Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset0;
67     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
68     int              vdwjidx0A,vdwjidx0B;
69     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
70     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
71     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
72     real             *charge;
73     __m128i          gbitab;
74     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
75     __m128d          minushalf = _mm_set1_pd(-0.5);
76     real             *invsqrta,*dvda,*gbtab;
77     int              nvdwtype;
78     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
82     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
86     real             *vftab;
87     __m128d          dummy_mask,cutoff_mask;
88     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
89     __m128d          one     = _mm_set1_pd(1.0);
90     __m128d          two     = _mm_set1_pd(2.0);
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = _mm_set1_pd(fr->epsfac);
103     charge           = mdatoms->chargeA;
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     vftab            = kernel_data->table_vdw->data;
109     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
110
111     invsqrta         = fr->invsqrta;
112     dvda             = fr->dvda;
113     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
114     gbtab            = fr->gbtab.data;
115     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
116
117     /* Avoid stupid compiler warnings */
118     jnrA = jnrB = 0;
119     j_coord_offsetA = 0;
120     j_coord_offsetB = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm_setzero_pd();
143         fiy0             = _mm_setzero_pd();
144         fiz0             = _mm_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
148         isai0            = _mm_load1_pd(invsqrta+inr+0);
149         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
150
151         /* Reset potential sums */
152         velecsum         = _mm_setzero_pd();
153         vgbsum           = _mm_setzero_pd();
154         vvdwsum          = _mm_setzero_pd();
155         dvdasum          = _mm_setzero_pd();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166
167             /* load j atom coordinates */
168             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
169                                               &jx0,&jy0,&jz0);
170
171             /* Calculate displacement vector */
172             dx00             = _mm_sub_pd(ix0,jx0);
173             dy00             = _mm_sub_pd(iy0,jy0);
174             dz00             = _mm_sub_pd(iz0,jz0);
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
178
179             rinv00           = gmx_mm_invsqrt_pd(rsq00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
183             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             r00              = _mm_mul_pd(rsq00,rinv00);
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_pd(iq0,jq0);
195             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
197
198             /* Calculate table index by multiplying r with table scale and truncate to integer */
199             rt               = _mm_mul_pd(r00,vftabscale);
200             vfitab           = _mm_cvttpd_epi32(rt);
201 #ifdef __XOP__
202             vfeps            = _mm_frcz_pd(rt);
203 #else
204             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
205 #endif
206             twovfeps         = _mm_add_pd(vfeps,vfeps);
207             vfitab           = _mm_slli_epi32(vfitab,3);
208
209             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
210             isaprod          = _mm_mul_pd(isai0,isaj0);
211             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
212             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
213
214             /* Calculate generalized born table index - this is a separate table from the normal one,
215              * but we use the same procedure by multiplying r with scale and truncating to integer.
216              */
217             rt               = _mm_mul_pd(r00,gbscale);
218             gbitab           = _mm_cvttpd_epi32(rt);
219 #ifdef __XOP__
220             gbeps            = _mm_frcz_pd(rt);
221 #else
222             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
223 #endif
224             gbitab           = _mm_slli_epi32(gbitab,2);
225
226             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
227             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
228             GMX_MM_TRANSPOSE2_PD(Y,F);
229             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
230             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(G,H);
232             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
233             VV               = _mm_macc_pd(gbeps,Fp,Y);
234             vgb              = _mm_mul_pd(gbqqfactor,VV);
235
236             twogbeps         = _mm_add_pd(gbeps,gbeps);
237             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
238             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
239             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
240             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
241             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
242             velec            = _mm_mul_pd(qq00,rinv00);
243             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
244
245             /* CUBIC SPLINE TABLE DISPERSION */
246             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
247             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
248             GMX_MM_TRANSPOSE2_PD(Y,F);
249             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
250             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
251             GMX_MM_TRANSPOSE2_PD(G,H);
252             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
253             VV               = _mm_macc_pd(vfeps,Fp,Y);
254             vvdw6            = _mm_mul_pd(c6_00,VV);
255             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
256             fvdw6            = _mm_mul_pd(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             GMX_MM_TRANSPOSE2_PD(Y,F);
263             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
264             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
265             GMX_MM_TRANSPOSE2_PD(G,H);
