Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     vftab            = kernel_data->table_vdw->data;
109     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
148         isai0            = _mm_load1_pd(invsqrta+inr+0);
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         vvdwsum          = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
197
198             /* Calculate table index by multiplying r with table scale and truncate to integer */
199             rt               = _mm_mul_pd(r00,vftabscale);
200             vfitab           = _mm_cvttpd_epi32(rt);
201 #ifdef __XOP__
202             vfeps            = _mm_frcz_pd(rt);
203 #else
204             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
205 #endif
206             twovfeps         = _mm_add_pd(vfeps,vfeps);
207             vfitab           = _mm_slli_epi32(vfitab,3);
208
209             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
210             isaprod          = _mm_mul_pd(isai0,isaj0);
211             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
212             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
213
214             /* Calculate generalized born table index - this is a separate table from the normal one,
215              * but we use the same procedure by multiplying r with scale and truncating to integer.
216              */
217             rt               = _mm_mul_pd(r00,gbscale);
218             gbitab           = _mm_cvttpd_epi32(rt);
219 #ifdef __XOP__
220             gbeps            = _mm_frcz_pd(rt);
221 #else
222             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
223 #endif
224             gbitab           = _mm_slli_epi32(gbitab,2);
225
226             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
227             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
230             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
233             VV               = _mm_macc_pd(gbeps,Fp,Y);
234             vgb              = _mm_mul_pd(gbqqfactor,VV);
235
236             twogbeps         = _mm_add_pd(gbeps,gbeps);
237             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
238             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
239             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
240             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
241             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
242             velec            = _mm_mul_pd(qq00,rinv00);
243             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
244
245             /* CUBIC SPLINE TABLE DISPERSION */
246             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
248             GMX_MM_TRANSPOSE2_PD(Y,F);
249             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
250             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
251             GMX_MM_TRANSPOSE2_PD(G,H);
252             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
253             VV               = _mm_macc_pd(vfeps,Fp,Y);
254             vvdw6            = _mm_mul_pd(c6_00,VV);
255             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
256             fvdw6            = _mm_mul_pd(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             GMX_MM_TRANSPOSE2_PD(Y,F);
263             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
264             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
265             GMX_MM_TRANSPOSE2_PD(G,H);
266             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
267             VV               = _mm_macc_pd(vfeps,Fp,Y);
268             vvdw12           = _mm_mul_pd(c12_00,VV);
269             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
270             fvdw12           = _mm_mul_pd(c12_00,FF);
271             vvdw             = _mm_add_pd(vvdw12,vvdw6);
272             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_pd(velecsum,velec);
276             vgbsum           = _mm_add_pd(vgbsum,vgb);
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = _mm_add_pd(felec,fvdw);
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
287                                                    _mm_mul_pd(dx00,fscal),
288                                                    _mm_mul_pd(dy00,fscal),
289                                                    _mm_mul_pd(dz00,fscal));
290
291             /* Inner loop uses 95 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             jnrA             = jjnr[jidx];
298             j_coord_offsetA  = DIM*jnrA;
299
300             /* load j atom coordinates */
301             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
302                                               &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm_sub_pd(ix0,jx0);
306             dy00             = _mm_sub_pd(iy0,jy0);
307             dz00             = _mm_sub_pd(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm_invsqrt_pd(rsq00);
313
314             /* Load parameters for j particles */
315             jq0              = _mm_load_sd(charge+jnrA+0);
316             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm_mul_pd(rsq00,rinv00);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq00             = _mm_mul_pd(iq0,jq0);
327             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm_mul_pd(r00,vftabscale);
331             vfitab           = _mm_cvttpd_epi32(rt);
332 #ifdef __XOP__
333             vfeps            = _mm_frcz_pd(rt);
334 #else
335             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
336 #endif
337             twovfeps         = _mm_add_pd(vfeps,vfeps);
338             vfitab           = _mm_slli_epi32(vfitab,3);
339
340             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
341             isaprod          = _mm_mul_pd(isai0,isaj0);
342             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
343             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
344
345             /* Calculate generalized born table index - this is a separate table from the normal one,
346              * but we use the same procedure by multiplying r with scale and truncating to integer.
