7d3a9fdd4a3c3d0a91d6023850dd13274ef6d100
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          gbitab;
87     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
88     __m128d          minushalf = _mm_set1_pd(-0.5);
89     real             *invsqrta,*dvda,*gbtab;
90     __m128i          vfitab;
91     __m128i          ifour       = _mm_set1_epi32(4);
92     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
93     real             *vftab;
94     __m128d          dummy_mask,cutoff_mask;
95     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
96     __m128d          one     = _mm_set1_pd(1.0);
97     __m128d          two     = _mm_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm_set1_pd(fr->ic->epsfac);
110     charge           = mdatoms->chargeA;
111
112     invsqrta         = fr->invsqrta;
113     dvda             = fr->dvda;
114     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
115     gbtab            = fr->gbtab->data;
116     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
117
118     /* Avoid stupid compiler warnings */
119     jnrA = jnrB = 0;
120     j_coord_offsetA = 0;
121     j_coord_offsetB = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131
132         /* Load limits for loop over neighbors */
133         j_index_start    = jindex[iidx];
134         j_index_end      = jindex[iidx+1];
135
136         /* Get outer coordinate index */
137         inr              = iinr[iidx];
138         i_coord_offset   = DIM*inr;
139
140         /* Load i particle coords and add shift vector */
141         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
142
143         fix0             = _mm_setzero_pd();
144         fiy0             = _mm_setzero_pd();
145         fiz0             = _mm_setzero_pd();
146
147         /* Load parameters for i particles */
148         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
149         isai0            = _mm_load1_pd(invsqrta+inr+0);
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         dvdasum          = _mm_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             j_coord_offsetA  = DIM*jnrA;
164             j_coord_offsetB  = DIM*jnrB;
165
166             /* load j atom coordinates */
167             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
168                                               &jx0,&jy0,&jz0);
169
170             /* Calculate displacement vector */
171             dx00             = _mm_sub_pd(ix0,jx0);
172             dy00             = _mm_sub_pd(iy0,jy0);
173             dz00             = _mm_sub_pd(iz0,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
177
178             rinv00           = avx128fma_invsqrt_d(rsq00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             r00              = _mm_mul_pd(rsq00,rinv00);
189
190             /* Compute parameters for interactions between i and j atoms */
191             qq00             = _mm_mul_pd(iq0,jq0);
192
193             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
194             isaprod          = _mm_mul_pd(isai0,isaj0);
195             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
196             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
197
198             /* Calculate generalized born table index - this is a separate table from the normal one,
199              * but we use the same procedure by multiplying r with scale and truncating to integer.
200              */
201             rt               = _mm_mul_pd(r00,gbscale);
202             gbitab           = _mm_cvttpd_epi32(rt);
203 #ifdef __XOP__
204             gbeps            = _mm_frcz_pd(rt);
205 #else
206             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
207 #endif
208             gbitab           = _mm_slli_epi32(gbitab,2);
209
210             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
211             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
212             GMX_MM_TRANSPOSE2_PD(Y,F);
213             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
214             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
215             GMX_MM_TRANSPOSE2_PD(G,H);
216             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
217             VV               = _mm_macc_pd(gbeps,Fp,Y);
218             vgb              = _mm_mul_pd(gbqqfactor,VV);
219
220             twogbeps         = _mm_add_pd(gbeps,gbeps);
221             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
222             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
223             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
224             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
225             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
226             velec            = _mm_mul_pd(qq00,rinv00);
227             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velecsum         = _mm_add_pd(velecsum,velec);
231             vgbsum           = _mm_add_pd(vgbsum,vgb);
232
233             fscal            = felec;
234
235             /* Update vectorial force */
236             fix0             = _mm_macc_pd(dx00,fscal,fix0);
237             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
238             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
239             
240             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
241                                                    _mm_mul_pd(dx00,fscal),
242                                                    _mm_mul_pd(dy00,fscal),
243                                                    _mm_mul_pd(dz00,fscal));
244
245             /* Inner loop uses 61 flops */
246         }
247
248         if(jidx<j_index_end)
249         {
250
251             jnrA             = jjnr[jidx];
252             j_coord_offsetA  = DIM*jnrA;
253
254             /* load j atom coordinates */
255             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
256                                               &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm_sub_pd(ix0,jx0);
260             dy00             = _mm_sub_pd(iy0,jy0);
261             dz00             = _mm_sub_pd(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
265
266             rinv00           = avx128fma_invsqrt_d(rsq00);
267
268             /* Load parameters for j particles */
269             jq0              = _mm_load_sd(charge+jnrA+0);
270             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             r00              = _mm_mul_pd(rsq00,rinv00);
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq00             = _mm_mul_pd(iq0,jq0);
280
281             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
282             isaprod          = _mm_mul_pd(isai0,isaj0);
283             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
284             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
285
286             /* Calculate generalized born table index - this is a separate table from the normal one,
287              * but we use the same procedure by multiplying r with scale and truncating to integer.