266             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
267             VV               = _mm_macc_pd(vfeps,Fp,Y);
268             vvdw12           = _mm_mul_pd(c12_00,VV);
269             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
270             fvdw12           = _mm_mul_pd(c12_00,FF);
271             vvdw             = _mm_add_pd(vvdw12,vvdw6);
272             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm_add_pd(velecsum,velec);
276             vgbsum           = _mm_add_pd(vgbsum,vgb);
277             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
278
279             fscal            = _mm_add_pd(felec,fvdw);
280
281             /* Update vectorial force */
282             fix0             = _mm_macc_pd(dx00,fscal,fix0);
283             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
284             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
285             
286             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
287                                                    _mm_mul_pd(dx00,fscal),
288                                                    _mm_mul_pd(dy00,fscal),
289                                                    _mm_mul_pd(dz00,fscal));
290
291             /* Inner loop uses 95 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             jnrA             = jjnr[jidx];
298             j_coord_offsetA  = DIM*jnrA;
299
300             /* load j atom coordinates */
301             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
302                                               &jx0,&jy0,&jz0);
303
304             /* Calculate displacement vector */
305             dx00             = _mm_sub_pd(ix0,jx0);
306             dy00             = _mm_sub_pd(iy0,jy0);
307             dz00             = _mm_sub_pd(iz0,jz0);
308
309             /* Calculate squared distance and things based on it */
310             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
311
312             rinv00           = gmx_mm_invsqrt_pd(rsq00);
313
314             /* Load parameters for j particles */
315             jq0              = _mm_load_sd(charge+jnrA+0);
316             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
317             vdwjidx0A        = 2*vdwtype[jnrA+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm_mul_pd(rsq00,rinv00);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq00             = _mm_mul_pd(iq0,jq0);
327             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm_mul_pd(r00,vftabscale);
331             vfitab           = _mm_cvttpd_epi32(rt);
332 #ifdef __XOP__
333             vfeps            = _mm_frcz_pd(rt);
334 #else
335             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
336 #endif
337             twovfeps         = _mm_add_pd(vfeps,vfeps);
338             vfitab           = _mm_slli_epi32(vfitab,3);
339
340             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
341             isaprod          = _mm_mul_pd(isai0,isaj0);
342             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
343             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
344
345             /* Calculate generalized born table index - this is a separate table from the normal one,
346              * but we use the same procedure by multiplying r with scale and truncating to integer.
347              */
348             rt               = _mm_mul_pd(r00,gbscale);
349             gbitab           = _mm_cvttpd_epi32(rt);
350 #ifdef __XOP__
351             gbeps            = _mm_frcz_pd(rt);
352 #else
353             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
354 #endif
355             gbitab           = _mm_slli_epi32(gbitab,2);
356
357             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
358             F                = _mm_setzero_pd();
359             GMX_MM_TRANSPOSE2_PD(Y,F);
360             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
361             H                = _mm_setzero_pd();
362             GMX_MM_TRANSPOSE2_PD(G,H);
363             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
364             VV               = _mm_macc_pd(gbeps,Fp,Y);
365             vgb              = _mm_mul_pd(gbqqfactor,VV);
366
367             twogbeps         = _mm_add_pd(gbeps,gbeps);
368             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
369             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
370             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
371             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
372             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
373             velec            = _mm_mul_pd(qq00,rinv00);
374             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
375
376             /* CUBIC SPLINE TABLE DISPERSION */
377             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
378             F                = _mm_setzero_pd();
379             GMX_MM_TRANSPOSE2_PD(Y,F);
380             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
381             H                = _mm_setzero_pd();
382             GMX_MM_TRANSPOSE2_PD(G,H);
383             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
384             VV               = _mm_macc_pd(vfeps,Fp,Y);
385             vvdw6            = _mm_mul_pd(c6_00,VV);
386             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
387             fvdw6            = _mm_mul_pd(c6_00,FF);
388
389             /* CUBIC SPLINE TABLE REPULSION */
390             vfitab           = _mm_add_epi32(vfitab,ifour);
391             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
392             F                = _mm_setzero_pd();
393             GMX_MM_TRANSPOSE2_PD(Y,F);
394             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
395             H                = _mm_setzero_pd();
396             GMX_MM_TRANSPOSE2_PD(G,H);
397             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
398             VV               = _mm_macc_pd(vfeps,Fp,Y);
399             vvdw12           = _mm_mul_pd(c12_00,VV);
400             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
401             fvdw12           = _mm_mul_pd(c12_00,FF);
402             vvdw             = _mm_add_pd(vvdw12,vvdw6);
403             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
407             velecsum         = _mm_add_pd(velecsum,velec);
408             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
