Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     invsqrta         = fr->invsqrta;
109     dvda             = fr->dvda;
110     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
111     gbtab            = fr->gbtab.data;
112     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
138
139         fix0             = _mm_setzero_pd();
140         fiy0             = _mm_setzero_pd();
141         fiz0             = _mm_setzero_pd();
142
143         /* Load parameters for i particles */
144         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
145         isai0            = _mm_load1_pd(invsqrta+inr+0);
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = _mm_setzero_pd();
150         vgbsum           = _mm_setzero_pd();
151         vvdwsum          = _mm_setzero_pd();
152         dvdasum          = _mm_setzero_pd();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             j_coord_offsetA  = DIM*jnrA;
162             j_coord_offsetB  = DIM*jnrB;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm_sub_pd(ix0,jx0);
170             dy00             = _mm_sub_pd(iy0,jy0);
171             dz00             = _mm_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
182             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185
186             /**************************
187              * CALCULATE INTERACTIONS *
188              **************************/
189
190             r00              = _mm_mul_pd(rsq00,rinv00);
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm_mul_pd(iq0,jq0);
194             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
195                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
196
197             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
198             isaprod          = _mm_mul_pd(isai0,isaj0);
199             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
200             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
201
202             /* Calculate generalized born table index - this is a separate table from the normal one,
203              * but we use the same procedure by multiplying r with scale and truncating to integer.
204              */
205             rt               = _mm_mul_pd(r00,gbscale);
206             gbitab           = _mm_cvttpd_epi32(rt);
207 #ifdef __XOP__
208             gbeps            = _mm_frcz_pd(rt);
209 #else
210             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
211 #endif
212             gbitab           = _mm_slli_epi32(gbitab,2);
213
214             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
215             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
216             GMX_MM_TRANSPOSE2_PD(Y,F);
217             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
218             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
219             GMX_MM_TRANSPOSE2_PD(G,H);
220             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
221             VV               = _mm_macc_pd(gbeps,Fp,Y);
222             vgb              = _mm_mul_pd(gbqqfactor,VV);
223
224             twogbeps         = _mm_add_pd(gbeps,gbeps);
225             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
226             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
227             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
228             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
229             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
230             velec            = _mm_mul_pd(qq00,rinv00);
231             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
232
233             /* LENNARD-JONES DISPERSION/REPULSION */
234
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
237             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
238             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
239             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
240
241             /* Update potential sum for this i atom from the interaction with this j atom. */
242             velecsum         = _mm_add_pd(velecsum,velec);
243             vgbsum           = _mm_add_pd(vgbsum,vgb);
244             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
245
246             fscal            = _mm_add_pd(felec,fvdw);
247
248             /* Update vectorial force */
249             fix0             = _mm_macc_pd(dx00,fscal,fix0);
250             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
251             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
252             
253             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
254                                                    _mm_mul_pd(dx00,fscal),
255                                                    _mm_mul_pd(dy00,fscal),
256                                                    _mm_mul_pd(dz00,fscal));
257
258             /* Inner loop uses 74 flops */
259         }
260
261         if(jidx<j_index_end)
262         {
263
264             jnrA             = jjnr[jidx];
265             j_coord_offsetA  = DIM*jnrA;
266
267             /* load j atom coordinates */
268             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
269                                               &jx0,&jy0,&jz0);
270
271             /* Calculate displacement vector */
272             dx00             = _mm_sub_pd(ix0,jx0);
273             dy00             = _mm_sub_pd(iy0,jy0);
274             dz00             = _mm_sub_pd(iz0,jz0);
275
276             /* Calculate squared distance and things based on it */
277             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
278
279             rinv00           = gmx_mm_invsqrt_pd(rsq00);
280
281             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
282
283             /* Load parameters for j particles */
284             jq0              = _mm_load_sd(charge+jnrA+0);
285             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
286             vdwjidx0A        = 2*vdwtype[jnrA+0];
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r00              = _mm_mul_pd(rsq00,rinv00);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq00             = _mm_mul_pd(iq0,jq0);
296             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
297
298             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
299             isaprod          = _mm_mul_pd(isai0,isaj0);
300             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
301             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
302
303             /* Calculate generalized born table index - this is a separate table from the normal one,
304              * but we use the same procedure by multiplying r with scale and truncating to integer.
