Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     invsqrta         = fr->invsqrta;
125     dvda             = fr->dvda;
126     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
127     gbtab            = fr->gbtab.data;
128     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         isai0            = _mm_load1_pd(invsqrta+inr+0);
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vgbsum           = _mm_setzero_pd();
167         vvdwsum          = _mm_setzero_pd();
168         dvdasum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
199             vdwjidx0A        = 2*vdwtype[jnrA+0];
200             vdwjidx0B        = 2*vdwtype[jnrB+0];
201
202             /**************************
203              * CALCULATE INTERACTIONS *
204              **************************/
205
206             r00              = _mm_mul_pd(rsq00,rinv00);
207
208             /* Compute parameters for interactions between i and j atoms */
209             qq00             = _mm_mul_pd(iq0,jq0);
210             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
211                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
212
213             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
214             isaprod          = _mm_mul_pd(isai0,isaj0);
215             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
216             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
217
218             /* Calculate generalized born table index - this is a separate table from the normal one,
219              * but we use the same procedure by multiplying r with scale and truncating to integer.
220              */
221             rt               = _mm_mul_pd(r00,gbscale);
222             gbitab           = _mm_cvttpd_epi32(rt);
223 #ifdef __XOP__
224             gbeps            = _mm_frcz_pd(rt);
225 #else
226             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
227 #endif
228             gbitab           = _mm_slli_epi32(gbitab,2);
229
230             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
231             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
232             GMX_MM_TRANSPOSE2_PD(Y,F);
233             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
234             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
235             GMX_MM_TRANSPOSE2_PD(G,H);
236             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
237             VV               = _mm_macc_pd(gbeps,Fp,Y);
238             vgb              = _mm_mul_pd(gbqqfactor,VV);
239
240             twogbeps         = _mm_add_pd(gbeps,gbeps);
241             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
242             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
243             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
244             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
245             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
246             velec            = _mm_mul_pd(qq00,rinv00);
247             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
248
249             /* LENNARD-JONES DISPERSION/REPULSION */
250
251             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
252             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
253             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
254             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
255             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
256
257             /* Update potential sum for this i atom from the interaction with this j atom. */
258             velecsum         = _mm_add_pd(velecsum,velec);
259             vgbsum           = _mm_add_pd(vgbsum,vgb);
260             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
261
262             fscal            = _mm_add_pd(felec,fvdw);
263
264             /* Update vectorial force */
265             fix0             = _mm_macc_pd(dx00,fscal,fix0);
266             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
267             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
268             
269             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
270                                                    _mm_mul_pd(dx00,fscal),
271                                                    _mm_mul_pd(dy00,fscal),
272                                                    _mm_mul_pd(dz00,fscal));
273
274             /* Inner loop uses 74 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             jnrA             = jjnr[jidx];
281             j_coord_offsetA  = DIM*jnrA;
282
283             /* load j atom coordinates */
284             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
285                                               &jx0,&jy0,&jz0);
286
287             /* Calculate displacement vector */
288             dx00             = _mm_sub_pd(ix0,jx0);
289             dy00             = _mm_sub_pd(iy0,jy0);
290             dz00             = _mm_sub_pd(iz0,jz0);
291
292             /* Calculate squared distance and things based on it */
293             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
294
295             rinv00           = gmx_mm_invsqrt_pd(rsq00);
296
297             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
298
299             /* Load parameters for j particles */
300             jq0              = _mm_load_sd(charge+jnrA+0);
301             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
302             vdwjidx0A        = 2*vdwtype[jnrA+0];
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r00              = _mm_mul_pd(rsq00,rinv00);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq00             = _mm_mul_pd(iq0,jq0);
312             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
313
314             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
315             isaprod          = _mm_mul_pd(isai0,isaj0);
316             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
317             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
318
319             /* Calculate generalized born table index - this is a separate table from the normal one,
320              * but we use the same procedure by multiplying r with scale and truncating to integer.