347              */
348             rt               = _mm_mul_pd(r00,gbscale);
349             gbitab           = _mm_cvttpd_epi32(rt);
350 #ifdef __XOP__
351             gbeps            = _mm_frcz_pd(rt);
352 #else
353             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
354 #endif
355             gbitab           = _mm_slli_epi32(gbitab,2);
356
357             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
358             F                = _mm_setzero_pd();
359             GMX_MM_TRANSPOSE2_PD(Y,F);
360             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
361             H                = _mm_setzero_pd();
362             GMX_MM_TRANSPOSE2_PD(G,H);
363             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
364             VV               = _mm_macc_pd(gbeps,Fp,Y);
365             vgb              = _mm_mul_pd(gbqqfactor,VV);
366
367             twogbeps         = _mm_add_pd(gbeps,gbeps);
368             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
369             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
370             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
371             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
372             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
373             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
374             velec            = _mm_mul_pd(qq00,rinv00);
375             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
376
377             /* CUBIC SPLINE TABLE DISPERSION */
378             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
379             F                = _mm_setzero_pd();
380             GMX_MM_TRANSPOSE2_PD(Y,F);
381             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
382             H                = _mm_setzero_pd();
383             GMX_MM_TRANSPOSE2_PD(G,H);
384             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
385             VV               = _mm_macc_pd(vfeps,Fp,Y);
386             vvdw6            = _mm_mul_pd(c6_00,VV);
387             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
388             fvdw6            = _mm_mul_pd(c6_00,FF);
389
390             /* CUBIC SPLINE TABLE REPULSION */
391             vfitab           = _mm_add_epi32(vfitab,ifour);
392             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
393             F                = _mm_setzero_pd();
394             GMX_MM_TRANSPOSE2_PD(Y,F);
395             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
396             H                = _mm_setzero_pd();
397             GMX_MM_TRANSPOSE2_PD(G,H);
398             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
399             VV               = _mm_macc_pd(vfeps,Fp,Y);
400             vvdw12           = _mm_mul_pd(c12_00,VV);
401             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
402             fvdw12           = _mm_mul_pd(c12_00,FF);
403             vvdw             = _mm_add_pd(vvdw12,vvdw6);
404             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
405
406             /* Update potential sum for this i atom from the interaction with this j atom. */
407             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
408             velecsum         = _mm_add_pd(velecsum,velec);
409             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
410             vgbsum           = _mm_add_pd(vgbsum,vgb);
411             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
412             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
413
414             fscal            = _mm_add_pd(felec,fvdw);
415
416             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
417
418             /* Update vectorial force */
419             fix0             = _mm_macc_pd(dx00,fscal,fix0);
420             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
421             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
422             
423             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
424                                                    _mm_mul_pd(dx00,fscal),
425                                                    _mm_mul_pd(dy00,fscal),
426                                                    _mm_mul_pd(dz00,fscal));
427
428             /* Inner loop uses 95 flops */
429         }
430
431         /* End of innermost loop */
432
433         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
434                                               f+i_coord_offset,fshift+i_shift_offset);
435
436         ggid                        = gid[iidx];
437         /* Update potential energies */
438         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
439         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
440         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
441         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
442         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
443
444         /* Increment number of inner iterations */
445         inneriter                  += j_index_end - j_index_start;
446
447         /* Outer loop uses 10 flops */
448     }
449
450     /* Increment number of outer iterations */
451     outeriter        += nri;
452
453     /* Update outer/inner flops */
454
455     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
456 }
457 /*
458  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
459  * Electrostatics interaction: GeneralizedBorn
460  * VdW interaction:            CubicSplineTable
461  * Geometry:                   Particle-Particle
462  * Calculate force/pot:        Force
463  */
464 void
465 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
466                     (t_nblist * gmx_restrict                nlist,
467                      rvec * gmx_restrict                    xx,
468                      rvec * gmx_restrict                    ff,
469                      t_forcerec * gmx_restrict              fr,
470                      t_mdatoms * gmx_restrict               mdatoms,
471                      nb_kernel_data_t * gmx_restrict        kernel_data,
472                      t_nrnb * gmx_restrict                  nrnb)
473 {
474     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
475      * just 0 for non-waters.
