Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: GeneralizedBorn
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          gbitab;
88     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
89     __m128d          minushalf = _mm_set1_pd(-0.5);
90     real             *invsqrta,*dvda,*gbtab;
91     int              nvdwtype;
92     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
96     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
100     real             *vftab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     invsqrta         = fr->invsqrta;
123     dvda             = fr->dvda;
124     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
125     gbtab            = fr->gbtab.data;
126     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_pd();
154         fiy0             = _mm_setzero_pd();
155         fiz0             = _mm_setzero_pd();
156
157         /* Load parameters for i particles */
158         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
159         isai0            = _mm_load1_pd(invsqrta+inr+0);
160         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162         /* Reset potential sums */
163         velecsum         = _mm_setzero_pd();
164         vgbsum           = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166         dvdasum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
197             vdwjidx0A        = 2*vdwtype[jnrA+0];
198             vdwjidx0B        = 2*vdwtype[jnrB+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _mm_mul_pd(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm_mul_pd(iq0,jq0);
208             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
210
211             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
212             isaprod          = _mm_mul_pd(isai0,isaj0);
213             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
214             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
215
216             /* Calculate generalized born table index - this is a separate table from the normal one,
217              * but we use the same procedure by multiplying r with scale and truncating to integer.
218              */
219             rt               = _mm_mul_pd(r00,gbscale);
220             gbitab           = _mm_cvttpd_epi32(rt);
221 #ifdef __XOP__
222             gbeps            = _mm_frcz_pd(rt);
223 #else
224             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
225 #endif
226             gbitab           = _mm_slli_epi32(gbitab,2);
227
228             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
229             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
230             GMX_MM_TRANSPOSE2_PD(Y,F);
231             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
232             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
233             GMX_MM_TRANSPOSE2_PD(G,H);
234             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
235             VV               = _mm_macc_pd(gbeps,Fp,Y);
236             vgb              = _mm_mul_pd(gbqqfactor,VV);
237
238             twogbeps         = _mm_add_pd(gbeps,gbeps);
239             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
240             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
241             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
242             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
243             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
244             velec            = _mm_mul_pd(qq00,rinv00);
245             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
246
247             /* LENNARD-JONES DISPERSION/REPULSION */
248
249             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
250             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
251             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
252             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
253             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
254
255             /* Update potential sum for this i atom from the interaction with this j atom. */
256             velecsum         = _mm_add_pd(velecsum,velec);
257             vgbsum           = _mm_add_pd(vgbsum,vgb);
258             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
259
260             fscal            = _mm_add_pd(felec,fvdw);
261
262             /* Update vectorial force */
263             fix0             = _mm_macc_pd(dx00,fscal,fix0);
264             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
265             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
266             
267             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
268                                                    _mm_mul_pd(dx00,fscal),
269                                                    _mm_mul_pd(dy00,fscal),
270                                                    _mm_mul_pd(dz00,fscal));
271
272             /* Inner loop uses 74 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             jnrA             = jjnr[jidx];
279             j_coord_offsetA  = DIM*jnrA;
280
281             /* load j atom coordinates */
282             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
283                                               &jx0,&jy0,&jz0);
284
285             /* Calculate displacement vector */
286             dx00             = _mm_sub_pd(ix0,jx0);
287             dy00             = _mm_sub_pd(iy0,jy0);
288             dz00             = _mm_sub_pd(iz0,jz0);
289
290             /* Calculate squared distance and things based on it */
291             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
292
293             rinv00           = gmx_mm_invsqrt_pd(rsq00);
294
295             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
296
297             /* Load parameters for j particles */
298             jq0              = _mm_load_sd(charge+jnrA+0);
299             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             r00              = _mm_mul_pd(rsq00,rinv00);
307
308             /* Compute parameters for interactions between i and j atoms */
309             qq00             = _mm_mul_pd(iq0,jq0);
310             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
311
312             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
313             isaprod          = _mm_mul_pd(isai0,isaj0);
314             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
315             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
316
317             /* Calculate generalized born table index - this is a separate table from the normal one,
318              * but we use the same procedure by multiplying r with scale and truncating to integer.