409             vgbsum           = _mm_add_pd(vgbsum,vgb);
410             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
411             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
412
413             fscal            = _mm_add_pd(felec,fvdw);
414
415             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
416
417             /* Update vectorial force */
418             fix0             = _mm_macc_pd(dx00,fscal,fix0);
419             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
420             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
421             
422             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
423                                                    _mm_mul_pd(dx00,fscal),
424                                                    _mm_mul_pd(dy00,fscal),
425                                                    _mm_mul_pd(dz00,fscal));
426
427             /* Inner loop uses 95 flops */
428         }
429
430         /* End of innermost loop */
431
432         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
433                                               f+i_coord_offset,fshift+i_shift_offset);
434
435         ggid                        = gid[iidx];
436         /* Update potential energies */
437         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
438         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
439         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
440         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
441         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
442
443         /* Increment number of inner iterations */
444         inneriter                  += j_index_end - j_index_start;
445
446         /* Outer loop uses 10 flops */
447     }
448
449     /* Increment number of outer iterations */
450     outeriter        += nri;
451
452     /* Update outer/inner flops */
453
454     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
455 }
456 /*
457  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
458  * Electrostatics interaction: GeneralizedBorn
459  * VdW interaction:            CubicSplineTable
460  * Geometry:                   Particle-Particle
461  * Calculate force/pot:        Force
462  */
463 void
464 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
465                     (t_nblist * gmx_restrict                nlist,
466                      rvec * gmx_restrict                    xx,
467                      rvec * gmx_restrict                    ff,
468                      t_forcerec * gmx_restrict              fr,
469                      t_mdatoms * gmx_restrict               mdatoms,
470                      nb_kernel_data_t * gmx_restrict        kernel_data,
471                      t_nrnb * gmx_restrict                  nrnb)
472 {
473     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
474      * just 0 for non-waters.
475      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
476      * jnr indices corresponding to data put in the four positions in the SIMD register.
477      */
478     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
479     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
480     int              jnrA,jnrB;
481     int              j_coord_offsetA,j_coord_offsetB;
482     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
483     real             rcutoff_scalar;
484     real             *shiftvec,*fshift,*x,*f;
485     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
486     int              vdwioffset0;
487     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
488     int              vdwjidx0A,vdwjidx0B;
489     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
490     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
491     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
492     real             *charge;
493     __m128i          gbitab;
494     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
495     __m128d          minushalf = _mm_set1_pd(-0.5);
496     real             *invsqrta,*dvda,*gbtab;
497     int              nvdwtype;
498     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
499     int              *vdwtype;
500     real             *vdwparam;
501     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
502     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
503     __m128i          vfitab;
504     __m128i          ifour       = _mm_set1_epi32(4);
505     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
506     real             *vftab;
507     __m128d          dummy_mask,cutoff_mask;
508     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
509     __m128d          one     = _mm_set1_pd(1.0);
510     __m128d          two     = _mm_set1_pd(2.0);
511     x                = xx[0];
512     f                = ff[0];
513
514     nri              = nlist->nri;
515     iinr             = nlist->iinr;
516     jindex           = nlist->jindex;
517     jjnr             = nlist->jjnr;
518     shiftidx         = nlist->shift;
519     gid              = nlist->gid;
520     shiftvec         = fr->shift_vec[0];
521     fshift           = fr->fshift[0];
522     facel            = _mm_set1_pd(fr->epsfac);
523     charge           = mdatoms->chargeA;
524     nvdwtype         = fr->ntype;
525     vdwparam         = fr->nbfp;
526     vdwtype          = mdatoms->typeA;
527
528     vftab            = kernel_data->table_vdw->data;
529     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
530
531     invsqrta         = fr->invsqrta;
532     dvda             = fr->dvda;
533     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
534     gbtab            = fr->gbtab.data;
535     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
536
537     /* Avoid stupid compiler warnings */
538     jnrA = jnrB = 0;
539     j_coord_offsetA = 0;
540     j_coord_offsetB = 0;
541
542     outeriter        = 0;
543     inneriter        = 0;
544
545     /* Start outer loop over neighborlists */
546     for(iidx=0; iidx<nri; iidx++)
547     {
548         /* Load shift vector for this list */
549         i_shift_offset   = DIM*shiftidx[iidx];
550
551         /* Load limits for loop over neighbors */
552         j_index_start    = jindex[iidx];
553         j_index_end      = jindex[iidx+1];
554
555         /* Get outer coordinate index */
556         inr              = iinr[iidx];
557         i_coord_offset   = DIM*inr;
558
559         /* Load i particle coords and add shift vector */