476      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
477      * jnr indices corresponding to data put in the four positions in the SIMD register.
478      */
479     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
480     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
481     int              jnrA,jnrB;
482     int              j_coord_offsetA,j_coord_offsetB;
483     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
484     real             rcutoff_scalar;
485     real             *shiftvec,*fshift,*x,*f;
486     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
487     int              vdwioffset0;
488     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
489     int              vdwjidx0A,vdwjidx0B;
490     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
491     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
492     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
493     real             *charge;
494     __m128i          gbitab;
495     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
496     __m128d          minushalf = _mm_set1_pd(-0.5);
497     real             *invsqrta,*dvda,*gbtab;
498     int              nvdwtype;
499     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
500     int              *vdwtype;
501     real             *vdwparam;
502     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
503     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
504     __m128i          vfitab;
505     __m128i          ifour       = _mm_set1_epi32(4);
506     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
507     real             *vftab;
508     __m128d          dummy_mask,cutoff_mask;
509     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
510     __m128d          one     = _mm_set1_pd(1.0);
511     __m128d          two     = _mm_set1_pd(2.0);
512     x                = xx[0];
513     f                = ff[0];
514
515     nri              = nlist->nri;
516     iinr             = nlist->iinr;
517     jindex           = nlist->jindex;
518     jjnr             = nlist->jjnr;
519     shiftidx         = nlist->shift;
520     gid              = nlist->gid;
521     shiftvec         = fr->shift_vec[0];
522     fshift           = fr->fshift[0];
523     facel            = _mm_set1_pd(fr->epsfac);
524     charge           = mdatoms->chargeA;
525     nvdwtype         = fr->ntype;
526     vdwparam         = fr->nbfp;
527     vdwtype          = mdatoms->typeA;
528
529     vftab            = kernel_data->table_vdw->data;
530     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
531
532     invsqrta         = fr->invsqrta;
533     dvda             = fr->dvda;
534     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
535     gbtab            = fr->gbtab.data;
536     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
537
538     /* Avoid stupid compiler warnings */
539     jnrA = jnrB = 0;
540     j_coord_offsetA = 0;
541     j_coord_offsetB = 0;
542
543     outeriter        = 0;
544     inneriter        = 0;
545
546     /* Start outer loop over neighborlists */
547     for(iidx=0; iidx<nri; iidx++)
548     {
549         /* Load shift vector for this list */
550         i_shift_offset   = DIM*shiftidx[iidx];
551
552         /* Load limits for loop over neighbors */
553         j_index_start    = jindex[iidx];
554         j_index_end      = jindex[iidx+1];
555
556         /* Get outer coordinate index */
557         inr              = iinr[iidx];
558         i_coord_offset   = DIM*inr;
559
560         /* Load i particle coords and add shift vector */
561         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
562
563         fix0             = _mm_setzero_pd();
564         fiy0             = _mm_setzero_pd();
565         fiz0             = _mm_setzero_pd();
566
567         /* Load parameters for i particles */
568         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
569         isai0            = _mm_load1_pd(invsqrta+inr+0);
570         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
571
572         dvdasum          = _mm_setzero_pd();
573
574         /* Start inner kernel loop */
575         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
576         {
577
578             /* Get j neighbor index, and coordinate index */
579             jnrA             = jjnr[jidx];
580             jnrB             = jjnr[jidx+1];
581             j_coord_offsetA  = DIM*jnrA;
582             j_coord_offsetB  = DIM*jnrB;
583
584             /* load j atom coordinates */
585             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
586                                               &jx0,&jy0,&jz0);
587
588             /* Calculate displacement vector */
589             dx00             = _mm_sub_pd(ix0,jx0);
590             dy00             = _mm_sub_pd(iy0,jy0);
591             dz00             = _mm_sub_pd(iz0,jz0);
592
593             /* Calculate squared distance and things based on it */
594             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
595
596             rinv00           = gmx_mm_invsqrt_pd(rsq00);
597
598             /* Load parameters for j particles */
599             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
600             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602             vdwjidx0B        = 2*vdwtype[jnrB+0];
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             r00              = _mm_mul_pd(rsq00,rinv00);
609
610             /* Compute parameters for interactions between i and j atoms */
611             qq00             = _mm_mul_pd(iq0,jq0);
612             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