319              */
320             rt               = _mm_mul_pd(r00,gbscale);
321             gbitab           = _mm_cvttpd_epi32(rt);
322 #ifdef __XOP__
323             gbeps            = _mm_frcz_pd(rt);
324 #else
325             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
326 #endif
327             gbitab           = _mm_slli_epi32(gbitab,2);
328
329             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
330             F                = _mm_setzero_pd();
331             GMX_MM_TRANSPOSE2_PD(Y,F);
332             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
333             H                = _mm_setzero_pd();
334             GMX_MM_TRANSPOSE2_PD(G,H);
335             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
336             VV               = _mm_macc_pd(gbeps,Fp,Y);
337             vgb              = _mm_mul_pd(gbqqfactor,VV);
338
339             twogbeps         = _mm_add_pd(gbeps,gbeps);
340             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
341             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
342             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
343             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
344             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
345             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
346             velec            = _mm_mul_pd(qq00,rinv00);
347             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
348
349             /* LENNARD-JONES DISPERSION/REPULSION */
350
351             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
352             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
353             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
354             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
355             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
359             velecsum         = _mm_add_pd(velecsum,velec);
360             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
361             vgbsum           = _mm_add_pd(vgbsum,vgb);
362             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
363             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
364
365             fscal            = _mm_add_pd(felec,fvdw);
366
367             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
368
369             /* Update vectorial force */
370             fix0             = _mm_macc_pd(dx00,fscal,fix0);
371             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
372             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
373             
374             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
375                                                    _mm_mul_pd(dx00,fscal),
376                                                    _mm_mul_pd(dy00,fscal),
377                                                    _mm_mul_pd(dz00,fscal));
378
379             /* Inner loop uses 74 flops */
380         }
381
382         /* End of innermost loop */
383
384         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
385                                               f+i_coord_offset,fshift+i_shift_offset);
386
387         ggid                        = gid[iidx];
388         /* Update potential energies */
389         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
390         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
391         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
392         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
393         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
394
395         /* Increment number of inner iterations */
396         inneriter                  += j_index_end - j_index_start;
397
398         /* Outer loop uses 10 flops */
399     }
400
401     /* Increment number of outer iterations */
402     outeriter        += nri;
403
404     /* Update outer/inner flops */
405
406     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
407 }
408 /*
409  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
410  * Electrostatics interaction: GeneralizedBorn
411  * VdW interaction:            LennardJones
412  * Geometry:                   Particle-Particle
413  * Calculate force/pot:        Force
414  */
415 void
416 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
417                     (t_nblist                    * gmx_restrict       nlist,
418                      rvec                        * gmx_restrict          xx,
419                      rvec                        * gmx_restrict          ff,
420                      t_forcerec                  * gmx_restrict          fr,
421                      t_mdatoms                   * gmx_restrict     mdatoms,
422                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
423                      t_nrnb                      * gmx_restrict        nrnb)
424 {
425     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
426      * just 0 for non-waters.
427      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
428      * jnr indices corresponding to data put in the four positions in the SIMD register.
