Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomW4W4_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Water4
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     int              vdwjidx3A,vdwjidx3B;
93     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
94     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
95     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
96     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
97     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
98     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
99     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
100     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
101     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
102     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
136
137     jq1              = _mm_set1_pd(charge[inr+1]);
138     jq2              = _mm_set1_pd(charge[inr+2]);
139     jq3              = _mm_set1_pd(charge[inr+3]);
140     qq11             = _mm_mul_pd(iq1,jq1);
141     qq12             = _mm_mul_pd(iq1,jq2);
142     qq13             = _mm_mul_pd(iq1,jq3);
143     qq21             = _mm_mul_pd(iq2,jq1);
144     qq22             = _mm_mul_pd(iq2,jq2);
145     qq23             = _mm_mul_pd(iq2,jq3);
146     qq31             = _mm_mul_pd(iq3,jq1);
147     qq32             = _mm_mul_pd(iq3,jq2);
148     qq33             = _mm_mul_pd(iq3,jq3);
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
174                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix1             = _mm_setzero_pd();
177         fiy1             = _mm_setzero_pd();
178         fiz1             = _mm_setzero_pd();
179         fix2             = _mm_setzero_pd();
180         fiy2             = _mm_setzero_pd();
181         fiz2             = _mm_setzero_pd();
182         fix3             = _mm_setzero_pd();
183         fiy3             = _mm_setzero_pd();
184         fiz3             = _mm_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_pd();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198
199             /* load j atom coordinates */
200             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
201                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
202
203             /* Calculate displacement vector */
204             dx11             = _mm_sub_pd(ix1,jx1);
205             dy11             = _mm_sub_pd(iy1,jy1);
206             dz11             = _mm_sub_pd(iz1,jz1);
207             dx12             = _mm_sub_pd(ix1,jx2);
208             dy12             = _mm_sub_pd(iy1,jy2);
209             dz12             = _mm_sub_pd(iz1,jz2);
210             dx13             = _mm_sub_pd(ix1,jx3);
211             dy13             = _mm_sub_pd(iy1,jy3);
212             dz13             = _mm_sub_pd(iz1,jz3);
213             dx21             = _mm_sub_pd(ix2,jx1);
214             dy21             = _mm_sub_pd(iy2,jy1);
215             dz21             = _mm_sub_pd(iz2,jz1);
216             dx22             = _mm_sub_pd(ix2,jx2);
217             dy22             = _mm_sub_pd(iy2,jy2);
218             dz22             = _mm_sub_pd(iz2,jz2);
219             dx23             = _mm_sub_pd(ix2,jx3);
220             dy23             = _mm_sub_pd(iy2,jy3);
221             dz23             = _mm_sub_pd(iz2,jz3);
222             dx31             = _mm_sub_pd(ix3,jx1);
223             dy31             = _mm_sub_pd(iy3,jy1);
224             dz31             = _mm_sub_pd(iz3,jz1);
225             dx32             = _mm_sub_pd(ix3,jx2);
226             dy32             = _mm_sub_pd(iy3,jy2);
227             dz32             = _mm_sub_pd(iz3,jz2);
228             dx33             = _mm_sub_pd(ix3,jx3);
229             dy33             = _mm_sub_pd(iy3,jy3);
230             dz33             = _mm_sub_pd(iz3,jz3);
231
232             /* Calculate squared distance and things based on it */
233             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
234             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
235             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
236             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
237             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
238             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
239             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
240             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
241             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
242
243             rinv11           = gmx_mm_invsqrt_pd(rsq11);
244             rinv12           = gmx_mm_invsqrt_pd(rsq12);
245             rinv13           = gmx_mm_invsqrt_pd(rsq13);
246             rinv21           = gmx_mm_invsqrt_pd(rsq21);
247             rinv22           = gmx_mm_invsqrt_pd(rsq22);
248             rinv23           = gmx_mm_invsqrt_pd(rsq23);
249             rinv31           = gmx_mm_invsqrt_pd(rsq31);
250             rinv32           = gmx_mm_invsqrt_pd(rsq32);
251             rinv33           = gmx_mm_invsqrt_pd(rsq33);
252
253             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
254             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
255             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
256             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
257             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
258             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
259             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
260             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
261             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
262
263             fjx1             = _mm_setzero_pd();
264             fjy1             = _mm_setzero_pd();
265             fjz1             = _mm_setzero_pd();
266             fjx2             = _mm_setzero_pd();
267             fjy2             = _mm_setzero_pd();
268             fjz2             = _mm_setzero_pd();
269             fjx3             = _mm_setzero_pd();
270             fjy3             = _mm_setzero_pd();
271             fjz3             = _mm_setzero_pd();
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             r11              = _mm_mul_pd(rsq11,rinv11);
278
279             /* EWALD ELECTROSTATICS */
280
281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282             ewrt             = _mm_mul_pd(r11,ewtabscale);
283             ewitab           = _mm_cvttpd_epi32(ewrt);
284 #ifdef __XOP__
285             eweps            = _mm_frcz_pd(ewrt);
286 #else
287             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
288 #endif
289             twoeweps         = _mm_add_pd(eweps,eweps);
290             ewitab           = _mm_slli_epi32(ewitab,2);
291             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
292             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
293             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
294             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
295             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
296             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
297             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
298             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
299             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
300             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_pd(velecsum,velec);
304
305             fscal            = felec;
306
307             /* Update vectorial force */
308             fix1             = _mm_macc_pd(dx11,fscal,fix1);
309             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
310             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
311             
312             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
313             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
314             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r12              = _mm_mul_pd(rsq12,rinv12);
321
322             /* EWALD ELECTROSTATICS */
323
324             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325             ewrt             = _mm_mul_pd(r12,ewtabscale);
326             ewitab           = _mm_cvttpd_epi32(ewrt);
327 #ifdef __XOP__
328             eweps            = _mm_frcz_pd(ewrt);
329 #else
330             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
331 #endif
332             twoeweps         = _mm_add_pd(eweps,eweps);
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
336             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
337             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
338             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
339             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
340             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
341             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
342             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
343             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velecsum         = _mm_add_pd(velecsum,velec);
347
348             fscal            = felec;
349
350             /* Update vectorial force */
351             fix1             = _mm_macc_pd(dx12,fscal,fix1);
352             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
353             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
354             
355             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
356             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
357             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             r13              = _mm_mul_pd(rsq13,rinv13);
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = _mm_mul_pd(r13,ewtabscale);
369             ewitab           = _mm_cvttpd_epi32(ewrt);
370 #ifdef __XOP__
371             eweps            = _mm_frcz_pd(ewrt);
372 #else
373             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
374 #endif
375             twoeweps         = _mm_add_pd(eweps,eweps);
376             ewitab           = _mm_slli_epi32(ewitab,2);
