Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     __m128i          vfitab;
94     __m128i          ifour       = _mm_set1_epi32(4);
95     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
96     real             *vftab;
97     __m128d          dummy_mask,cutoff_mask;
98     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
99     __m128d          one     = _mm_set1_pd(1.0);
100     __m128d          two     = _mm_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114
115     invsqrta         = fr->invsqrta;
116     dvda             = fr->dvda;
117     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
118     gbtab            = fr->gbtab.data;
119     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         isai0            = _mm_load1_pd(invsqrta+inr+0);
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vgbsum           = _mm_setzero_pd();
157         dvdasum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             /* Load parameters for j particles */
184             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
185             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195
196             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
197             isaprod          = _mm_mul_pd(isai0,isaj0);
198             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
199             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
200
201             /* Calculate generalized born table index - this is a separate table from the normal one,
202              * but we use the same procedure by multiplying r with scale and truncating to integer.
203              */
204             rt               = _mm_mul_pd(r00,gbscale);
205             gbitab           = _mm_cvttpd_epi32(rt);
206 #ifdef __XOP__
207             gbeps            = _mm_frcz_pd(rt);
208 #else
209             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
210 #endif
211             gbitab           = _mm_slli_epi32(gbitab,2);
212
213             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
214             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
215             GMX_MM_TRANSPOSE2_PD(Y,F);
216             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
217             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
218             GMX_MM_TRANSPOSE2_PD(G,H);
219             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
220             VV               = _mm_macc_pd(gbeps,Fp,Y);
221             vgb              = _mm_mul_pd(gbqqfactor,VV);
222
223             twogbeps         = _mm_add_pd(gbeps,gbeps);
224             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
225             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
226             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
227             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
228             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
229             velec            = _mm_mul_pd(qq00,rinv00);
230             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm_add_pd(velecsum,velec);
234             vgbsum           = _mm_add_pd(vgbsum,vgb);
235
236             fscal            = felec;
237
238             /* Update vectorial force */
239             fix0             = _mm_macc_pd(dx00,fscal,fix0);
240             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
241             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
242             
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
244                                                    _mm_mul_pd(dx00,fscal),
245                                                    _mm_mul_pd(dy00,fscal),
246                                                    _mm_mul_pd(dz00,fscal));
247
248             /* Inner loop uses 61 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             /* Load parameters for j particles */
272             jq0              = _mm_load_sd(charge+jnrA+0);
273             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             r00              = _mm_mul_pd(rsq00,rinv00);
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm_mul_pd(iq0,jq0);
283
284             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
285             isaprod          = _mm_mul_pd(isai0,isaj0);
286             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
287             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
288
289             /* Calculate generalized born table index - this is a separate table from the normal one,
290              * but we use the same procedure by multiplying r with scale and truncating to integer.
291              */
292             rt               = _mm_mul_pd(r00,gbscale);
293             gbitab           = _mm_cvttpd_epi32(rt);
294 #ifdef __XOP__
295             gbeps            = _mm_frcz_pd(rt);
296 #else
297             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
298 #endif
299             gbitab           = _mm_slli_epi32(gbitab,2);
300
301             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
302             F                = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(Y,F);
304             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
305             H                = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(G,H);
307             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
308             VV               = _mm_macc_pd(gbeps,Fp,Y);
309             vgb              = _mm_mul_pd(gbqqfactor,VV);
310
311             twogbeps         = _mm_add_pd(gbeps,gbeps);
312             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
313             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
314             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
315             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
316             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
317             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
318             velec            = _mm_mul_pd(qq00,rinv00);
319             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
320
321             /* Update potential sum for this i atom from the interaction with this j atom. */
322             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
323             velecsum         = _mm_add_pd(velecsum,velec);
324             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
325             vgbsum           = _mm_add_pd(vgbsum,vgb);
326
327             fscal            = felec;
328
329             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
330
331             /* Update vectorial force */
332             fix0             = _mm_macc_pd(dx00,fscal,fix0);
333             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
334             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
335             
336             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
337                                                    _mm_mul_pd(dx00,fscal),
338                                                    _mm_mul_pd(dy00,fscal),
339                                                    _mm_mul_pd(dz00,fscal));
340
341             /* Inner loop uses 61 flops */
342         }
343
344         /* End of innermost loop */
345
346         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
347                                               f+i_coord_offset,fshift+i_shift_offset);
348
349         ggid                        = gid[iidx];
350         /* Update potential energies */
351         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
352         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
353         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
354         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
355
356         /* Increment number of inner iterations */
357         inneriter                  += j_index_end - j_index_start;
358
359         /* Outer loop uses 9 flops */
360     }
361
362     /* Increment number of outer iterations */
363     outeriter        += nri;
364
365     /* Update outer/inner flops */
366
367     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*61);
368 }
369 /*
370  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
371  * Electrostatics interaction: GeneralizedBorn
372  * VdW interaction:            None
373  * Geometry:                   Particle-Particle
374  * Calculate force/pot:        Force
375  */
376 void
377 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_128_fma_double
378                     (t_nblist                    * gmx_restrict       nlist,
379                      rvec                        * gmx_restrict          xx,
380                      rvec                        * gmx_restrict          ff,
381                      t_forcerec                  * gmx_restrict          fr,
382                      t_mdatoms                   * gmx_restrict     mdatoms,
383                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
384                      t_nrnb                      * gmx_restrict        nrnb)
385 {
386     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
387      * just 0 for non-waters.