429      */
430     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
431     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
432     int              jnrA,jnrB;
433     int              j_coord_offsetA,j_coord_offsetB;
434     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
435     real             rcutoff_scalar;
436     real             *shiftvec,*fshift,*x,*f;
437     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
438     int              vdwioffset0;
439     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
440     int              vdwjidx0A,vdwjidx0B;
441     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
442     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
443     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
444     real             *charge;
445     __m128i          gbitab;
446     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
447     __m128d          minushalf = _mm_set1_pd(-0.5);
448     real             *invsqrta,*dvda,*gbtab;
449     int              nvdwtype;
450     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451     int              *vdwtype;
452     real             *vdwparam;
453     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
454     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
455     __m128i          vfitab;
456     __m128i          ifour       = _mm_set1_epi32(4);
457     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
458     real             *vftab;
459     __m128d          dummy_mask,cutoff_mask;
460     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
461     __m128d          one     = _mm_set1_pd(1.0);
462     __m128d          two     = _mm_set1_pd(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = _mm_set1_pd(fr->epsfac);
475     charge           = mdatoms->chargeA;
476     nvdwtype         = fr->ntype;
477     vdwparam         = fr->nbfp;
478     vdwtype          = mdatoms->typeA;
479
480     invsqrta         = fr->invsqrta;
481     dvda             = fr->dvda;
482     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
483     gbtab            = fr->gbtab.data;
484     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
485
486     /* Avoid stupid compiler warnings */
487     jnrA = jnrB = 0;
488     j_coord_offsetA = 0;
489     j_coord_offsetB = 0;
490
491     outeriter        = 0;
492     inneriter        = 0;
493
494     /* Start outer loop over neighborlists */
495     for(iidx=0; iidx<nri; iidx++)
496     {
497         /* Load shift vector for this list */
498         i_shift_offset   = DIM*shiftidx[iidx];
499
500         /* Load limits for loop over neighbors */
501         j_index_start    = jindex[iidx];
502         j_index_end      = jindex[iidx+1];
503
504         /* Get outer coordinate index */
505         inr              = iinr[iidx];
506         i_coord_offset   = DIM*inr;
507
508         /* Load i particle coords and add shift vector */
509         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
510
511         fix0             = _mm_setzero_pd();
512         fiy0             = _mm_setzero_pd();
513         fiz0             = _mm_setzero_pd();
514
515         /* Load parameters for i particles */
516         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
517         isai0            = _mm_load1_pd(invsqrta+inr+0);
518         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
519
520         dvdasum          = _mm_setzero_pd();
521
522         /* Start inner kernel loop */
523         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
524         {
525
526             /* Get j neighbor index, and coordinate index */
527             jnrA             = jjnr[jidx];
528             jnrB             = jjnr[jidx+1];
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531
532             /* load j atom coordinates */
533             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
534                                               &jx0,&jy0,&jz0);
535
536             /* Calculate displacement vector */
537             dx00             = _mm_sub_pd(ix0,jx0);
538             dy00             = _mm_sub_pd(iy0,jy0);
539             dz00             = _mm_sub_pd(iz0,jz0);
540
541             /* Calculate squared distance and things based on it */
542             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
543
544             rinv00           = gmx_mm_invsqrt_pd(rsq00);
545
546             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
547
548             /* Load parameters for j particles */
549             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
550             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
551             vdwjidx0A        = 2*vdwtype[jnrA+0];
552             vdwjidx0B        = 2*vdwtype[jnrB+0];
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r00              = _mm_mul_pd(rsq00,rinv00);
559
560             /* Compute parameters for interactions between i and j atoms */
561             qq00             = _mm_mul_pd(iq0,jq0);
562             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
563                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
564
565             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
566             isaprod          = _mm_mul_pd(isai0,isaj0);
567             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
568             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
569
570             /* Calculate generalized born table index - this is a separate table from the normal one,
571              * but we use the same procedure by multiplying r with scale and truncating to integer.