377             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
378             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
379             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
380             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
381             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
382             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
383             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
384             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
385             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
386             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
387
388             /* Update potential sum for this i atom from the interaction with this j atom. */
389             velecsum         = _mm_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             /* Update vectorial force */
394             fix1             = _mm_macc_pd(dx13,fscal,fix1);
395             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
396             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
397             
398             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
399             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
400             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
401
402             /**************************
403              * CALCULATE INTERACTIONS *
404              **************************/
405
406             r21              = _mm_mul_pd(rsq21,rinv21);
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = _mm_mul_pd(r21,ewtabscale);
412             ewitab           = _mm_cvttpd_epi32(ewrt);
413 #ifdef __XOP__
414             eweps            = _mm_frcz_pd(ewrt);
415 #else
416             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
417 #endif
418             twoeweps         = _mm_add_pd(eweps,eweps);
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
423             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
424             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
425             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
426             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
427             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
428             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
429             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
430
431             /* Update potential sum for this i atom from the interaction with this j atom. */
432             velecsum         = _mm_add_pd(velecsum,velec);
433
434             fscal            = felec;
435
436             /* Update vectorial force */
437             fix2             = _mm_macc_pd(dx21,fscal,fix2);
438             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
439             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
440             
441             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
442             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
443             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             r22              = _mm_mul_pd(rsq22,rinv22);
450
451             /* EWALD ELECTROSTATICS */
452
453             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
454             ewrt             = _mm_mul_pd(r22,ewtabscale);
455             ewitab           = _mm_cvttpd_epi32(ewrt);
456 #ifdef __XOP__
457             eweps            = _mm_frcz_pd(ewrt);
458 #else
459             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
460 #endif
461             twoeweps         = _mm_add_pd(eweps,eweps);
462             ewitab           = _mm_slli_epi32(ewitab,2);
463             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
464             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
465             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
466             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
467             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
468             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
469             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
470             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
471             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
472             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
473
474             /* Update potential sum for this i atom from the interaction with this j atom. */
475             velecsum         = _mm_add_pd(velecsum,velec);
476
477             fscal            = felec;
478
479             /* Update vectorial force */
480             fix2             = _mm_macc_pd(dx22,fscal,fix2);
481             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
482             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
483             
484             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
485             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
486             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r23              = _mm_mul_pd(rsq23,rinv23);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_pd(r23,ewtabscale);
498             ewitab           = _mm_cvttpd_epi32(ewrt);
499 #ifdef __XOP__
500             eweps            = _mm_frcz_pd(ewrt);
501 #else
502             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
503 #endif
504             twoeweps         = _mm_add_pd(eweps,eweps);
505             ewitab           = _mm_slli_epi32(ewitab,2);
506             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
507             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
508             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
509             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
510             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
511             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
512             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
513             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
514             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
515             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velecsum         = _mm_add_pd(velecsum,velec);
519
520             fscal            = felec;
521
522             /* Update vectorial force */
523             fix2             = _mm_macc_pd(dx23,fscal,fix2);
524             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
525             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
526             
527             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
528             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
529             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             r31              = _mm_mul_pd(rsq31,rinv31);
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = _mm_mul_pd(r31,ewtabscale);
541             ewitab           = _mm_cvttpd_epi32(ewrt);
542 #ifdef __XOP__
543             eweps            = _mm_frcz_pd(ewrt);
544 #else
545             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
546 #endif
547             twoeweps         = _mm_add_pd(eweps,eweps);
548             ewitab           = _mm_slli_epi32(ewitab,2);
549             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
550             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
551             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
552             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
553             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
554             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
555             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
556             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
557             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
558             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velecsum         = _mm_add_pd(velecsum,velec);
562
563             fscal            = felec;
564
565             /* Update vectorial force */
566             fix3             = _mm_macc_pd(dx31,fscal,fix3);
567             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
568             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
569             
570             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
571             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
572             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             r32              = _mm_mul_pd(rsq32,rinv32);
579
580             /* EWALD ELECTROSTATICS */
581
582             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
583             ewrt             = _mm_mul_pd(r32,ewtabscale);
584             ewitab           = _mm_cvttpd_epi32(ewrt);
585 #ifdef __XOP__
586             eweps            = _mm_frcz_pd(ewrt);
587 #else
588             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
589 #endif
590             twoeweps         = _mm_add_pd(eweps,eweps);
591             ewitab           = _mm_slli_epi32(ewitab,2);
592             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
593             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
594             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
595             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
596             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
597             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
598             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
599             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
600             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
601             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velecsum         = _mm_add_pd(velecsum,velec);
605
606             fscal            = felec;
607
608             /* Update vectorial force */
609             fix3             = _mm_macc_pd(dx32,fscal,fix3);
610             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
611             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
