             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
621             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
622             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
623             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
624             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
625             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
626             velec            = _mm_mul_pd(qq00,rinv00);
627             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
628
629             fscal            = felec;
630
631             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
632
633             /* Update vectorial force */
634             fix0             = _mm_macc_pd(dx00,fscal,fix0);
635             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
636             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
637             
638             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
639                                                    _mm_mul_pd(dx00,fscal),
640                                                    _mm_mul_pd(dy00,fscal),
641                                                    _mm_mul_pd(dz00,fscal));
642
643             /* Inner loop uses 59 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
652         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
653
654         /* Increment number of inner iterations */
655         inneriter                  += j_index_end - j_index_start;
656
657         /* Outer loop uses 7 flops */
658     }
659
660     /* Increment number of outer iterations */
661     outeriter        += nri;
662
663     /* Update outer/inner flops */
664
665     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
666 }