321              */
322             rt               = _mm_mul_pd(r00,gbscale);
323             gbitab           = _mm_cvttpd_epi32(rt);
324 #ifdef __XOP__
325             gbeps            = _mm_frcz_pd(rt);
326 #else
327             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
328 #endif
329             gbitab           = _mm_slli_epi32(gbitab,2);
330
331             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
332             F                = _mm_setzero_pd();
333             GMX_MM_TRANSPOSE2_PD(Y,F);
334             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
335             H                = _mm_setzero_pd();
336             GMX_MM_TRANSPOSE2_PD(G,H);
337             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
338             VV               = _mm_macc_pd(gbeps,Fp,Y);
339             vgb              = _mm_mul_pd(gbqqfactor,VV);
340
341             twogbeps         = _mm_add_pd(gbeps,gbeps);
342             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
343             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
344             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
345             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
346             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
347             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
348             velec            = _mm_mul_pd(qq00,rinv00);
349             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
350
351             /* LENNARD-JONES DISPERSION/REPULSION */
352
353             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
354             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
355             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
356             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
357             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
361             velecsum         = _mm_add_pd(velecsum,velec);
362             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
363             vgbsum           = _mm_add_pd(vgbsum,vgb);
364             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
365             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
366
367             fscal            = _mm_add_pd(felec,fvdw);
368
369             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
370
371             /* Update vectorial force */
372             fix0             = _mm_macc_pd(dx00,fscal,fix0);
373             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
374             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
375             
376             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
377                                                    _mm_mul_pd(dx00,fscal),
378                                                    _mm_mul_pd(dy00,fscal),
379                                                    _mm_mul_pd(dz00,fscal));
380
381             /* Inner loop uses 74 flops */
382         }
383
384         /* End of innermost loop */
385
386         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
387                                               f+i_coord_offset,fshift+i_shift_offset);
388
389         ggid                        = gid[iidx];
390         /* Update potential energies */
391         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
392         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
393         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
394         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
395         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
396
397         /* Increment number of inner iterations */
398         inneriter                  += j_index_end - j_index_start;
399
400         /* Outer loop uses 10 flops */
401     }
402
403     /* Increment number of outer iterations */
404     outeriter        += nri;
405
406     /* Update outer/inner flops */
407
408     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
409 }
410 /*
411  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
412  * Electrostatics interaction: GeneralizedBorn
413  * VdW interaction:            LennardJones
414  * Geometry:                   Particle-Particle
415  * Calculate force/pot:        Force
416  */
417 void
418 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
419                     (t_nblist                    * gmx_restrict       nlist,
420                      rvec                        * gmx_restrict          xx,
421                      rvec                        * gmx_restrict          ff,
422                      t_forcerec                  * gmx_restrict          fr,
423                      t_mdatoms                   * gmx_restrict     mdatoms,
424                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
425                      t_nrnb                      * gmx_restrict        nrnb)
426 {
427     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
428      * just 0 for non-waters.
429      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
430      * jnr indices corresponding to data put in the four positions in the SIMD register.