572              */
573             rt               = _mm_mul_pd(r00,gbscale);
574             gbitab           = _mm_cvttpd_epi32(rt);
575 #ifdef __XOP__
576             gbeps            = _mm_frcz_pd(rt);
577 #else
578             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
579 #endif
580             gbitab           = _mm_slli_epi32(gbitab,2);
581
582             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
583             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
584             GMX_MM_TRANSPOSE2_PD(Y,F);
585             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
586             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
587             GMX_MM_TRANSPOSE2_PD(G,H);
588             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
589             VV               = _mm_macc_pd(gbeps,Fp,Y);
590             vgb              = _mm_mul_pd(gbqqfactor,VV);
591
592             twogbeps         = _mm_add_pd(gbeps,gbeps);
593             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
594             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
595             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
596             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
597             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
598             velec            = _mm_mul_pd(qq00,rinv00);
599             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
600
601             /* LENNARD-JONES DISPERSION/REPULSION */
602
603             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
604             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
605
606             fscal            = _mm_add_pd(felec,fvdw);
607
608             /* Update vectorial force */
609             fix0             = _mm_macc_pd(dx00,fscal,fix0);
610             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
611             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
612             
613             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
614                                                    _mm_mul_pd(dx00,fscal),
615                                                    _mm_mul_pd(dy00,fscal),
616                                                    _mm_mul_pd(dz00,fscal));
617
618             /* Inner loop uses 67 flops */
619         }
620
621         if(jidx<j_index_end)
622         {
623
624             jnrA             = jjnr[jidx];
625             j_coord_offsetA  = DIM*jnrA;
626
627             /* load j atom coordinates */
628             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
629                                               &jx0,&jy0,&jz0);
630
631             /* Calculate displacement vector */
632             dx00             = _mm_sub_pd(ix0,jx0);
633             dy00             = _mm_sub_pd(iy0,jy0);
634             dz00             = _mm_sub_pd(iz0,jz0);
635
636             /* Calculate squared distance and things based on it */
637             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
638
639             rinv00           = gmx_mm_invsqrt_pd(rsq00);
640
641             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
642
643             /* Load parameters for j particles */
644             jq0              = _mm_load_sd(charge+jnrA+0);
645             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
646             vdwjidx0A        = 2*vdwtype[jnrA+0];
647
648             /**************************
649              * CALCULATE INTERACTIONS *
650              **************************/
651
652             r00              = _mm_mul_pd(rsq00,rinv00);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq00             = _mm_mul_pd(iq0,jq0);
656             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
657
658             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
659             isaprod          = _mm_mul_pd(isai0,isaj0);
660             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
661             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
662
663             /* Calculate generalized born table index - this is a separate table from the normal one,
664              * but we use the same procedure by multiplying r with scale and truncating to integer.
665              */
666             rt               = _mm_mul_pd(r00,gbscale);
667             gbitab           = _mm_cvttpd_epi32(rt);
668 #ifdef __XOP__
669             gbeps            = _mm_frcz_pd(rt);
670 #else
671             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
672 #endif
673             gbitab           = _mm_slli_epi32(gbitab,2);
674
675             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
676             F                = _mm_setzero_pd();
677             GMX_MM_TRANSPOSE2_PD(Y,F);
678             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
679             H                = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(G,H);
681             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
682             VV               = _mm_macc_pd(gbeps,Fp,Y);
683             vgb              = _mm_mul_pd(gbqqfactor,VV);
684
685             twogbeps         = _mm_add_pd(gbeps,gbeps);
686             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
687             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
688             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
689             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
690             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
691             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
692             velec            = _mm_mul_pd(qq00,rinv00);
693             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
694
695             /* LENNARD-JONES DISPERSION/REPULSION */
696
697             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
698             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
699
700             fscal            = _mm_add_pd(felec,fvdw);
701
702             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
703
704             /* Update vectorial force */
705             fix0             = _mm_macc_pd(dx00,fscal,fix0);
706             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
707             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
708             
709             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
710                                                    _mm_mul_pd(dx00,fscal),
711                                                    _mm_mul_pd(dy00,fscal),
712                                                    _mm_mul_pd(dz00,fscal));
713
714             /* Inner loop uses 67 flops */
715         }
716
717         /* End of innermost loop */
718
719         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
720                                               f+i_coord_offset,fshift+i_shift_offset);
721
722         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
723         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
724
725         /* Increment number of inner iterations */
726         inneriter                  += j_index_end - j_index_start;
727
728         /* Outer loop uses 7 flops */
729     }
730
731     /* Increment number of outer iterations */
732     outeriter        += nri;
733
734     /* Update outer/inner flops */
735
736     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
737 }