Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          gbitab;
90     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
91     __m128d          minushalf = _mm_set1_pd(-0.5);
92     real             *invsqrta,*dvda,*gbtab;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
126
127     invsqrta         = fr->invsqrta;
128     dvda             = fr->dvda;
129     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
130     gbtab            = fr->gbtab.data;
131     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         isai0            = _mm_load1_pd(invsqrta+inr+0);
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_pd();
169         vgbsum           = _mm_setzero_pd();
170         vvdwsum          = _mm_setzero_pd();
171         dvdasum          = _mm_setzero_pd();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182
183             /* load j atom coordinates */
184             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                               &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm_sub_pd(ix0,jx0);
189             dy00             = _mm_sub_pd(iy0,jy0);
190             dz00             = _mm_sub_pd(iz0,jz0);
191
192             /* Calculate squared distance and things based on it */
193             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
194
195             rinv00           = gmx_mm_invsqrt_pd(rsq00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
199             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             r00              = _mm_mul_pd(rsq00,rinv00);
208
209             /* Compute parameters for interactions between i and j atoms */
210             qq00             = _mm_mul_pd(iq0,jq0);
211             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
212                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
213
214             /* Calculate table index by multiplying r with table scale and truncate to integer */
215             rt               = _mm_mul_pd(r00,vftabscale);
216             vfitab           = _mm_cvttpd_epi32(rt);
217 #ifdef __XOP__
218             vfeps            = _mm_frcz_pd(rt);
219 #else
220             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
221 #endif
222             twovfeps         = _mm_add_pd(vfeps,vfeps);
223             vfitab           = _mm_slli_epi32(vfitab,3);
224
225             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
226             isaprod          = _mm_mul_pd(isai0,isaj0);
227             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
228             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
229
230             /* Calculate generalized born table index - this is a separate table from the normal one,
231              * but we use the same procedure by multiplying r with scale and truncating to integer.
232              */
233             rt               = _mm_mul_pd(r00,gbscale);
234             gbitab           = _mm_cvttpd_epi32(rt);
235 #ifdef __XOP__
236             gbeps            = _mm_frcz_pd(rt);
237 #else
238             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
239 #endif
240             gbitab           = _mm_slli_epi32(gbitab,2);
241
242             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
243             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
244             GMX_MM_TRANSPOSE2_PD(Y,F);
245             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
246             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
247             GMX_MM_TRANSPOSE2_PD(G,H);
248             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
249             VV               = _mm_macc_pd(gbeps,Fp,Y);
250             vgb              = _mm_mul_pd(gbqqfactor,VV);
251
252             twogbeps         = _mm_add_pd(gbeps,gbeps);
253             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
254             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
255             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
256             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
257             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
258             velec            = _mm_mul_pd(qq00,rinv00);
259             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw6            = _mm_mul_pd(c6_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw6            = _mm_mul_pd(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             GMX_MM_TRANSPOSE2_PD(Y,F);
279             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
280             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
281             GMX_MM_TRANSPOSE2_PD(G,H);
282             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
283             VV               = _mm_macc_pd(vfeps,Fp,Y);
284             vvdw12           = _mm_mul_pd(c12_00,VV);
285             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
286             fvdw12           = _mm_mul_pd(c12_00,FF);
287             vvdw             = _mm_add_pd(vvdw12,vvdw6);
288             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velecsum         = _mm_add_pd(velecsum,velec);
292             vgbsum           = _mm_add_pd(vgbsum,vgb);
293             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
294
295             fscal            = _mm_add_pd(felec,fvdw);
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
303                                                    _mm_mul_pd(dx00,fscal),
304                                                    _mm_mul_pd(dy00,fscal),
305                                                    _mm_mul_pd(dz00,fscal));
306
307             /* Inner loop uses 95 flops */
308         }
309
310         if(jidx<j_index_end)
311         {
312
313             jnrA             = jjnr[jidx];
314             j_coord_offsetA  = DIM*jnrA;
315
316             /* load j atom coordinates */
317             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
318                                               &jx0,&jy0,&jz0);
319
320             /* Calculate displacement vector */
321             dx00             = _mm_sub_pd(ix0,jx0);
322             dy00             = _mm_sub_pd(iy0,jy0);
323             dz00             = _mm_sub_pd(iz0,jz0);
324
325             /* Calculate squared distance and things based on it */
326             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
327
328             rinv00           = gmx_mm_invsqrt_pd(rsq00);
329
330             /* Load parameters for j particles */
331             jq0              = _mm_load_sd(charge+jnrA+0);
332             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             r00              = _mm_mul_pd(rsq00,rinv00);
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq00             = _mm_mul_pd(iq0,jq0);
343             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
344
345             /* Calculate table index by multiplying r with table scale and truncate to integer */
346             rt               = _mm_mul_pd(r00,vftabscale);
347             vfitab           = _mm_cvttpd_epi32(rt);
348 #ifdef __XOP__
349             vfeps            = _mm_frcz_pd(rt);
350 #else
351             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
352 #endif
353             twovfeps         = _mm_add_pd(vfeps,vfeps);
354             vfitab           = _mm_slli_epi32(vfitab,3);
355
356             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
357             isaprod          = _mm_mul_pd(isai0,isaj0);
358             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
359             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
360
361             /* Calculate generalized born table index - this is a separate table from the normal one,
362              * but we use the same procedure by multiplying r with scale and truncating to integer.