560         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
561
562         fix0             = _mm_setzero_pd();
563         fiy0             = _mm_setzero_pd();
564         fiz0             = _mm_setzero_pd();
565
566         /* Load parameters for i particles */
567         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
568         isai0            = _mm_load1_pd(invsqrta+inr+0);
569         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
570
571         dvdasum          = _mm_setzero_pd();
572
573         /* Start inner kernel loop */
574         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
575         {
576
577             /* Get j neighbor index, and coordinate index */
578             jnrA             = jjnr[jidx];
579             jnrB             = jjnr[jidx+1];
580             j_coord_offsetA  = DIM*jnrA;
581             j_coord_offsetB  = DIM*jnrB;
582
583             /* load j atom coordinates */
584             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm_sub_pd(ix0,jx0);
589             dy00             = _mm_sub_pd(iy0,jy0);
590             dz00             = _mm_sub_pd(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm_invsqrt_pd(rsq00);
596
597             /* Load parameters for j particles */
598             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
599             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
600             vdwjidx0A        = 2*vdwtype[jnrA+0];
601             vdwjidx0B        = 2*vdwtype[jnrB+0];
602
603             /**************************
604              * CALCULATE INTERACTIONS *
605              **************************/
606
607             r00              = _mm_mul_pd(rsq00,rinv00);
608
609             /* Compute parameters for interactions between i and j atoms */
610             qq00             = _mm_mul_pd(iq0,jq0);
611             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
612                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
613
614             /* Calculate table index by multiplying r with table scale and truncate to integer */
615             rt               = _mm_mul_pd(r00,vftabscale);
616             vfitab           = _mm_cvttpd_epi32(rt);
617 #ifdef __XOP__
618             vfeps            = _mm_frcz_pd(rt);
619 #else
620             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
621 #endif
622             twovfeps         = _mm_add_pd(vfeps,vfeps);
623             vfitab           = _mm_slli_epi32(vfitab,3);
624
625             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
626             isaprod          = _mm_mul_pd(isai0,isaj0);
627             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
628             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
629
630             /* Calculate generalized born table index - this is a separate table from the normal one,
631              * but we use the same procedure by multiplying r with scale and truncating to integer.
632              */
633             rt               = _mm_mul_pd(r00,gbscale);
634             gbitab           = _mm_cvttpd_epi32(rt);
635 #ifdef __XOP__
636             gbeps            = _mm_frcz_pd(rt);
637 #else
638             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
639 #endif
640             gbitab           = _mm_slli_epi32(gbitab,2);
641
642             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
643             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
644             GMX_MM_TRANSPOSE2_PD(Y,F);
645             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
646             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
647             GMX_MM_TRANSPOSE2_PD(G,H);
648             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
649             VV               = _mm_macc_pd(gbeps,Fp,Y);
650             vgb              = _mm_mul_pd(gbqqfactor,VV);
651
652             twogbeps         = _mm_add_pd(gbeps,gbeps);
653             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
654             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
655             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
656             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
657             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
658             velec            = _mm_mul_pd(qq00,rinv00);
659             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
660
661             /* CUBIC SPLINE TABLE DISPERSION */
662             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
663             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
664             GMX_MM_TRANSPOSE2_PD(Y,F);
665             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
666             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
667             GMX_MM_TRANSPOSE2_PD(G,H);
668             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
669             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
670             fvdw6            = _mm_mul_pd(c6_00,FF);
671
672             /* CUBIC SPLINE TABLE REPULSION */
673             vfitab           = _mm_add_epi32(vfitab,ifour);
674             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
675             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
676             GMX_MM_TRANSPOSE2_PD(Y,F);
677             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
678             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
679             GMX_MM_TRANSPOSE2_PD(G,H);
680             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
681             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
682             fvdw12           = _mm_mul_pd(c12_00,FF);
683             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
684
685             fscal            = _mm_add_pd(felec,fvdw);
686
687             /* Update vectorial force */
688             fix0             = _mm_macc_pd(dx00,fscal,fix0);
689             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
690             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
691             
692             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
693                                                    _mm_mul_pd(dx00,fscal),
694                                                    _mm_mul_pd(dy00,fscal),
695                                                    _mm_mul_pd(dz00,fscal));
696
697             /* Inner loop uses 85 flops */