305              */
306             rt               = _mm_mul_pd(r00,gbscale);
307             gbitab           = _mm_cvttpd_epi32(rt);
308 #ifdef __XOP__
309             gbeps            = _mm_frcz_pd(rt);
310 #else
311             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
312 #endif
313             gbitab           = _mm_slli_epi32(gbitab,2);
314
315             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
316             F                = _mm_setzero_pd();
317             GMX_MM_TRANSPOSE2_PD(Y,F);
318             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
319             H                = _mm_setzero_pd();
320             GMX_MM_TRANSPOSE2_PD(G,H);
321             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
322             VV               = _mm_macc_pd(gbeps,Fp,Y);
323             vgb              = _mm_mul_pd(gbqqfactor,VV);
324
325             twogbeps         = _mm_add_pd(gbeps,gbeps);
326             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
327             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
328             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
329             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
330             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
331             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
332             velec            = _mm_mul_pd(qq00,rinv00);
333             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
334
335             /* LENNARD-JONES DISPERSION/REPULSION */
336
337             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
338             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
339             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
341             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
345             velecsum         = _mm_add_pd(velecsum,velec);
346             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
347             vgbsum           = _mm_add_pd(vgbsum,vgb);
348             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
349             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
350
351             fscal            = _mm_add_pd(felec,fvdw);
352
353             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
354
355             /* Update vectorial force */
356             fix0             = _mm_macc_pd(dx00,fscal,fix0);
357             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
358             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
359             
360             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
361                                                    _mm_mul_pd(dx00,fscal),
362                                                    _mm_mul_pd(dy00,fscal),
363                                                    _mm_mul_pd(dz00,fscal));
364
365             /* Inner loop uses 74 flops */
366         }
367
368         /* End of innermost loop */
369
370         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
371                                               f+i_coord_offset,fshift+i_shift_offset);
372
373         ggid                        = gid[iidx];
374         /* Update potential energies */
375         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
376         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
377         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
378         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
379         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
380
381         /* Increment number of inner iterations */
382         inneriter                  += j_index_end - j_index_start;
383
384         /* Outer loop uses 10 flops */
385     }
386
387     /* Increment number of outer iterations */
388     outeriter        += nri;
389
390     /* Update outer/inner flops */
391
392     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*74);
393 }
394 /*
395  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
396  * Electrostatics interaction: GeneralizedBorn
397  * VdW interaction:            LennardJones
398  * Geometry:                   Particle-Particle
399  * Calculate force/pot:        Force
400  */
401 void
402 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_128_fma_double
403                     (t_nblist * gmx_restrict                nlist,
404                      rvec * gmx_restrict                    xx,
405                      rvec * gmx_restrict                    ff,
406                      t_forcerec * gmx_restrict              fr,
407                      t_mdatoms * gmx_restrict               mdatoms,
408                      nb_kernel_data_t * gmx_restrict        kernel_data,
409                      t_nrnb * gmx_restrict                  nrnb)
410 {
411     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
412      * just 0 for non-waters.
413      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
414      * jnr indices corresponding to data put in the four positions in the SIMD register.