363              */
364             rt               = _mm_mul_pd(r00,gbscale);
365             gbitab           = _mm_cvttpd_epi32(rt);
366 #ifdef __XOP__
367             gbeps            = _mm_frcz_pd(rt);
368 #else
369             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
370 #endif
371             gbitab           = _mm_slli_epi32(gbitab,2);
372
373             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
374             F                = _mm_setzero_pd();
375             GMX_MM_TRANSPOSE2_PD(Y,F);
376             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
377             H                = _mm_setzero_pd();
378             GMX_MM_TRANSPOSE2_PD(G,H);
379             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
380             VV               = _mm_macc_pd(gbeps,Fp,Y);
381             vgb              = _mm_mul_pd(gbqqfactor,VV);
382
383             twogbeps         = _mm_add_pd(gbeps,gbeps);
384             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
385             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
386             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
387             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
388             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
389             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
390             velec            = _mm_mul_pd(qq00,rinv00);
391             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
392
393             /* CUBIC SPLINE TABLE DISPERSION */
394             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
395             F                = _mm_setzero_pd();
396             GMX_MM_TRANSPOSE2_PD(Y,F);
397             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
398             H                = _mm_setzero_pd();
399             GMX_MM_TRANSPOSE2_PD(G,H);
400             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
401             VV               = _mm_macc_pd(vfeps,Fp,Y);
402             vvdw6            = _mm_mul_pd(c6_00,VV);
403             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
404             fvdw6            = _mm_mul_pd(c6_00,FF);
405
406             /* CUBIC SPLINE TABLE REPULSION */
407             vfitab           = _mm_add_epi32(vfitab,ifour);
408             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
409             F                = _mm_setzero_pd();
410             GMX_MM_TRANSPOSE2_PD(Y,F);
411             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
412             H                = _mm_setzero_pd();
413             GMX_MM_TRANSPOSE2_PD(G,H);
414             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
415             VV               = _mm_macc_pd(vfeps,Fp,Y);
416             vvdw12           = _mm_mul_pd(c12_00,VV);
417             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
418             fvdw12           = _mm_mul_pd(c12_00,FF);
419             vvdw             = _mm_add_pd(vvdw12,vvdw6);
420             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
421
422             /* Update potential sum for this i atom from the interaction with this j atom. */
423             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
424             velecsum         = _mm_add_pd(velecsum,velec);
425             vgb              = _mm_unpacklo_pd(vgb,_mm_setzero_pd());
426             vgbsum           = _mm_add_pd(vgbsum,vgb);
427             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
428             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
429
430             fscal            = _mm_add_pd(felec,fvdw);
431
432             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
433
434             /* Update vectorial force */
435             fix0             = _mm_macc_pd(dx00,fscal,fix0);
436             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
437             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
438             
439             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
440                                                    _mm_mul_pd(dx00,fscal),
441                                                    _mm_mul_pd(dy00,fscal),
442                                                    _mm_mul_pd(dz00,fscal));
443
444             /* Inner loop uses 95 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
450                                               f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
456         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
457         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
458         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
459
460         /* Increment number of inner iterations */
461         inneriter                  += j_index_end - j_index_start;
462
463         /* Outer loop uses 10 flops */
464     }
465
466     /* Increment number of outer iterations */
467     outeriter        += nri;
468
469     /* Update outer/inner flops */
470
471     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*95);
472 }
473 /*
474  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
475  * Electrostatics interaction: GeneralizedBorn
476  * VdW interaction:            CubicSplineTable
477  * Geometry:                   Particle-Particle
478  * Calculate force/pot:        Force
479  */
480 void
481 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_128_fma_double
482                     (t_nblist                    * gmx_restrict       nlist,
483                      rvec                        * gmx_restrict          xx,
484                      rvec                        * gmx_restrict          ff,
485                      t_forcerec                  * gmx_restrict          fr,
486                      t_mdatoms                   * gmx_restrict     mdatoms,
487                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
488                      t_nrnb                      * gmx_restrict        nrnb)
489 {
490     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
491      * just 0 for non-waters.