612             
613             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
614             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
615             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r33              = _mm_mul_pd(rsq33,rinv33);
622
623             /* EWALD ELECTROSTATICS */
624
625             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
626             ewrt             = _mm_mul_pd(r33,ewtabscale);
627             ewitab           = _mm_cvttpd_epi32(ewrt);
628 #ifdef __XOP__
629             eweps            = _mm_frcz_pd(ewrt);
630 #else
631             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
632 #endif
633             twoeweps         = _mm_add_pd(eweps,eweps);
634             ewitab           = _mm_slli_epi32(ewitab,2);
635             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
636             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
637             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
638             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
639             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
640             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
641             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
642             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
643             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
644             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
645
646             /* Update potential sum for this i atom from the interaction with this j atom. */
647             velecsum         = _mm_add_pd(velecsum,velec);
648
649             fscal            = felec;
650
651             /* Update vectorial force */
652             fix3             = _mm_macc_pd(dx33,fscal,fix3);
653             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
654             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
655             
656             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
657             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
658             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
659
660             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
661
662             /* Inner loop uses 396 flops */
663         }
664
665         if(jidx<j_index_end)
666         {
667
668             jnrA             = jjnr[jidx];
669             j_coord_offsetA  = DIM*jnrA;
670
671             /* load j atom coordinates */
672             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
673                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
674
675             /* Calculate displacement vector */
676             dx11             = _mm_sub_pd(ix1,jx1);
677             dy11             = _mm_sub_pd(iy1,jy1);
678             dz11             = _mm_sub_pd(iz1,jz1);
679             dx12             = _mm_sub_pd(ix1,jx2);
680             dy12             = _mm_sub_pd(iy1,jy2);
681             dz12             = _mm_sub_pd(iz1,jz2);
682             dx13             = _mm_sub_pd(ix1,jx3);
683             dy13             = _mm_sub_pd(iy1,jy3);
684             dz13             = _mm_sub_pd(iz1,jz3);
685             dx21             = _mm_sub_pd(ix2,jx1);
686             dy21             = _mm_sub_pd(iy2,jy1);
687             dz21             = _mm_sub_pd(iz2,jz1);
688             dx22             = _mm_sub_pd(ix2,jx2);
689             dy22             = _mm_sub_pd(iy2,jy2);
690             dz22             = _mm_sub_pd(iz2,jz2);
691             dx23             = _mm_sub_pd(ix2,jx3);
692             dy23             = _mm_sub_pd(iy2,jy3);
693             dz23             = _mm_sub_pd(iz2,jz3);
694             dx31             = _mm_sub_pd(ix3,jx1);
695             dy31             = _mm_sub_pd(iy3,jy1);
696             dz31             = _mm_sub_pd(iz3,jz1);
697             dx32             = _mm_sub_pd(ix3,jx2);
698             dy32             = _mm_sub_pd(iy3,jy2);
699             dz32             = _mm_sub_pd(iz3,jz2);
700             dx33             = _mm_sub_pd(ix3,jx3);
701             dy33             = _mm_sub_pd(iy3,jy3);
702             dz33             = _mm_sub_pd(iz3,jz3);
703
704             /* Calculate squared distance and things based on it */
705             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
706             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
707             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
708             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
709             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
710             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
711             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
712             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
713             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
714
715             rinv11           = gmx_mm_invsqrt_pd(rsq11);
716             rinv12           = gmx_mm_invsqrt_pd(rsq12);
717             rinv13           = gmx_mm_invsqrt_pd(rsq13);
718             rinv21           = gmx_mm_invsqrt_pd(rsq21);
719             rinv22           = gmx_mm_invsqrt_pd(rsq22);
720             rinv23           = gmx_mm_invsqrt_pd(rsq23);
721             rinv31           = gmx_mm_invsqrt_pd(rsq31);
722             rinv32           = gmx_mm_invsqrt_pd(rsq32);
723             rinv33           = gmx_mm_invsqrt_pd(rsq33);
724
725             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
726             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
727             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
728             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
729             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
730             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
731             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
732             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
733             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
734
735             fjx1             = _mm_setzero_pd();
736             fjy1             = _mm_setzero_pd();
737             fjz1             = _mm_setzero_pd();
738             fjx2             = _mm_setzero_pd();
739             fjy2             = _mm_setzero_pd();
740             fjz2             = _mm_setzero_pd();
741             fjx3             = _mm_setzero_pd();
742             fjy3             = _mm_setzero_pd();
743             fjz3             = _mm_setzero_pd();
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             r11              = _mm_mul_pd(rsq11,rinv11);
750
751             /* EWALD ELECTROSTATICS */
752
753             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
754             ewrt             = _mm_mul_pd(r11,ewtabscale);
755             ewitab           = _mm_cvttpd_epi32(ewrt);
756 #ifdef __XOP__
757             eweps            = _mm_frcz_pd(ewrt);
758 #else
759             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
760 #endif
761             twoeweps         = _mm_add_pd(eweps,eweps);
762             ewitab           = _mm_slli_epi32(ewitab,2);
763             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
764             ewtabD           = _mm_setzero_pd();
765             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
766             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
767             ewtabFn          = _mm_setzero_pd();
768             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
769             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
770             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
771             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
772             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
773
774             /* Update potential sum for this i atom from the interaction with this j atom. */
775             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
776             velecsum         = _mm_add_pd(velecsum,velec);
777
778             fscal            = felec;
779
780             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
781
782             /* Update vectorial force */
783             fix1             = _mm_macc_pd(dx11,fscal,fix1);
784             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
785             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
786             
787             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
788             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
789             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r12              = _mm_mul_pd(rsq12,rinv12);
796
797             /* EWALD ELECTROSTATICS */
798
799             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
800             ewrt             = _mm_mul_pd(r12,ewtabscale);
801             ewitab           = _mm_cvttpd_epi32(ewrt);
802 #ifdef __XOP__
803             eweps            = _mm_frcz_pd(ewrt);
804 #else
805             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
806 #endif
807             twoeweps         = _mm_add_pd(eweps,eweps);
808             ewitab           = _mm_slli_epi32(ewitab,2);
809             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
810             ewtabD           = _mm_setzero_pd();
811             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
812             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
813             ewtabFn          = _mm_setzero_pd();
814             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
815             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
816             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
817             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
818             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
819
820             /* Update potential sum for this i atom from the interaction with this j atom. */
821             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
822             velecsum         = _mm_add_pd(velecsum,velec);
823