431      */
432     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
433     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
434     int              jnrA,jnrB;
435     int              j_coord_offsetA,j_coord_offsetB;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
440     int              vdwioffset0;
441     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
442     int              vdwjidx0A,vdwjidx0B;
443     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
444     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
445     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
446     real             *charge;
447     __m128i          gbitab;
448     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
449     __m128d          minushalf = _mm_set1_pd(-0.5);
450     real             *invsqrta,*dvda,*gbtab;
451     int              nvdwtype;
452     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
453     int              *vdwtype;
454     real             *vdwparam;
455     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
456     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
457     __m128i          vfitab;
458     __m128i          ifour       = _mm_set1_epi32(4);
459     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
460     real             *vftab;
461     __m128d          dummy_mask,cutoff_mask;
462     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
463     __m128d          one     = _mm_set1_pd(1.0);
464     __m128d          two     = _mm_set1_pd(2.0);
465     x                = xx[0];
466     f                = ff[0];
467
468     nri              = nlist->nri;
469     iinr             = nlist->iinr;
470     jindex           = nlist->jindex;
471     jjnr             = nlist->jjnr;
472     shiftidx         = nlist->shift;
473     gid              = nlist->gid;
474     shiftvec         = fr->shift_vec[0];
475     fshift           = fr->fshift[0];
476     facel            = _mm_set1_pd(fr->epsfac);
477     charge           = mdatoms->chargeA;
478     nvdwtype         = fr->ntype;
479     vdwparam         = fr->nbfp;
480     vdwtype          = mdatoms->typeA;
481
482     invsqrta         = fr->invsqrta;
483     dvda             = fr->dvda;
484     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
485     gbtab            = fr->gbtab.data;
486     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
487
488     /* Avoid stupid compiler warnings */
489     jnrA = jnrB = 0;
490     j_coord_offsetA = 0;
491     j_coord_offsetB = 0;
492
493     outeriter        = 0;
494     inneriter        = 0;
495
496     /* Start outer loop over neighborlists */
497     for(iidx=0; iidx<nri; iidx++)
498     {
499         /* Load shift vector for this list */
500         i_shift_offset   = DIM*shiftidx[iidx];
501
502         /* Load limits for loop over neighbors */
503         j_index_start    = jindex[iidx];
504         j_index_end      = jindex[iidx+1];
505
506         /* Get outer coordinate index */
507         inr              = iinr[iidx];
508         i_coord_offset   = DIM*inr;
509
510         /* Load i particle coords and add shift vector */
511         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
512
513         fix0             = _mm_setzero_pd();
514         fiy0             = _mm_setzero_pd();
515         fiz0             = _mm_setzero_pd();
516
517         /* Load parameters for i particles */
518         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
519         isai0            = _mm_load1_pd(invsqrta+inr+0);
520         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
521
522         dvdasum          = _mm_setzero_pd();
523
524         /* Start inner kernel loop */
525         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
526         {
527
528             /* Get j neighbor index, and coordinate index */
529             jnrA             = jjnr[jidx];
530             jnrB             = jjnr[jidx+1];
531             j_coord_offsetA  = DIM*jnrA;
532             j_coord_offsetB  = DIM*jnrB;
533
534             /* load j atom coordinates */
535             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
536                                               &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm_sub_pd(ix0,jx0);
540             dy00             = _mm_sub_pd(iy0,jy0);
541             dz00             = _mm_sub_pd(iz0,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
545
546             rinv00           = gmx_mm_invsqrt_pd(rsq00);
547
548             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
549
550             /* Load parameters for j particles */
551             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
552             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
553             vdwjidx0A        = 2*vdwtype[jnrA+0];
554             vdwjidx0B        = 2*vdwtype[jnrB+0];
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r00              = _mm_mul_pd(rsq00,rinv00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq00             = _mm_mul_pd(iq0,jq0);
564             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
565                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
566
567             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
568             isaprod          = _mm_mul_pd(isai0,isaj0);
569             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
570             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
571
572             /* Calculate generalized born table index - this is a separate table from the normal one,
573              * but we use the same procedure by multiplying r with scale and truncating to integer.