492      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
493      * jnr indices corresponding to data put in the four positions in the SIMD register.
494      */
495     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
496     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
497     int              jnrA,jnrB;
498     int              j_coord_offsetA,j_coord_offsetB;
499     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
500     real             rcutoff_scalar;
501     real             *shiftvec,*fshift,*x,*f;
502     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B;
506     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     __m128i          gbitab;
511     __m128d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,twogbeps,dvdatmp;
512     __m128d          minushalf = _mm_set1_pd(-0.5);
513     real             *invsqrta,*dvda,*gbtab;
514     int              nvdwtype;
515     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
516     int              *vdwtype;
517     real             *vdwparam;
518     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
519     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
520     __m128i          vfitab;
521     __m128i          ifour       = _mm_set1_epi32(4);
522     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
523     real             *vftab;
524     __m128d          dummy_mask,cutoff_mask;
525     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
526     __m128d          one     = _mm_set1_pd(1.0);
527     __m128d          two     = _mm_set1_pd(2.0);
528     x                = xx[0];
529     f                = ff[0];
530
531     nri              = nlist->nri;
532     iinr             = nlist->iinr;
533     jindex           = nlist->jindex;
534     jjnr             = nlist->jjnr;
535     shiftidx         = nlist->shift;
536     gid              = nlist->gid;
537     shiftvec         = fr->shift_vec[0];
538     fshift           = fr->fshift[0];
539     facel            = _mm_set1_pd(fr->epsfac);
540     charge           = mdatoms->chargeA;
541     nvdwtype         = fr->ntype;
542     vdwparam         = fr->nbfp;
543     vdwtype          = mdatoms->typeA;
544
545     vftab            = kernel_data->table_vdw->data;
546     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
547
548     invsqrta         = fr->invsqrta;
549     dvda             = fr->dvda;
550     gbtabscale       = _mm_set1_pd(fr->gbtab.scale);
551     gbtab            = fr->gbtab.data;
552     gbinvepsdiff     = _mm_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
553
554     /* Avoid stupid compiler warnings */
555     jnrA = jnrB = 0;
556     j_coord_offsetA = 0;
557     j_coord_offsetB = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     /* Start outer loop over neighborlists */
563     for(iidx=0; iidx<nri; iidx++)
564     {
565         /* Load shift vector for this list */
566         i_shift_offset   = DIM*shiftidx[iidx];
567
568         /* Load limits for loop over neighbors */
569         j_index_start    = jindex[iidx];
570         j_index_end      = jindex[iidx+1];
571
572         /* Get outer coordinate index */
573         inr              = iinr[iidx];
574         i_coord_offset   = DIM*inr;
575
576         /* Load i particle coords and add shift vector */
577         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
578
579         fix0             = _mm_setzero_pd();
580         fiy0             = _mm_setzero_pd();
581         fiz0             = _mm_setzero_pd();
582
583         /* Load parameters for i particles */
584         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
585         isai0            = _mm_load1_pd(invsqrta+inr+0);
586         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
587
588         dvdasum          = _mm_setzero_pd();
589
590         /* Start inner kernel loop */
591         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
592         {
593
594             /* Get j neighbor index, and coordinate index */
595             jnrA             = jjnr[jidx];
596             jnrB             = jjnr[jidx+1];
597             j_coord_offsetA  = DIM*jnrA;
598             j_coord_offsetB  = DIM*jnrB;
599
600             /* load j atom coordinates */
601             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
602                                               &jx0,&jy0,&jz0);
603
604             /* Calculate displacement vector */
605             dx00             = _mm_sub_pd(ix0,jx0);
606             dy00             = _mm_sub_pd(iy0,jy0);
607             dz00             = _mm_sub_pd(iz0,jz0);
608
609             /* Calculate squared distance and things based on it */
610             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
611
612             rinv00           = gmx_mm_invsqrt_pd(rsq00);
613
614             /* Load parameters for j particles */
615             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
616             isaj0            = gmx_mm_load_2real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0);
617             vdwjidx0A        = 2*vdwtype[jnrA+0];
618             vdwjidx0B        = 2*vdwtype[jnrB+0];
619
620             /**************************
621              * CALCULATE INTERACTIONS *
622              **************************/
623
624             r00              = _mm_mul_pd(rsq00,rinv00);
625
626             /* Compute parameters for interactions between i and j atoms */
627             qq00             = _mm_mul_pd(iq0,jq0);
628             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
629                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
630
631             /* Calculate table index by multiplying r with table scale and truncate to integer */
632             rt               = _mm_mul_pd(r00,vftabscale);
633             vfitab           = _mm_cvttpd_epi32(rt);
634 #ifdef __XOP__
635             vfeps            = _mm_frcz_pd(rt);
636 #else
637             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
638 #endif
639             twovfeps         = _mm_add_pd(vfeps,vfeps);
640             vfitab           = _mm_slli_epi32(vfitab,3);
641
642             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
643             isaprod          = _mm_mul_pd(isai0,isaj0);
644             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
645             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
646
647             /* Calculate generalized born table index - this is a separate table from the normal one,
648              * but we use the same procedure by multiplying r with scale and truncating to integer.