824             fscal            = felec;
825
826             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
827
828             /* Update vectorial force */
829             fix1             = _mm_macc_pd(dx12,fscal,fix1);
830             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
831             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
832             
833             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
834             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
835             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             r13              = _mm_mul_pd(rsq13,rinv13);
842
843             /* EWALD ELECTROSTATICS */
844
845             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
846             ewrt             = _mm_mul_pd(r13,ewtabscale);
847             ewitab           = _mm_cvttpd_epi32(ewrt);
848 #ifdef __XOP__
849             eweps            = _mm_frcz_pd(ewrt);
850 #else
851             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
852 #endif
853             twoeweps         = _mm_add_pd(eweps,eweps);
854             ewitab           = _mm_slli_epi32(ewitab,2);
855             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
856             ewtabD           = _mm_setzero_pd();
857             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
858             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
859             ewtabFn          = _mm_setzero_pd();
860             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
861             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
862             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
863             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
864             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
865
866             /* Update potential sum for this i atom from the interaction with this j atom. */
867             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
868             velecsum         = _mm_add_pd(velecsum,velec);
869
870             fscal            = felec;
871
872             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
873
874             /* Update vectorial force */
875             fix1             = _mm_macc_pd(dx13,fscal,fix1);
876             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
877             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
878             
879             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
880             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
881             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r21              = _mm_mul_pd(rsq21,rinv21);
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = _mm_mul_pd(r21,ewtabscale);
893             ewitab           = _mm_cvttpd_epi32(ewrt);
894 #ifdef __XOP__
895             eweps            = _mm_frcz_pd(ewrt);
896 #else
897             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
898 #endif
899             twoeweps         = _mm_add_pd(eweps,eweps);
900             ewitab           = _mm_slli_epi32(ewitab,2);
901             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
902             ewtabD           = _mm_setzero_pd();
903             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
904             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
905             ewtabFn          = _mm_setzero_pd();
906             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
907             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
908             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
909             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
910             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
911
912             /* Update potential sum for this i atom from the interaction with this j atom. */
913             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
914             velecsum         = _mm_add_pd(velecsum,velec);
915
916             fscal            = felec;
917
918             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
919
920             /* Update vectorial force */
921             fix2             = _mm_macc_pd(dx21,fscal,fix2);
922             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
923             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
924             
925             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
926             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
927             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
928
929             /**************************
930              * CALCULATE INTERACTIONS *
931              **************************/
932
933             r22              = _mm_mul_pd(rsq22,rinv22);
934
935             /* EWALD ELECTROSTATICS */
936
937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938             ewrt             = _mm_mul_pd(r22,ewtabscale);
939             ewitab           = _mm_cvttpd_epi32(ewrt);
940 #ifdef __XOP__
941             eweps            = _mm_frcz_pd(ewrt);
942 #else
943             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
944 #endif
945             twoeweps         = _mm_add_pd(eweps,eweps);
946             ewitab           = _mm_slli_epi32(ewitab,2);
947             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
948             ewtabD           = _mm_setzero_pd();
949             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
950             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
951             ewtabFn          = _mm_setzero_pd();
952             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
953             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
954             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
955             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
956             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
957
958             /* Update potential sum for this i atom from the interaction with this j atom. */
959             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
960             velecsum         = _mm_add_pd(velecsum,velec);
961
962             fscal            = felec;
963
964             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
965
966             /* Update vectorial force */
967             fix2             = _mm_macc_pd(dx22,fscal,fix2);
968             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
969             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
970             
971             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
972             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
973             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r23              = _mm_mul_pd(rsq23,rinv23);
980
981             /* EWALD ELECTROSTATICS */
982
983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984             ewrt             = _mm_mul_pd(r23,ewtabscale);
985             ewitab           = _mm_cvttpd_epi32(ewrt);
986 #ifdef __XOP__
987             eweps            = _mm_frcz_pd(ewrt);
988 #else
989             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
990 #endif
991             twoeweps         = _mm_add_pd(eweps,eweps);
992             ewitab           = _mm_slli_epi32(ewitab,2);
993             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
994             ewtabD           = _mm_setzero_pd();
995             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
996             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
997             ewtabFn          = _mm_setzero_pd();
998             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
999             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1000             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1001             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
1002             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1003
1004             /* Update potential sum for this i atom from the interaction with this j atom. */
1005             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1006             velecsum         = _mm_add_pd(velecsum,velec);
1007
1008             fscal            = felec;
1009
1010             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1011
1012             /* Update vectorial force */
1013             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1014             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1015             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1016             
1017             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1018             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1019             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1020
1021             /**************************
1022              * CALCULATE INTERACTIONS *
1023              **************************/
1024
1025             r31              = _mm_mul_pd(rsq31,rinv31);
1026
1027             /* EWALD ELECTROSTATICS */
1028
1029             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030             ewrt             = _mm_mul_pd(r31,ewtabscale);
1031             ewitab           = _mm_cvttpd_epi32(ewrt);
1032 #ifdef __XOP__
1033             eweps            = _mm_frcz_pd(ewrt);
1034 #else
1035             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1036 #endif
1037             twoeweps         = _mm_add_pd(eweps,eweps);
1038             ewitab           = _mm_slli_epi32(ewitab,2);
1039             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1040             ewtabD           = _mm_setzero_pd();
1041             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1042             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1043             ewtabFn          = _mm_setzero_pd();
1044             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1045             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1046             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1047             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1048             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1049