288              */
289             rt               = _mm_mul_pd(r00,gbscale);
290             gbitab           = _mm_cvttpd_epi32(rt);
291 #ifdef __XOP__
292             gbeps            = _mm_frcz_pd(rt);
293 #else
294             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
295 #endif
296             gbitab           = _mm_slli_epi32(gbitab,2);
297
298             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
299             F                = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(Y,F);
301             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
302             H                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(G,H);
304             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
305             VV               = _mm_macc_pd(gbeps,Fp,Y);
306             vgb              = _mm_mul_pd(gbqqfactor,VV);
307
308             twogbeps         = _mm_add_pd(gbeps,gbeps);
309             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
310             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
311             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
312             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
313             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
314             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
315             velec            = _mm_mul_pd(qq00,rinv00);
316             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
320             velecsum         = _mm_add_pd(velecsum,velec);
321             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
322             vgbsum           = _mm_add_pd(vgbsum,vgb);
323
324             fscal            = felec;
325
326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
327
328             /* Update vectorial force */
329             fix0             = _mm_macc_pd(dx00,fscal,fix0);
330             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
331             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
332             
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334                                                    _mm_mul_pd(dx00,fscal),
335                                                    _mm_mul_pd(dy00,fscal),
336                                                    _mm_mul_pd(dz00,fscal));
337
338             /* Inner loop uses 61 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
349         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
350         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
351         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
352
353         /* Increment number of inner iterations */
354         inneriter                  += j_index_end - j_index_start;
355
356         /* Outer loop uses 9 flops */
357     }
358
359     /* Increment number of outer iterations */
360     outeriter        += nri;
361
362     /* Update outer/inner flops */
363
364     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
365 }
366 /*
367  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
368  * Electrostatics interaction: GeneralizedBorn
369  * VdW interaction:            None
370  * Geometry:                   Particle-Particle
371  * Calculate force/pot:        Force
372  */
373 void
374 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
375                     (t_nblist                    * gmx_restrict       nlist,
376                      rvec                        * gmx_restrict          xx,
377                      rvec                        * gmx_restrict          ff,
378                      struct t_forcerec           * gmx_restrict          fr,
379                      t_mdatoms                   * gmx_restrict     mdatoms,
380                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
381                      t_nrnb                      * gmx_restrict        nrnb)
382 {
383     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
384      * just 0 for non-waters.
385      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
386      * jnr indices corresponding to data put in the four positions in the SIMD register.