649              */
650             rt               = _mm_mul_pd(r00,gbscale);
651             gbitab           = _mm_cvttpd_epi32(rt);
652 #ifdef __XOP__
653             gbeps            = _mm_frcz_pd(rt);
654 #else
655             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
656 #endif
657             gbitab           = _mm_slli_epi32(gbitab,2);
658
659             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
660             F                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
661             GMX_MM_TRANSPOSE2_PD(Y,F);
662             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
663             H                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,1) +2);
664             GMX_MM_TRANSPOSE2_PD(G,H);
665             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
666             VV               = _mm_macc_pd(gbeps,Fp,Y);
667             vgb              = _mm_mul_pd(gbqqfactor,VV);
668
669             twogbeps         = _mm_add_pd(gbeps,gbeps);
670             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
671             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
672             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
673             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
674             gmx_mm_increment_2real_swizzle_pd(dvda+jnrA,dvda+jnrB,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
675             velec            = _mm_mul_pd(qq00,rinv00);
676             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
677
678             /* CUBIC SPLINE TABLE DISPERSION */
679             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
680             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
681             GMX_MM_TRANSPOSE2_PD(Y,F);
682             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
683             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
684             GMX_MM_TRANSPOSE2_PD(G,H);
685             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
686             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
687             fvdw6            = _mm_mul_pd(c6_00,FF);
688
689             /* CUBIC SPLINE TABLE REPULSION */
690             vfitab           = _mm_add_epi32(vfitab,ifour);
691             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
692             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
693             GMX_MM_TRANSPOSE2_PD(Y,F);
694             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
695             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
696             GMX_MM_TRANSPOSE2_PD(G,H);
697             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
698             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
699             fvdw12           = _mm_mul_pd(c12_00,FF);
700             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
701
702             fscal            = _mm_add_pd(felec,fvdw);
703
704             /* Update vectorial force */
705             fix0             = _mm_macc_pd(dx00,fscal,fix0);
706             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
707             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
708             
709             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
710                                                    _mm_mul_pd(dx00,fscal),
711                                                    _mm_mul_pd(dy00,fscal),
712                                                    _mm_mul_pd(dz00,fscal));
713
714             /* Inner loop uses 85 flops */
715         }
716
717         if(jidx<j_index_end)
718         {
719
720             jnrA             = jjnr[jidx];
721             j_coord_offsetA  = DIM*jnrA;
722
723             /* load j atom coordinates */
724             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
725                                               &jx0,&jy0,&jz0);
726
727             /* Calculate displacement vector */
728             dx00             = _mm_sub_pd(ix0,jx0);
729             dy00             = _mm_sub_pd(iy0,jy0);
730             dz00             = _mm_sub_pd(iz0,jz0);
731
732             /* Calculate squared distance and things based on it */
733             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
734
735             rinv00           = gmx_mm_invsqrt_pd(rsq00);
736
737             /* Load parameters for j particles */
738             jq0              = _mm_load_sd(charge+jnrA+0);
739             isaj0            = _mm_load_sd(invsqrta+jnrA+0);
740             vdwjidx0A        = 2*vdwtype[jnrA+0];
741
742             /**************************
743              * CALCULATE INTERACTIONS *
744              **************************/
745
746             r00              = _mm_mul_pd(rsq00,rinv00);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq00             = _mm_mul_pd(iq0,jq0);
750             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
751
752             /* Calculate table index by multiplying r with table scale and truncate to integer */
753             rt               = _mm_mul_pd(r00,vftabscale);
754             vfitab           = _mm_cvttpd_epi32(rt);
755 #ifdef __XOP__
756             vfeps            = _mm_frcz_pd(rt);
757 #else
758             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
759 #endif
760             twovfeps         = _mm_add_pd(vfeps,vfeps);
761             vfitab           = _mm_slli_epi32(vfitab,3);
762
763             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
764             isaprod          = _mm_mul_pd(isai0,isaj0);
765             gbqqfactor       = _mm_xor_pd(signbit,_mm_mul_pd(qq00,_mm_mul_pd(isaprod,gbinvepsdiff)));
766             gbscale          = _mm_mul_pd(isaprod,gbtabscale);
767
768             /* Calculate generalized born table index - this is a separate table from the normal one,
769              * but we use the same procedure by multiplying r with scale and truncating to integer.