613                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
614
615             /* Calculate table index by multiplying r with table scale and truncate to integer */
616             rt               = _mm_mul_pd(r00,vftabscale);
617             vfitab           = _mm_cvttpd_epi32(rt);
618 #ifdef __XOP__
619             vfeps            = _mm_frcz_pd(rt);
620 #else
621             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
622 #endif
623             twovfeps         = _mm_add_pd(vfeps,vfeps);
624             vfitab           = _mm_slli_epi32(vfitab,3);
625
626             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
627             isaprod          = _mm_mul_pd(isai0,isaj0);
628             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
629             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
630
631             /* Calculate generalized born table index - this is a separate table from the normal one,
632              * but we use the same procedure by multiplying r with scale and truncating to integer.
633              */
634             rt               = _mm_mul_pd(r00,gbscale);
635             gbitab           = _mm_cvttpd_epi32(rt);
636 #ifdef __XOP__
637             gbeps            = _mm_frcz_pd(rt);
638 #else
639             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
640 #endif
641             gbitab           = _mm_slli_epi32(gbitab,2);
642
643             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
644             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
645             GMX_MM_TRANSPOSE2_PD(Y,F);
646             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
647             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
648             GMX_MM_TRANSPOSE2_PD(G,H);
649             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
650             VV               = _mm_macc_pd(gbeps,Fp,Y);
651             vgb              = _mm_mul_pd(gbqqfactor,VV);
652
653             twogbeps         = _mm_add_pd(gbeps,gbeps);
654             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
655             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
656             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
657             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
658             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
659             velec            = _mm_mul_pd(qq00,rinv00);
660             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
661
662             /* CUBIC SPLINE TABLE DISPERSION */
663             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
664             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
665             GMX_MM_TRANSPOSE2_PD(Y,F);
666             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
667             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
668             GMX_MM_TRANSPOSE2_PD(G,H);
669             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
670             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
671             fvdw6            = _mm_mul_pd(c6_00,FF);
672
673             /* CUBIC SPLINE TABLE REPULSION */
674             vfitab           = _mm_add_epi32(vfitab,ifour);
675             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
676             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
677             GMX_MM_TRANSPOSE2_PD(Y,F);
678             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
679             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
680             GMX_MM_TRANSPOSE2_PD(G,H);
681             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
682             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
683             fvdw12           = _mm_mul_pd(c12_00,FF);
684             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
685
686             fscal            = _mm_add_pd(felec,fvdw);
687
688             /* Update vectorial force */
689             fix0             = _mm_macc_pd(dx00,fscal,fix0);
690             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
691             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
692             
693             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
694                                                    _mm_mul_pd(dx00,fscal),
695                                                    _mm_mul_pd(dy00,fscal),
696                                                    _mm_mul_pd(dz00,fscal));
697
698             /* Inner loop uses 85 flops */
699         }
700
701         if(jidx<j_index_end)
702         {
703
704             jnrA             = jjnr[jidx];
705             j_coord_offsetA  = DIM*jnrA;
706
707             /* load j atom coordinates */
708             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
709                                               &jx0,&jy0,&jz0);
710
711             /* Calculate displacement vector */
712             dx00             = _mm_sub_pd(ix0,jx0);
713             dy00             = _mm_sub_pd(iy0,jy0);
714             dz00             = _mm_sub_pd(iz0,jz0);
715
716             /* Calculate squared distance and things based on it */
717             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
718
719             rinv00           = gmx_mm_invsqrt_pd(rsq00);
720
721             /* Load parameters for j particles */
722             jq0              = _mm_load_sd(charge+jnrA+0);
723             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
724             vdwjidx0A        = 2*vdwtype[jnrA+0];
725
726             /**************************