698         }
699
700         if(jidx<j_index_end)
701         {
702
703             jnrA             = jjnr[jidx];
704             j_coord_offsetA  = DIM*jnrA;
705
706             /* load j atom coordinates */
707             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
708                                               &jx0,&jy0,&jz0);
709
710             /* Calculate displacement vector */
711             dx00             = _mm_sub_pd(ix0,jx0);
712             dy00             = _mm_sub_pd(iy0,jy0);
713             dz00             = _mm_sub_pd(iz0,jz0);
714
715             /* Calculate squared distance and things based on it */
716             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
717
718             rinv00           = gmx_mm_invsqrt_pd(rsq00);
719
720             /* Load parameters for j particles */
721             jq0              = _mm_load_sd(charge+jnrA+0);
722             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
723             vdwjidx0A        = 2*vdwtype[jnrA+0];
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             r00              = _mm_mul_pd(rsq00,rinv00);
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq00             = _mm_mul_pd(iq0,jq0);
733             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
734
735             /* Calculate table index by multiplying r with table scale and truncate to integer */
736             rt               = _mm_mul_pd(r00,vftabscale);
737             vfitab           = _mm_cvttpd_epi32(rt);
738 #ifdef __XOP__
739             vfeps            = _mm_frcz_pd(rt);
740 #else
741             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
742 #endif
743             twovfeps         = _mm_add_pd(vfeps,vfeps);
744             vfitab           = _mm_slli_epi32(vfitab,3);
745
746             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
747             isaprod          = _mm_mul_pd(isai0,isaj0);
748             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
749             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
750
751             /* Calculate generalized born table index - this is a separate table from the normal one,
752              * but we use the same procedure by multiplying r with scale and truncating to integer.
753              */
754             rt               = _mm_mul_pd(r00,gbscale);
755             gbitab           = _mm_cvttpd_epi32(rt);
756 #ifdef __XOP__
757             gbeps            = _mm_frcz_pd(rt);
758 #else
759             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
760 #endif
761             gbitab           = _mm_slli_epi32(gbitab,2);
762
763             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
764             F                = _mm_setzero_pd();
765             GMX_MM_TRANSPOSE2_PD(Y,F);
766             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
767             H                = _mm_setzero_pd();
768             GMX_MM_TRANSPOSE2_PD(G,H);
769             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
770             VV               = _mm_macc_pd(gbeps,Fp,Y);
771             vgb              = _mm_mul_pd(gbqqfactor,VV);
772
773             twogbeps         = _mm_add_pd(gbeps,gbeps);
774             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
775             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
776             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
777             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
778             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
779             velec            = _mm_mul_pd(qq00,rinv00);
780             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
781
782             /* CUBIC SPLINE TABLE DISPERSION */
783             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
784             F                = _mm_setzero_pd();
785             GMX_MM_TRANSPOSE2_PD(Y,F);
786             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
787             H                = _mm_setzero_pd();
788             GMX_MM_TRANSPOSE2_PD(G,H);
789             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
790             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
791             fvdw6            = _mm_mul_pd(c6_00,FF);
792
793             /* CUBIC SPLINE TABLE REPULSION */
794             vfitab           = _mm_add_epi32(vfitab,ifour);
795             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
796             F                = _mm_setzero_pd();
797             GMX_MM_TRANSPOSE2_PD(Y,F);
798             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
799             H                = _mm_setzero_pd();
800             GMX_MM_TRANSPOSE2_PD(G,H);
801             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
802             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
803             fvdw12           = _mm_mul_pd(c12_00,FF);
804             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
805
806             fscal            = _mm_add_pd(felec,fvdw);
807
808             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
809
810             /* Update vectorial force */
811             fix0             = _mm_macc_pd(dx00,fscal,fix0);
812             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
813             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
814             
815             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
816                                                    _mm_mul_pd(dx00,fscal),
817                                                    _mm_mul_pd(dy00,fscal),
818                                                    _mm_mul_pd(dz00,fscal));
819
820             /* Inner loop uses 85 flops */
821         }
822
823         /* End of innermost loop */
824
825         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
826                                               f+i_coord_offset,fshift+i_shift_offset);
827
828         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
829         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
830
831         /* Increment number of inner iterations */
832         inneriter                  += j_index_end - j_index_start;
833
834         /* Outer loop uses 7 flops */
835     }
836
837     /* Increment number of outer iterations */
838     outeriter        += nri;
839
840     /* Update outer/inner flops */
841
842     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
843 }