388      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
389      * jnr indices corresponding to data put in the four positions in the SIMD register.
390      */
391     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
392     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
393     int              jnrA,jnrB;
394     int              j_coord_offsetA,j_coord_offsetB;
395     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
396     real             rcutoff_scalar;
397     real             *shiftvec,*fshift,*x,*f;
398     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
399     int              vdwioffset0;
400     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
401     int              vdwjidx0A,vdwjidx0B;
402     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
403     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
404     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
405     real             *charge;
406     __m128i          gbitab;
407     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
408     __m128d          minushalf = _mm_set1_pd(-0.5);
409     real             *invsqrta,*dvda,*gbtab;
410     __m128i          vfitab;
411     __m128i          ifour       = _mm_set1_epi32(4);
412     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
413     real             *vftab;
414     __m128d          dummy_mask,cutoff_mask;
415     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
416     __m128d          one     = _mm_set1_pd(1.0);
417     __m128d          two     = _mm_set1_pd(2.0);
418     x                = xx[0];
419     f                = ff[0];
420
421     nri              = nlist->nri;
422     iinr             = nlist->iinr;
423     jindex           = nlist->jindex;
424     jjnr             = nlist->jjnr;
425     shiftidx         = nlist->shift;
426     gid              = nlist->gid;
427     shiftvec         = fr->shift_vec[0];
428     fshift           = fr->fshift[0];
429     facel            = _mm_set1_pd(fr->epsfac);
430     charge           = mdatoms->chargeA;
431
432     invsqrta         = fr->invsqrta;
433     dvda             = fr->dvda;
434     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
435     gbtab            = fr->gbtab.data;
436     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
437
438     /* Avoid stupid compiler warnings */
439     jnrA = jnrB = 0;
440     j_coord_offsetA = 0;
441     j_coord_offsetB = 0;
442
443     outeriter        = 0;
444     inneriter        = 0;
445
446     /* Start outer loop over neighborlists */
447     for(iidx=0; iidx<nri; iidx++)
448     {
449         /* Load shift vector for this list */
450         i_shift_offset   = DIM*shiftidx[iidx];
451
452         /* Load limits for loop over neighbors */
453         j_index_start    = jindex[iidx];
454         j_index_end      = jindex[iidx+1];
455
456         /* Get outer coordinate index */
457         inr              = iinr[iidx];
458         i_coord_offset   = DIM*inr;
459
460         /* Load i particle coords and add shift vector */
461         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
462
463         fix0             = _mm_setzero_pd();
464         fiy0             = _mm_setzero_pd();
465         fiz0             = _mm_setzero_pd();
466
467         /* Load parameters for i particles */
468         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
469         isai0            = _mm_load1_pd(invsqrta+inr+0);
470
471         dvdasum          = _mm_setzero_pd();
472
473         /* Start inner kernel loop */
474         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
475         {
476
477             /* Get j neighbor index, and coordinate index */
478             jnrA             = jjnr[jidx];
479             jnrB             = jjnr[jidx+1];
480             j_coord_offsetA  = DIM*jnrA;
481             j_coord_offsetB  = DIM*jnrB;
482
483             /* load j atom coordinates */
484             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
485                                               &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm_sub_pd(ix0,jx0);
489             dy00             = _mm_sub_pd(iy0,jy0);
490             dz00             = _mm_sub_pd(iz0,jz0);
491
492             /* Calculate squared distance and things based on it */
493             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
494
495             rinv00           = gmx_mm_invsqrt_pd(rsq00);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
499             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
500
501             /**************************
502              * CALCULATE INTERACTIONS *
503              **************************/
504
505             r00              = _mm_mul_pd(rsq00,rinv00);
506
507             /* Compute parameters for interactions between i and j atoms */
508             qq00             = _mm_mul_pd(iq0,jq0);
509
510             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
511             isaprod          = _mm_mul_pd(isai0,isaj0);
512             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
513             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
514
515             /* Calculate generalized born table index - this is a separate table from the normal one,
516              * but we use the same procedure by multiplying r with scale and truncating to integer.