387      */
388     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
389     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
390     int              jnrA,jnrB;
391     int              j_coord_offsetA,j_coord_offsetB;
392     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
393     real             rcutoff_scalar;
394     real             *shiftvec,*fshift,*x,*f;
395     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
396     int              vdwioffset0;
397     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
398     int              vdwjidx0A,vdwjidx0B;
399     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
400     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
401     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
402     real             *charge;
403     __m128i          gbitab;
404     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
405     __m128d          minushalf = _mm_set1_pd(-0.5);
406     real             *invsqrta,*dvda,*gbtab;
407     __m128i          vfitab;
408     __m128i          ifour       = _mm_set1_epi32(4);
409     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
410     real             *vftab;
411     __m128d          dummy_mask,cutoff_mask;
412     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
413     __m128d          one     = _mm_set1_pd(1.0);
414     __m128d          two     = _mm_set1_pd(2.0);
415     x                = xx[0];
416     f                = ff[0];
417
418     nri              = nlist->nri;
419     iinr             = nlist->iinr;
420     jindex           = nlist->jindex;
421     jjnr             = nlist->jjnr;
422     shiftidx         = nlist->shift;
423     gid              = nlist->gid;
424     shiftvec         = fr->shift_vec[0];
425     fshift           = fr->fshift[0];
426     facel            = _mm_set1_pd(fr->ic->epsfac);
427     charge           = mdatoms->chargeA;
428
429     invsqrta         = fr->invsqrta;
430     dvda             = fr->dvda;
431     gbtabscale       = _mm_set1_pd(fr->gbtab->scale);
432     gbtab            = fr->gbtab->data;
433     gbinvepsdiff     = _mm_set1_pd((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
434
435     /* Avoid stupid compiler warnings */
436     jnrA = jnrB = 0;
437     j_coord_offsetA = 0;
438     j_coord_offsetB = 0;
439
440     outeriter        = 0;
441     inneriter        = 0;
442
443     /* Start outer loop over neighborlists */
444     for(iidx=0; iidx<nri; iidx++)
445     {
446         /* Load shift vector for this list */
447         i_shift_offset   = DIM*shiftidx[iidx];
448
449         /* Load limits for loop over neighbors */
450         j_index_start    = jindex[iidx];
451         j_index_end      = jindex[iidx+1];
452
453         /* Get outer coordinate index */
454         inr              = iinr[iidx];
455         i_coord_offset   = DIM*inr;
456
457         /* Load i particle coords and add shift vector */
458         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
459
460         fix0             = _mm_setzero_pd();
461         fiy0             = _mm_setzero_pd();
462         fiz0             = _mm_setzero_pd();
463
464         /* Load parameters for i particles */
465         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
466         isai0            = _mm_load1_pd(invsqrta+inr+0);
467
468         dvdasum          = _mm_setzero_pd();
469
470         /* Start inner kernel loop */
471         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
472         {
473
474             /* Get j neighbor index, and coordinate index */
475             jnrA             = jjnr[jidx];
476             jnrB             = jjnr[jidx+1];
477             j_coord_offsetA  = DIM*jnrA;
478             j_coord_offsetB  = DIM*jnrB;
479
480             /* load j atom coordinates */
481             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
482                                               &jx0,&jy0,&jz0);
483
484             /* Calculate displacement vector */
485             dx00             = _mm_sub_pd(ix0,jx0);
486             dy00             = _mm_sub_pd(iy0,jy0);
487             dz00             = _mm_sub_pd(iz0,jz0);
488
489             /* Calculate squared distance and things based on it */
490             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
491
492             rinv00           = avx128fma_invsqrt_d(rsq00);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
496             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             r00              = _mm_mul_pd(rsq00,rinv00);
503
504             /* Compute parameters for interactions between i and j atoms */
505             qq00             = _mm_mul_pd(iq0,jq0);
506
507             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
508             isaprod          = _mm_mul_pd(isai0,isaj0);
509             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
510             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
511
512             /* Calculate generalized born table index - this is a separate table from the normal one,
513              * but we use the same procedure by multiplying r with scale and truncating to integer.