574              */
575             rt               = _mm_mul_pd(r00,gbscale);
576             gbitab           = _mm_cvttpd_epi32(rt);
577 #ifdef __XOP__
578             gbeps            = _mm_frcz_pd(rt);
579 #else
580             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
581 #endif
582             gbitab           = _mm_slli_epi32(gbitab,2);
583
584             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
585             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
586             GMX_MM_TRANSPOSE2_PD(Y,F);
587             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
588             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
589             GMX_MM_TRANSPOSE2_PD(G,H);
590             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
591             VV               = _mm_macc_pd(gbeps,Fp,Y);
592             vgb              = _mm_mul_pd(gbqqfactor,VV);
593
594             twogbeps         = _mm_add_pd(gbeps,gbeps);
595             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
596             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
597             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
598             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
599             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
600             velec            = _mm_mul_pd(qq00,rinv00);
601             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
602
603             /* LENNARD-JONES DISPERSION/REPULSION */
604
605             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
606             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
607
608             fscal            = _mm_add_pd(felec,fvdw);
609
610             /* Update vectorial force */
611             fix0             = _mm_macc_pd(dx00,fscal,fix0);
612             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
613             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
614             
615             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
616                                                    _mm_mul_pd(dx00,fscal),
617                                                    _mm_mul_pd(dy00,fscal),
618                                                    _mm_mul_pd(dz00,fscal));
619
620             /* Inner loop uses 67 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             jnrA             = jjnr[jidx];
627             j_coord_offsetA  = DIM*jnrA;
628
629             /* load j atom coordinates */
630             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
631                                               &jx0,&jy0,&jz0);
632
633             /* Calculate displacement vector */
634             dx00             = _mm_sub_pd(ix0,jx0);
635             dy00             = _mm_sub_pd(iy0,jy0);
636             dz00             = _mm_sub_pd(iz0,jz0);
637
638             /* Calculate squared distance and things based on it */
639             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
640
641             rinv00           = gmx_mm_invsqrt_pd(rsq00);
642
643             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
644
645             /* Load parameters for j particles */
646             jq0              = _mm_load_sd(charge+jnrA+0);
647             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
648             vdwjidx0A        = 2*vdwtype[jnrA+0];
649
650             /**************************
651              * CALCULATE INTERACTIONS *
652              **************************/
653
654             r00              = _mm_mul_pd(rsq00,rinv00);
655
656             /* Compute parameters for interactions between i and j atoms */
657             qq00             = _mm_mul_pd(iq0,jq0);
658             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
659
660             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
661             isaprod          = _mm_mul_pd(isai0,isaj0);
662             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
663             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
664
665             /* Calculate generalized born table index - this is a separate table from the normal one,
666              * but we use the same procedure by multiplying r with scale and truncating to integer.
667              */
668             rt               = _mm_mul_pd(r00,gbscale);
669             gbitab           = _mm_cvttpd_epi32(rt);
670 #ifdef __XOP__
671             gbeps            = _mm_frcz_pd(rt);
672 #else
673             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
674 #endif
675             gbitab           = _mm_slli_epi32(gbitab,2);
676
677             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
678             F                = _mm_setzero_pd();
679             GMX_MM_TRANSPOSE2_PD(Y,F);
680             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
681             H                = _mm_setzero_pd();
682             GMX_MM_TRANSPOSE2_PD(G,H);
683             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
684             VV               = _mm_macc_pd(gbeps,Fp,Y);
685             vgb              = _mm_mul_pd(gbqqfactor,VV);
686
687             twogbeps         = _mm_add_pd(gbeps,gbeps);
688             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
689             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
690             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
691             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
692             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
693             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
694             velec            = _mm_mul_pd(qq00,rinv00);
695             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
696
697             /* LENNARD-JONES DISPERSION/REPULSION */
698
699             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
700             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
701
702             fscal            = _mm_add_pd(felec,fvdw);
703
704             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
705
706             /* Update vectorial force */
707             fix0             = _mm_macc_pd(dx00,fscal,fix0);
708             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
709             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
710             
711             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
712                                                    _mm_mul_pd(dx00,fscal),
713                                                    _mm_mul_pd(dy00,fscal),
714                                                    _mm_mul_pd(dz00,fscal));
715
716             /* Inner loop uses 67 flops */
717         }
718
719         /* End of innermost loop */
720
721         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
722                                               f+i_coord_offset,fshift+i_shift_offset);
723
724         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
725         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
726
727         /* Increment number of inner iterations */
728         inneriter                  += j_index_end - j_index_start;
729
730         /* Outer loop uses 7 flops */
731     }
732
733     /* Increment number of outer iterations */
734     outeriter        += nri;
735
736     /* Update outer/inner flops */
737
738     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
739 }