1050             /* Update potential sum for this i atom from the interaction with this j atom. */
1051             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1052             velecsum         = _mm_add_pd(velecsum,velec);
1053
1054             fscal            = felec;
1055
1056             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1057
1058             /* Update vectorial force */
1059             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1060             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1061             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1062             
1063             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1064             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1065             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r32              = _mm_mul_pd(rsq32,rinv32);
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = _mm_mul_pd(r32,ewtabscale);
1077             ewitab           = _mm_cvttpd_epi32(ewrt);
1078 #ifdef __XOP__
1079             eweps            = _mm_frcz_pd(ewrt);
1080 #else
1081             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1082 #endif
1083             twoeweps         = _mm_add_pd(eweps,eweps);
1084             ewitab           = _mm_slli_epi32(ewitab,2);
1085             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1086             ewtabD           = _mm_setzero_pd();
1087             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1088             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1089             ewtabFn          = _mm_setzero_pd();
1090             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1091             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1092             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1093             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1094             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1095
1096             /* Update potential sum for this i atom from the interaction with this j atom. */
1097             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1098             velecsum         = _mm_add_pd(velecsum,velec);
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1103
1104             /* Update vectorial force */
1105             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1106             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1107             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1108             
1109             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1110             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1111             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             r33              = _mm_mul_pd(rsq33,rinv33);
1118
1119             /* EWALD ELECTROSTATICS */
1120
1121             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1122             ewrt             = _mm_mul_pd(r33,ewtabscale);
1123             ewitab           = _mm_cvttpd_epi32(ewrt);
1124 #ifdef __XOP__
1125             eweps            = _mm_frcz_pd(ewrt);
1126 #else
1127             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1128 #endif
1129             twoeweps         = _mm_add_pd(eweps,eweps);
1130             ewitab           = _mm_slli_epi32(ewitab,2);
1131             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1132             ewtabD           = _mm_setzero_pd();
1133             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1134             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1135             ewtabFn          = _mm_setzero_pd();
1136             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1137             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1138             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1139             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1140             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1141
1142             /* Update potential sum for this i atom from the interaction with this j atom. */
1143             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1144             velecsum         = _mm_add_pd(velecsum,velec);
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1149
1150             /* Update vectorial force */
1151             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1152             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1153             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1154             
1155             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1156             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1157             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1158
1159             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1160
1161             /* Inner loop uses 396 flops */
1162         }
1163
1164         /* End of innermost loop */
1165
1166         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1167                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1168
1169         ggid                        = gid[iidx];
1170         /* Update potential energies */
1171         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1172
1173         /* Increment number of inner iterations */
1174         inneriter                  += j_index_end - j_index_start;
1175
1176         /* Outer loop uses 19 flops */
1177     }
1178
1179     /* Increment number of outer iterations */
1180     outeriter        += nri;
1181
1182     /* Update outer/inner flops */
1183
1184     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*19 + inneriter*396);
1185 }
1186 /*
1187  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_128_fma_double
1188  * Electrostatics interaction: Ewald
1189  * VdW interaction:            None
1190  * Geometry:                   Water4-Water4
1191  * Calculate force/pot:        Force
1192  */
1193 void
1194 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_avx_128_fma_double
1195                     (t_nblist                    * gmx_restrict       nlist,
1196                      rvec                        * gmx_restrict          xx,
1197                      rvec                        * gmx_restrict          ff,
1198                      t_forcerec                  * gmx_restrict          fr,
1199                      t_mdatoms                   * gmx_restrict     mdatoms,
1200                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1201                      t_nrnb                      * gmx_restrict        nrnb)
1202 {
1203     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1204      * just 0 for non-waters.
1205      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1206      * jnr indices corresponding to data put in the four positions in the SIMD register.
1207      */
1208     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1209     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1210     int              jnrA,jnrB;
1211     int              j_coord_offsetA,j_coord_offsetB;
1212     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1213     real             rcutoff_scalar;
1214     real             *shiftvec,*fshift,*x,*f;
1215     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1216     int              vdwioffset1;
1217     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1218     int              vdwioffset2;
1219     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1220     int              vdwioffset3;
1221     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1222     int              vdwjidx1A,vdwjidx1B;
1223     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1224     int              vdwjidx2A,vdwjidx2B;
1225     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1226     int              vdwjidx3A,vdwjidx3B;
1227     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1228     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1229     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1230     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1231     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1232     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1233     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1234     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1235     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1236     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1237     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1238     real             *charge;
1239     __m128i          ewitab;
1240     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1241     real             *ewtab;
1242     __m128d          dummy_mask,cutoff_mask;
1243     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1244     __m128d          one     = _mm_set1_pd(1.0);
1245     __m128d          two     = _mm_set1_pd(2.0);
1246     x                = xx[0];
1247     f                = ff[0];
1248
1249     nri              = nlist->nri;
1250     iinr             = nlist->iinr;
1251     jindex           = nlist->jindex;
1252     jjnr             = nlist->jjnr;
1253     shiftidx         = nlist->shift;
1254     gid              = nlist->gid;
1255     shiftvec         = fr->shift_vec[0];
1256     fshift           = fr->fshift[0];
1257     facel            = _mm_set1_pd(fr->epsfac);
1258     charge           = mdatoms->chargeA;
1259
1260     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1261     ewtab            = fr->ic->tabq_coul_F;
1262     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1263     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1264
1265     /* Setup water-specific parameters */
1266     inr              = nlist->iinr[0];
1267     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1268     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1269     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1270
1271     jq1              = _mm_set1_pd(charge[inr+1]);
1272     jq2              = _mm_set1_pd(charge[inr+2]);