415      */
416     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
417     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
418     int              jnrA,jnrB;
419     int              j_coord_offsetA,j_coord_offsetB;
420     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
421     real             rcutoff_scalar;
422     real             *shiftvec,*fshift,*x,*f;
423     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
424     int              vdwioffset0;
425     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
426     int              vdwjidx0A,vdwjidx0B;
427     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
428     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
429     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
430     real             *charge;
431     __m128i          gbitab;
432     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
433     __m128d          minushalf = _mm_set1_pd(-0.5);
434     real             *invsqrta,*dvda,*gbtab;
435     int              nvdwtype;
436     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
437     int              *vdwtype;
438     real             *vdwparam;
439     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
440     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
441     __m128i          vfitab;
442     __m128i          ifour       = _mm_set1_epi32(4);
443     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
444     real             *vftab;
445     __m128d          dummy_mask,cutoff_mask;
446     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
447     __m128d          one     = _mm_set1_pd(1.0);
448     __m128d          two     = _mm_set1_pd(2.0);
449     x                = xx[0];
450     f                = ff[0];
451
452     nri              = nlist->nri;
453     iinr             = nlist->iinr;
454     jindex           = nlist->jindex;
455     jjnr             = nlist->jjnr;
456     shiftidx         = nlist->shift;
457     gid              = nlist->gid;
458     shiftvec         = fr->shift_vec[0];
459     fshift           = fr->fshift[0];
460     facel            = _mm_set1_pd(fr->epsfac);
461     charge           = mdatoms->chargeA;
462     nvdwtype         = fr->ntype;
463     vdwparam         = fr->nbfp;
464     vdwtype          = mdatoms->typeA;
465
466     invsqrta         = fr->invsqrta;
467     dvda             = fr->dvda;
468     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
469     gbtab            = fr->gbtab.data;
470     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
471
472     /* Avoid stupid compiler warnings */
473     jnrA = jnrB = 0;
474     j_coord_offsetA = 0;
475     j_coord_offsetB = 0;
476
477     outeriter        = 0;
478     inneriter        = 0;
479
480     /* Start outer loop over neighborlists */
481     for(iidx=0; iidx<nri; iidx++)
482     {
483         /* Load shift vector for this list */
484         i_shift_offset   = DIM*shiftidx[iidx];
485
486         /* Load limits for loop over neighbors */
487         j_index_start    = jindex[iidx];
488         j_index_end      = jindex[iidx+1];
489
490         /* Get outer coordinate index */
491         inr              = iinr[iidx];
492         i_coord_offset   = DIM*inr;
493
494         /* Load i particle coords and add shift vector */
495         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
496
497         fix0             = _mm_setzero_pd();
498         fiy0             = _mm_setzero_pd();
499         fiz0             = _mm_setzero_pd();
500
501         /* Load parameters for i particles */
502         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
503         isai0            = _mm_load1_pd(invsqrta+inr+0);
504         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
505
506         dvdasum          = _mm_setzero_pd();
507
508         /* Start inner kernel loop */
509         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
510         {
511
512             /* Get j neighbor index, and coordinate index */
513             jnrA             = jjnr[jidx];
514             jnrB             = jjnr[jidx+1];
515             j_coord_offsetA  = DIM*jnrA;
516             j_coord_offsetB  = DIM*jnrB;
517
518             /* load j atom coordinates */
519             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
520                                               &jx0,&jy0,&jz0);
521
522             /* Calculate displacement vector */
523             dx00             = _mm_sub_pd(ix0,jx0);
524             dy00             = _mm_sub_pd(iy0,jy0);
525             dz00             = _mm_sub_pd(iz0,jz0);
526
527             /* Calculate squared distance and things based on it */
528             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
529
530             rinv00           = gmx_mm_invsqrt_pd(rsq00);
531
532             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
533
534             /* Load parameters for j particles */
535             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
536             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
537             vdwjidx0A        = 2*vdwtype[jnrA+0];
538             vdwjidx0B        = 2*vdwtype[jnrB+0];
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r00              = _mm_mul_pd(rsq00,rinv00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq00             = _mm_mul_pd(iq0,jq0);
548             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
549                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
550
551             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
552             isaprod          = _mm_mul_pd(isai0,isaj0);
553             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
554             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
555
556             /* Calculate generalized born table index - this is a separate table from the normal one,
557              * but we use the same procedure by multiplying r with scale and truncating to integer.