770              */
771             rt               = _mm_mul_pd(r00,gbscale);
772             gbitab           = _mm_cvttpd_epi32(rt);
773 #ifdef __XOP__
774             gbeps            = _mm_frcz_pd(rt);
775 #else
776             gbeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
777 #endif
778             gbitab           = _mm_slli_epi32(gbitab,2);
779
780             Y                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
781             F                = _mm_setzero_pd();
782             GMX_MM_TRANSPOSE2_PD(Y,F);
783             G                = _mm_load_pd( gbtab + _mm_extract_epi32(gbitab,0) +2);
784             H                = _mm_setzero_pd();
785             GMX_MM_TRANSPOSE2_PD(G,H);
786             Fp               = _mm_macc_pd(gbeps,_mm_macc_pd(gbeps,H,G),F);
787             VV               = _mm_macc_pd(gbeps,Fp,Y);
788             vgb              = _mm_mul_pd(gbqqfactor,VV);
789
790             twogbeps         = _mm_add_pd(gbeps,gbeps);
791             FF               = _mm_macc_pd(_mm_macc_pd(twogbeps,H,G),gbeps,Fp);
792             fgb              = _mm_mul_pd(gbqqfactor,_mm_mul_pd(FF,gbscale));
793             dvdatmp          = _mm_mul_pd(minushalf,_mm_macc_pd(fgb,r00,vgb));
794             dvdatmp          = _mm_unpacklo_pd(dvdatmp,_mm_setzero_pd());
795             dvdasum          = _mm_add_pd(dvdasum,dvdatmp);
796             gmx_mm_increment_1real_pd(dvda+jnrA,_mm_mul_pd(dvdatmp,_mm_mul_pd(isaj0,isaj0)));
797             velec            = _mm_mul_pd(qq00,rinv00);
798             felec            = _mm_mul_pd(_mm_msub_pd(velec,rinv00,fgb),rinv00);
799
800             /* CUBIC SPLINE TABLE DISPERSION */
801             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
802             F                = _mm_setzero_pd();
803             GMX_MM_TRANSPOSE2_PD(Y,F);
804             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
805             H                = _mm_setzero_pd();
806             GMX_MM_TRANSPOSE2_PD(G,H);
807             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
808             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
809             fvdw6            = _mm_mul_pd(c6_00,FF);
810
811             /* CUBIC SPLINE TABLE REPULSION */
812             vfitab           = _mm_add_epi32(vfitab,ifour);
813             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
814             F                = _mm_setzero_pd();
815             GMX_MM_TRANSPOSE2_PD(Y,F);
816             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
817             H                = _mm_setzero_pd();
818             GMX_MM_TRANSPOSE2_PD(G,H);
819             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
820             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
821             fvdw12           = _mm_mul_pd(c12_00,FF);
822             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
823
824             fscal            = _mm_add_pd(felec,fvdw);
825
826             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
827
828             /* Update vectorial force */
829             fix0             = _mm_macc_pd(dx00,fscal,fix0);
830             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
831             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
832             
833             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
834                                                    _mm_mul_pd(dx00,fscal),
835                                                    _mm_mul_pd(dy00,fscal),
836                                                    _mm_mul_pd(dz00,fscal));
837
838             /* Inner loop uses 85 flops */
839         }
840
841         /* End of innermost loop */
842
843         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
844                                               f+i_coord_offset,fshift+i_shift_offset);
845
846         dvdasum = _mm_mul_pd(dvdasum, _mm_mul_pd(isai0,isai0));
847         gmx_mm_update_1pot_pd(dvdasum,dvda+inr);
848
849         /* Increment number of inner iterations */
850         inneriter                  += j_index_end - j_index_start;
851
852         /* Outer loop uses 7 flops */
853     }
854
855     /* Increment number of outer iterations */
856     outeriter        += nri;
857
858     /* Update outer/inner flops */
859
860     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*85);
861 }