1273     jq3              = _mm_set1_pd(charge[inr+3]);
1274     qq11             = _mm_mul_pd(iq1,jq1);
1275     qq12             = _mm_mul_pd(iq1,jq2);
1276     qq13             = _mm_mul_pd(iq1,jq3);
1277     qq21             = _mm_mul_pd(iq2,jq1);
1278     qq22             = _mm_mul_pd(iq2,jq2);
1279     qq23             = _mm_mul_pd(iq2,jq3);
1280     qq31             = _mm_mul_pd(iq3,jq1);
1281     qq32             = _mm_mul_pd(iq3,jq2);
1282     qq33             = _mm_mul_pd(iq3,jq3);
1283
1284     /* Avoid stupid compiler warnings */
1285     jnrA = jnrB = 0;
1286     j_coord_offsetA = 0;
1287     j_coord_offsetB = 0;
1288
1289     outeriter        = 0;
1290     inneriter        = 0;
1291
1292     /* Start outer loop over neighborlists */
1293     for(iidx=0; iidx<nri; iidx++)
1294     {
1295         /* Load shift vector for this list */
1296         i_shift_offset   = DIM*shiftidx[iidx];
1297
1298         /* Load limits for loop over neighbors */
1299         j_index_start    = jindex[iidx];
1300         j_index_end      = jindex[iidx+1];
1301
1302         /* Get outer coordinate index */
1303         inr              = iinr[iidx];
1304         i_coord_offset   = DIM*inr;
1305
1306         /* Load i particle coords and add shift vector */
1307         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
1308                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1309
1310         fix1             = _mm_setzero_pd();
1311         fiy1             = _mm_setzero_pd();
1312         fiz1             = _mm_setzero_pd();
1313         fix2             = _mm_setzero_pd();
1314         fiy2             = _mm_setzero_pd();
1315         fiz2             = _mm_setzero_pd();
1316         fix3             = _mm_setzero_pd();
1317         fiy3             = _mm_setzero_pd();
1318         fiz3             = _mm_setzero_pd();
1319
1320         /* Start inner kernel loop */
1321         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1322         {
1323
1324             /* Get j neighbor index, and coordinate index */
1325             jnrA             = jjnr[jidx];
1326             jnrB             = jjnr[jidx+1];
1327             j_coord_offsetA  = DIM*jnrA;
1328             j_coord_offsetB  = DIM*jnrB;
1329
1330             /* load j atom coordinates */
1331             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
1332                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1333
1334             /* Calculate displacement vector */
1335             dx11             = _mm_sub_pd(ix1,jx1);
1336             dy11             = _mm_sub_pd(iy1,jy1);
1337             dz11             = _mm_sub_pd(iz1,jz1);
1338             dx12             = _mm_sub_pd(ix1,jx2);
1339             dy12             = _mm_sub_pd(iy1,jy2);
1340             dz12             = _mm_sub_pd(iz1,jz2);
1341             dx13             = _mm_sub_pd(ix1,jx3);
1342             dy13             = _mm_sub_pd(iy1,jy3);
1343             dz13             = _mm_sub_pd(iz1,jz3);
1344             dx21             = _mm_sub_pd(ix2,jx1);
1345             dy21             = _mm_sub_pd(iy2,jy1);
1346             dz21             = _mm_sub_pd(iz2,jz1);
1347             dx22             = _mm_sub_pd(ix2,jx2);
1348             dy22             = _mm_sub_pd(iy2,jy2);
1349             dz22             = _mm_sub_pd(iz2,jz2);
1350             dx23             = _mm_sub_pd(ix2,jx3);
1351             dy23             = _mm_sub_pd(iy2,jy3);
1352             dz23             = _mm_sub_pd(iz2,jz3);
1353             dx31             = _mm_sub_pd(ix3,jx1);
1354             dy31             = _mm_sub_pd(iy3,jy1);
1355             dz31             = _mm_sub_pd(iz3,jz1);
1356             dx32             = _mm_sub_pd(ix3,jx2);
1357             dy32             = _mm_sub_pd(iy3,jy2);
1358             dz32             = _mm_sub_pd(iz3,jz2);
1359             dx33             = _mm_sub_pd(ix3,jx3);
1360             dy33             = _mm_sub_pd(iy3,jy3);
1361             dz33             = _mm_sub_pd(iz3,jz3);
1362
1363             /* Calculate squared distance and things based on it */
1364             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1365             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1366             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1367             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1368             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1369             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1370             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1371             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1372             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1373
1374             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1375             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1376             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1377             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1378             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1379             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1380             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1381             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1382             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1383
1384             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1385             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1386             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1387             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1388             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1389             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1390             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1391             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1392             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1393
1394             fjx1             = _mm_setzero_pd();
1395             fjy1             = _mm_setzero_pd();
1396             fjz1             = _mm_setzero_pd();
1397             fjx2             = _mm_setzero_pd();
1398             fjy2             = _mm_setzero_pd();
1399             fjz2             = _mm_setzero_pd();
1400             fjx3             = _mm_setzero_pd();
1401             fjy3             = _mm_setzero_pd();
1402             fjz3             = _mm_setzero_pd();
1403
1404             /**************************
1405              * CALCULATE INTERACTIONS *
1406              **************************/
1407
1408             r11              = _mm_mul_pd(rsq11,rinv11);
1409
1410             /* EWALD ELECTROSTATICS */
1411
1412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1413             ewrt             = _mm_mul_pd(r11,ewtabscale);
1414             ewitab           = _mm_cvttpd_epi32(ewrt);
1415 #ifdef __XOP__
1416             eweps            = _mm_frcz_pd(ewrt);
1417 #else
1418             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1419 #endif
1420             twoeweps         = _mm_add_pd(eweps,eweps);
1421             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1422                                          &ewtabF,&ewtabFn);
1423             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1424             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1425
1426             fscal            = felec;
1427
1428             /* Update vectorial force */
1429             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1430             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1431             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1432             
1433             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1434             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1435             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1436
1437             /**************************
1438              * CALCULATE INTERACTIONS *
1439              **************************/
1440
1441             r12              = _mm_mul_pd(rsq12,rinv12);
1442
1443             /* EWALD ELECTROSTATICS */
1444
1445             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1446             ewrt             = _mm_mul_pd(r12,ewtabscale);
1447             ewitab           = _mm_cvttpd_epi32(ewrt);
1448 #ifdef __XOP__
1449             eweps            = _mm_frcz_pd(ewrt);
1450 #else
1451             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1452 #endif
1453             twoeweps         = _mm_add_pd(eweps,eweps);
1454             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1455                                          &ewtabF,&ewtabFn);
1456             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1457             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1458
1459             fscal            = felec;
1460
1461             /* Update vectorial force */
1462             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1463             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1464             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1465             
1466             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1467             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1468             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1469
1470             /**************************
1471              * CALCULATE INTERACTIONS *
1472              **************************/
1473
1474             r13              = _mm_mul_pd(rsq13,rinv13);
1475
1476             /* EWALD ELECTROSTATICS */
1477
1478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1479             ewrt             = _mm_mul_pd(r13,ewtabscale);
1480             ewitab           = _mm_cvttpd_epi32(ewrt);
1481 #ifdef __XOP__
1482             eweps            = _mm_frcz_pd(ewrt);
1483 #else
1484             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1485 #endif
1486             twoeweps         = _mm_add_pd(eweps,eweps);
1487             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1488                                          &ewtabF,&ewtabFn);