558              */
559             rt               = _mm_mul_pd(r00,gbscale);
560             gbitab           = _mm_cvttpd_epi32(rt);
561 #ifdef __XOP__
562             gbeps            = _mm_frcz_pd(rt);
563 #else
564             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
565 #endif
566             gbitab           = _mm_slli_epi32(gbitab,2);
567
568             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
569             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
570             GMX_MM_TRANSPOSE2_PD(Y,F);
571             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
572             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
573             GMX_MM_TRANSPOSE2_PD(G,H);
574             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
575             VV               = _mm_macc_pd(gbeps,Fp,Y);
576             vgb              = _mm_mul_pd(gbqqfactor,VV);
577
578             twogbeps         = _mm_add_pd(gbeps,gbeps);
579             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
580             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
581             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
582             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
583             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
584             velec            = _mm_mul_pd(qq00,rinv00);
585             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
586
587             /* LENNARD-JONES DISPERSION/REPULSION */
588
589             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
590             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
591
592             fscal            = _mm_add_pd(felec,fvdw);
593
594             /* Update vectorial force */
595             fix0             = _mm_macc_pd(dx00,fscal,fix0);
596             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
597             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
598             
599             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
600                                                    _mm_mul_pd(dx00,fscal),
601                                                    _mm_mul_pd(dy00,fscal),
602                                                    _mm_mul_pd(dz00,fscal));
603
604             /* Inner loop uses 67 flops */
605         }
606
607         if(jidx<j_index_end)
608         {
609
610             jnrA             = jjnr[jidx];
611             j_coord_offsetA  = DIM*jnrA;
612
613             /* load j atom coordinates */
614             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
615                                               &jx0,&jy0,&jz0);
616
617             /* Calculate displacement vector */
618             dx00             = _mm_sub_pd(ix0,jx0);
619             dy00             = _mm_sub_pd(iy0,jy0);
620             dz00             = _mm_sub_pd(iz0,jz0);
621
622             /* Calculate squared distance and things based on it */
623             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
624
625             rinv00           = gmx_mm_invsqrt_pd(rsq00);
626
627             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
628
629             /* Load parameters for j particles */
630             jq0              = _mm_load_sd(charge+jnrA+0);
631             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
632             vdwjidx0A        = 2*vdwtype[jnrA+0];
633
634             /**************************
635              * CALCULATE INTERACTIONS *
636              **************************/
637
638             r00              = _mm_mul_pd(rsq00,rinv00);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_pd(iq0,jq0);
642             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
643
644             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
645             isaprod          = _mm_mul_pd(isai0,isaj0);
646             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
647             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
648
649             /* Calculate generalized born table index - this is a separate table from the normal one,
650              * but we use the same procedure by multiplying r with scale and truncating to integer.
651              */
652             rt               = _mm_mul_pd(r00,gbscale);
653             gbitab           = _mm_cvttpd_epi32(rt);
654 #ifdef __XOP__
655             gbeps            = _mm_frcz_pd(rt);
656 #else
657             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
658 #endif
659             gbitab           = _mm_slli_epi32(gbitab,2);
660
661             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
662             F                = _mm_setzero_pd();
663             GMX_MM_TRANSPOSE2_PD(Y,F);
664             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
665             H                = _mm_setzero_pd();
666             GMX_MM_TRANSPOSE2_PD(G,H);
667             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
668             VV               = _mm_macc_pd(gbeps,Fp,Y);
669             vgb              = _mm_mul_pd(gbqqfactor,VV);
670
671             twogbeps         = _mm_add_pd(gbeps,gbeps);
672             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
673             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
674             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
675             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
676             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
677             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
678             velec            = _mm_mul_pd(qq00,rinv00);
679             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
680
681             /* LENNARD-JONES DISPERSION/REPULSION */
682
683             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
684             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
685
686             fscal            = _mm_add_pd(felec,fvdw);
687
688             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
689
690             /* Update vectorial force */
691             fix0             = _mm_macc_pd(dx00,fscal,fix0);
692             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
693             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
694             
695             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
696                                                    _mm_mul_pd(dx00,fscal),
697                                                    _mm_mul_pd(dy00,fscal),
698                                                    _mm_mul_pd(dz00,fscal));
699
700             /* Inner loop uses 67 flops */
701         }
702
703         /* End of innermost loop */
704
705         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
706                                               f+i_coord_offset,fshift+i_shift_offset);
707
708         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
709         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
710
711         /* Increment number of inner iterations */
712         inneriter                  += j_index_end - j_index_start;
713
714         /* Outer loop uses 7 flops */
715     }
716
717     /* Increment number of outer iterations */
718     outeriter        += nri;
719
720     /* Update outer/inner flops */
721
722     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
723 }