514              */
515             rt               = _mm_mul_pd(r00,gbscale);
516             gbitab           = _mm_cvttpd_epi32(rt);
517 #ifdef __XOP__
518             gbeps            = _mm_frcz_pd(rt);
519 #else
520             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
521 #endif
522             gbitab           = _mm_slli_epi32(gbitab,2);
523
524             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
525             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
526             GMX_MM_TRANSPOSE2_PD(Y,F);
527             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
528             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
529             GMX_MM_TRANSPOSE2_PD(G,H);
530             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
531             VV               = _mm_macc_pd(gbeps,Fp,Y);
532             vgb              = _mm_mul_pd(gbqqfactor,VV);
533
534             twogbeps         = _mm_add_pd(gbeps,gbeps);
535             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
536             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
537             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
538             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
539             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
540             velec            = _mm_mul_pd(qq00,rinv00);
541             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
542
543             fscal            = felec;
544
545             /* Update vectorial force */
546             fix0             = _mm_macc_pd(dx00,fscal,fix0);
547             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
548             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
549             
550             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
551                                                    _mm_mul_pd(dx00,fscal),
552                                                    _mm_mul_pd(dy00,fscal),
553                                                    _mm_mul_pd(dz00,fscal));
554
555             /* Inner loop uses 59 flops */
556         }
557
558         if(jidx<j_index_end)
559         {
560
561             jnrA             = jjnr[jidx];
562             j_coord_offsetA  = DIM*jnrA;
563
564             /* load j atom coordinates */
565             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
566                                               &jx0,&jy0,&jz0);
567
568             /* Calculate displacement vector */
569             dx00             = _mm_sub_pd(ix0,jx0);
570             dy00             = _mm_sub_pd(iy0,jy0);
571             dz00             = _mm_sub_pd(iz0,jz0);
572
573             /* Calculate squared distance and things based on it */
574             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
575
576             rinv00           = avx128fma_invsqrt_d(rsq00);
577
578             /* Load parameters for j particles */
579             jq0              = _mm_load_sd(charge+jnrA+0);
580             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             r00              = _mm_mul_pd(rsq00,rinv00);
587
588             /* Compute parameters for interactions between i and j atoms */
589             qq00             = _mm_mul_pd(iq0,jq0);
590
591             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
592             isaprod          = _mm_mul_pd(isai0,isaj0);
593             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
594             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
595
596             /* Calculate generalized born table index - this is a separate table from the normal one,
597              * but we use the same procedure by multiplying r with scale and truncating to integer.
598              */
599             rt               = _mm_mul_pd(r00,gbscale);
600             gbitab           = _mm_cvttpd_epi32(rt);
601 #ifdef __XOP__
602             gbeps            = _mm_frcz_pd(rt);
603 #else
604             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
605 #endif
606             gbitab           = _mm_slli_epi32(gbitab,2);
607
608             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
609             F                = _mm_setzero_pd();
610             GMX_MM_TRANSPOSE2_PD(Y,F);
611             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
612             H                = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(G,H);
614             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
615             VV               = _mm_macc_pd(gbeps,Fp,Y);
616             vgb              = _mm_mul_pd(gbqqfactor,VV);
617
618             twogbeps         = _mm_add_pd(gbeps,gbeps);
619             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
620             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
621             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
622             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
623             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
624             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
625             velec            = _mm_mul_pd(qq00,rinv00);
626             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
627
628             fscal            = felec;
629
630             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
631
632             /* Update vectorial force */
633             fix0             = _mm_macc_pd(dx00,fscal,fix0);
634             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
635             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
636             
637             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
638                                                    _mm_mul_pd(dx00,fscal),
639                                                    _mm_mul_pd(dy00,fscal),
640                                                    _mm_mul_pd(dz00,fscal));
641
642             /* Inner loop uses 59 flops */
643         }
644
645         /* End of innermost loop */
646
647         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
648                                               f+i_coord_offset,fshift+i_shift_offset);
649
650         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
651         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
652
653         /* Increment number of inner iterations */
654         inneriter                  += j_index_end - j_index_start;
655
656         /* Outer loop uses 7 flops */
657     }
658
659     /* Increment number of outer iterations */
660     outeriter        += nri;
661
662     /* Update outer/inner flops */
663
664     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
665 }