727              * CALCULATE INTERACTIONS *
728              **************************/
729
730             r00              = _mm_mul_pd(rsq00,rinv00);
731
732             /* Compute parameters for interactions between i and j atoms */
733             qq00             = _mm_mul_pd(iq0,jq0);
734             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
735
736             /* Calculate table index by multiplying r with table scale and truncate to integer */
737             rt               = _mm_mul_pd(r00,vftabscale);
738             vfitab           = _mm_cvttpd_epi32(rt);
739 #ifdef __XOP__
740             vfeps            = _mm_frcz_pd(rt);
741 #else
742             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
743 #endif
744             twovfeps         = _mm_add_pd(vfeps,vfeps);
745             vfitab           = _mm_slli_epi32(vfitab,3);
746
747             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
748             isaprod          = _mm_mul_pd(isai0,isaj0);
749             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
750             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
751
752             /* Calculate generalized born table index - this is a separate table from the normal one,
753              * but we use the same procedure by multiplying r with scale and truncating to integer.
754              */
755             rt               = _mm_mul_pd(r00,gbscale);
756             gbitab           = _mm_cvttpd_epi32(rt);
757 #ifdef __XOP__
758             gbeps            = _mm_frcz_pd(rt);
759 #else
760             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
761 #endif
762             gbitab           = _mm_slli_epi32(gbitab,2);
763
764             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
765             F                = _mm_setzero_pd();
766             GMX_MM_TRANSPOSE2_PD(Y,F);
767             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
768             H                = _mm_setzero_pd();
769             GMX_MM_TRANSPOSE2_PD(G,H);
770             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
771             VV               = _mm_macc_pd(gbeps,Fp,Y);
772             vgb              = _mm_mul_pd(gbqqfactor,VV);
773
774             twogbeps         = _mm_add_pd(gbeps,gbeps);
775             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
776             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
777             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
778             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
779             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
780             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
781             velec            = _mm_mul_pd(qq00,rinv00);
782             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
783
784             /* CUBIC SPLINE TABLE DISPERSION */
785             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
786             F                = _mm_setzero_pd();
787             GMX_MM_TRANSPOSE2_PD(Y,F);
788             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
789             H                = _mm_setzero_pd();
790             GMX_MM_TRANSPOSE2_PD(G,H);
791             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
792             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
793             fvdw6            = _mm_mul_pd(c6_00,FF);
794
795             /* CUBIC SPLINE TABLE REPULSION */
796             vfitab           = _mm_add_epi32(vfitab,ifour);
797             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
798             F                = _mm_setzero_pd();
799             GMX_MM_TRANSPOSE2_PD(Y,F);
800             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
801             H                = _mm_setzero_pd();
802             GMX_MM_TRANSPOSE2_PD(G,H);
803             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
804             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
805             fvdw12           = _mm_mul_pd(c12_00,FF);
806             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
807
808             fscal            = _mm_add_pd(felec,fvdw);
809
810             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
811
812             /* Update vectorial force */
813             fix0             = _mm_macc_pd(dx00,fscal,fix0);
814             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
815             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
816             
817             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
818                                                    _mm_mul_pd(dx00,fscal),
819                                                    _mm_mul_pd(dy00,fscal),
820                                                    _mm_mul_pd(dz00,fscal));
821
822             /* Inner loop uses 85 flops */
823         }
824
825         /* End of innermost loop */
826
827         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
828                                               f+i_coord_offset,fshift+i_shift_offset);
829
830         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
831         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
832
833         /* Increment number of inner iterations */
834         inneriter                  += j_index_end - j_index_start;
835
836         /* Outer loop uses 7 flops */
837     }
838
839     /* Increment number of outer iterations */
840     outeriter        += nri;
841
842     /* Update outer/inner flops */
843
844     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
845 }