517              */
518             rt               = _mm_mul_pd(r00,gbscale);
519             gbitab           = _mm_cvttpd_epi32(rt);
520 #ifdef __XOP__
521             gbeps            = _mm_frcz_pd(rt);
522 #else
523             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
524 #endif
525             gbitab           = _mm_slli_epi32(gbitab,2);
526
527             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
528             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
529             GMX_MM_TRANSPOSE2_PD(Y,F);
530             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
531             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
532             GMX_MM_TRANSPOSE2_PD(G,H);
533             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
534             VV               = _mm_macc_pd(gbeps,Fp,Y);
535             vgb              = _mm_mul_pd(gbqqfactor,VV);
536
537             twogbeps         = _mm_add_pd(gbeps,gbeps);
538             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
539             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
540             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
541             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
542             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
543             velec            = _mm_mul_pd(qq00,rinv00);
544             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
545
546             fscal            = felec;
547
548             /* Update vectorial force */
549             fix0             = _mm_macc_pd(dx00,fscal,fix0);
550             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
551             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
552             
553             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
554                                                    _mm_mul_pd(dx00,fscal),
555                                                    _mm_mul_pd(dy00,fscal),
556                                                    _mm_mul_pd(dz00,fscal));
557
558             /* Inner loop uses 59 flops */
559         }
560
561         if(jidx<j_index_end)
562         {
563
564             jnrA             = jjnr[jidx];
565             j_coord_offsetA  = DIM*jnrA;
566
567             /* load j atom coordinates */
568             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
569                                               &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm_sub_pd(ix0,jx0);
573             dy00             = _mm_sub_pd(iy0,jy0);
574             dz00             = _mm_sub_pd(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm_invsqrt_pd(rsq00);
580
581             /* Load parameters for j particles */
582             jq0              = _mm_load_sd(charge+jnrA+0);
583             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r00              = _mm_mul_pd(rsq00,rinv00);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq00             = _mm_mul_pd(iq0,jq0);
593
594             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
595             isaprod          = _mm_mul_pd(isai0,isaj0);
596             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
597             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
598
599             /* Calculate generalized born table index - this is a separate table from the normal one,
600              * but we use the same procedure by multiplying r with scale and truncating to integer.
601              */
602             rt               = _mm_mul_pd(r00,gbscale);
603             gbitab           = _mm_cvttpd_epi32(rt);
604 #ifdef __XOP__
605             gbeps            = _mm_frcz_pd(rt);
606 #else
607             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
608 #endif
609             gbitab           = _mm_slli_epi32(gbitab,2);
610
611             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
612             F                = _mm_setzero_pd();
613             GMX_MM_TRANSPOSE2_PD(Y,F);
614             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
615             H                = _mm_setzero_pd();
616             GMX_MM_TRANSPOSE2_PD(G,H);
617             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
618             VV               = _mm_macc_pd(gbeps,Fp,Y);
619             vgb              = _mm_mul_pd(gbqqfactor,VV);
620
621             twogbeps         = _mm_add_pd(gbeps,gbeps);
622             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
623             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
624             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
625             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
626             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
627             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
628             velec            = _mm_mul_pd(qq00,rinv00);
629             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
630
631             fscal            = felec;
632
633             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
634
635             /* Update vectorial force */
636             fix0             = _mm_macc_pd(dx00,fscal,fix0);
637             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
638             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
639             
640             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
641                                                    _mm_mul_pd(dx00,fscal),
642                                                    _mm_mul_pd(dy00,fscal),
643                                                    _mm_mul_pd(dz00,fscal));
644
645             /* Inner loop uses 59 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
651                                               f+i_coord_offset,fshift+i_shift_offset);
652
653         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
654         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 7 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*59);
668 }