1489             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1490             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1491
1492             fscal            = felec;
1493
1494             /* Update vectorial force */
1495             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1496             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1497             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1498             
1499             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1500             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1501             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1502
1503             /**************************
1504              * CALCULATE INTERACTIONS *
1505              **************************/
1506
1507             r21              = _mm_mul_pd(rsq21,rinv21);
1508
1509             /* EWALD ELECTROSTATICS */
1510
1511             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1512             ewrt             = _mm_mul_pd(r21,ewtabscale);
1513             ewitab           = _mm_cvttpd_epi32(ewrt);
1514 #ifdef __XOP__
1515             eweps            = _mm_frcz_pd(ewrt);
1516 #else
1517             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1518 #endif
1519             twoeweps         = _mm_add_pd(eweps,eweps);
1520             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1521                                          &ewtabF,&ewtabFn);
1522             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1523             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1524
1525             fscal            = felec;
1526
1527             /* Update vectorial force */
1528             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1529             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1530             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1531             
1532             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1533             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1534             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1535
1536             /**************************
1537              * CALCULATE INTERACTIONS *
1538              **************************/
1539
1540             r22              = _mm_mul_pd(rsq22,rinv22);
1541
1542             /* EWALD ELECTROSTATICS */
1543
1544             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1545             ewrt             = _mm_mul_pd(r22,ewtabscale);
1546             ewitab           = _mm_cvttpd_epi32(ewrt);
1547 #ifdef __XOP__
1548             eweps            = _mm_frcz_pd(ewrt);
1549 #else
1550             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1551 #endif
1552             twoeweps         = _mm_add_pd(eweps,eweps);
1553             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1554                                          &ewtabF,&ewtabFn);
1555             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1556             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1557
1558             fscal            = felec;
1559
1560             /* Update vectorial force */
1561             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1562             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1563             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1564             
1565             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1566             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1567             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1568
1569             /**************************
1570              * CALCULATE INTERACTIONS *
1571              **************************/
1572
1573             r23              = _mm_mul_pd(rsq23,rinv23);
1574
1575             /* EWALD ELECTROSTATICS */
1576
1577             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1578             ewrt             = _mm_mul_pd(r23,ewtabscale);
1579             ewitab           = _mm_cvttpd_epi32(ewrt);
1580 #ifdef __XOP__
1581             eweps            = _mm_frcz_pd(ewrt);
1582 #else
1583             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1584 #endif
1585             twoeweps         = _mm_add_pd(eweps,eweps);
1586             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1587                                          &ewtabF,&ewtabFn);
1588             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1589             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1590
1591             fscal            = felec;
1592
1593             /* Update vectorial force */
1594             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1595             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1596             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1597             
1598             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1599             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1600             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1601
1602             /**************************
1603              * CALCULATE INTERACTIONS *
1604              **************************/
1605
1606             r31              = _mm_mul_pd(rsq31,rinv31);
1607
1608             /* EWALD ELECTROSTATICS */
1609
1610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1611             ewrt             = _mm_mul_pd(r31,ewtabscale);
1612             ewitab           = _mm_cvttpd_epi32(ewrt);
1613 #ifdef __XOP__
1614             eweps            = _mm_frcz_pd(ewrt);
1615 #else
1616             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1617 #endif
1618             twoeweps         = _mm_add_pd(eweps,eweps);
1619             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1620                                          &ewtabF,&ewtabFn);
1621             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1622             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1623
1624             fscal            = felec;
1625
1626             /* Update vectorial force */
1627             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1628             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1629             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1630             
1631             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1632             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1633             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1634
1635             /**************************
1636              * CALCULATE INTERACTIONS *
1637              **************************/
1638
1639             r32              = _mm_mul_pd(rsq32,rinv32);
1640
1641             /* EWALD ELECTROSTATICS */
1642
1643             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1644             ewrt             = _mm_mul_pd(r32,ewtabscale);
1645             ewitab           = _mm_cvttpd_epi32(ewrt);
1646 #ifdef __XOP__
1647             eweps            = _mm_frcz_pd(ewrt);
1648 #else
1649             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1650 #endif
1651             twoeweps         = _mm_add_pd(eweps,eweps);
1652             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1653                                          &ewtabF,&ewtabFn);
1654             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1655             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1656
1657             fscal            = felec;
1658
1659             /* Update vectorial force */
1660             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1661             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1662             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1663             
1664             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1665             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1666             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1667
1668             /**************************
1669              * CALCULATE INTERACTIONS *
1670              **************************/
1671
1672             r33              = _mm_mul_pd(rsq33,rinv33);
1673
1674             /* EWALD ELECTROSTATICS */
1675
1676             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1677             ewrt             = _mm_mul_pd(r33,ewtabscale);
1678             ewitab           = _mm_cvttpd_epi32(ewrt);
1679 #ifdef __XOP__
1680             eweps            = _mm_frcz_pd(ewrt);
1681 #else
1682             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1683 #endif
1684             twoeweps         = _mm_add_pd(eweps,eweps);
1685             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1686                                          &ewtabF,&ewtabFn);
1687             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1688             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1689
1690             fscal            = felec;
1691
1692             /* Update vectorial force */
1693             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1694             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1695             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1696             
1697             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1698             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1699             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1700
1701             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA+DIM,f+j_coord_offsetB+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1702
1703             /* Inner loop uses 351 flops */
1704         }
1705
1706         if(jidx<j_index_end)
1707         {
1708
1709             jnrA             = jjnr[jidx];
1710             j_coord_offsetA  = DIM*jnrA;
1711
1712             /* load j atom coordinates */
1713             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA+DIM,
1714                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
1715
1716             /* Calculate displacement vector */
1717             dx11             = _mm_sub_pd(ix1,jx1);
1718             dy11             = _mm_sub_pd(iy1,jy1);
1719             dz11             = _mm_sub_pd(iz1,jz1);
1720             dx12             = _mm_sub_pd(ix1,jx2);
1721             dy12             = _mm_sub_pd(iy1,jy2);
1722             dz12             = _mm_sub_pd(iz1,jz2);
1723             dx13             = _mm_sub_pd(ix1,jx3);
1724             dy13             = _mm_sub_pd(iy1,jy3);
1725             dz13             = _mm_sub_pd(iz1,jz3);
1726             dx21             = _mm_sub_pd(ix2,jx1);
1727             dy21             = _mm_sub_pd(iy2,jy1);
1728             dz21             = _mm_sub_pd(iz2,jz1);
1729             dx22             = _mm_sub_pd(ix2,jx2);
1730             dy22             = _mm_sub_pd(iy2,jy2);
1731             dz22             = _mm_sub_pd(iz2,jz2);
1732             dx23             = _mm_sub_pd(ix2,jx3);
1733             dy23             = _mm_sub_pd(iy2,jy3);
1734             dz23             = _mm_sub_pd(iz2,jz3);
1735             dx31             = _mm_sub_pd(ix3,jx1);
1736             dy31             = _mm_sub_pd(iy3,jy1);
1737             dz31             = _mm_sub_pd(iz3,jz1);
1738             dx32             = _mm_sub_pd(ix3,jx2);
1739             dy32             = _mm_sub_pd(iy3,jy2);
1740             dz32             = _mm_sub_pd(iz3,jz2);
1741             dx33             = _mm_sub_pd(ix3,jx3);
1742             dy33             = _mm_sub_pd(iy3,jy3);
1743             dz33             = _mm_sub_pd(iz3,jz3);
1744
1745             /* Calculate squared distance and things based on it */
1746             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1747             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1748             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1749             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1750             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1751             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1752             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1753             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1754             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1755
1756             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1757             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1758             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1759             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1760             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1761             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1762             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1763             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1764             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1765
1766             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1767             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1768             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1769             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1770             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1771             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1772             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1773             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1774             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1775
1776             fjx1             = _mm_setzero_pd();
1777             fjy1             = _mm_setzero_pd();
1778             fjz1             = _mm_setzero_pd();
1779             fjx2             = _mm_setzero_pd();
1780             fjy2             = _mm_setzero_pd();
1781             fjz2             = _mm_setzero_pd();
1782             fjx3             = _mm_setzero_pd();
1783             fjy3             = _mm_setzero_pd();
1784             fjz3             = _mm_setzero_pd();
1785
1786             /**************************
1787              * CALCULATE INTERACTIONS *
1788              **************************/
1789
1790             r11              = _mm_mul_pd(rsq11,rinv11);
1791
1792             /* EWALD ELECTROSTATICS */
1793
1794             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1795             ewrt             = _mm_mul_pd(r11,ewtabscale);
1796             ewitab           = _mm_cvttpd_epi32(ewrt);
1797 #ifdef __XOP__
1798             eweps            = _mm_frcz_pd(ewrt);
1799 #else
1800             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1801 #endif
1802             twoeweps         = _mm_add_pd(eweps,eweps);
1803             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1804             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1805             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1806
1807             fscal            = felec;
1808
1809             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1810
1811             /* Update vectorial force */
1812             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1813             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1814             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1815             
1816             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1817             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1818             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1819
1820             /**************************
1821              * CALCULATE INTERACTIONS *
1822              **************************/
1823
1824             r12              = _mm_mul_pd(rsq12,rinv12);
1825
1826             /* EWALD ELECTROSTATICS */
1827
1828             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1829             ewrt             = _mm_mul_pd(r12,ewtabscale);
1830             ewitab           = _mm_cvttpd_epi32(ewrt);
1831 #ifdef __XOP__
1832             eweps            = _mm_frcz_pd(ewrt);
1833 #else
1834             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1835 #endif
1836             twoeweps         = _mm_add_pd(eweps,eweps);
1837             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1838             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1839             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1840
1841             fscal            = felec;
1842
1843             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1844
1845             /* Update vectorial force */
1846             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1847             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1848             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1849             
1850             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1851             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1852             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1853
1854             /**************************
1855              * CALCULATE INTERACTIONS *
1856              **************************/
1857
1858             r13              = _mm_mul_pd(rsq13,rinv13);
1859
1860             /* EWALD ELECTROSTATICS */
1861
1862             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1863             ewrt             = _mm_mul_pd(r13,ewtabscale);
1864             ewitab           = _mm_cvttpd_epi32(ewrt);
1865 #ifdef __XOP__
1866             eweps            = _mm_frcz_pd(ewrt);
1867 #else
1868             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1869 #endif
1870             twoeweps         = _mm_add_pd(eweps,eweps);
1871             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1872             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1873             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1874
1875             fscal            = felec;
1876
1877             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1878
1879             /* Update vectorial force */
1880             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1881             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1882             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1883             
1884             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1885             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1886             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1887
1888             /**************************
1889              * CALCULATE INTERACTIONS *
1890              **************************/
1891
1892             r21              = _mm_mul_pd(rsq21,rinv21);
1893
1894             /* EWALD ELECTROSTATICS */
1895
1896             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1897             ewrt             = _mm_mul_pd(r21,ewtabscale);
1898             ewitab           = _mm_cvttpd_epi32(ewrt);
1899 #ifdef __XOP__
1900             eweps            = _mm_frcz_pd(ewrt);
1901 #else
1902             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1903 #endif
1904             twoeweps         = _mm_add_pd(eweps,eweps);
1905             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1906             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1907             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1908
1909             fscal            = felec;
1910
1911             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1912
1913             /* Update vectorial force */
1914             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1915             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1916             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1917             
1918             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1919             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1920             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1921
1922             /**************************
1923              * CALCULATE INTERACTIONS *
1924              **************************/
1925
1926             r22              = _mm_mul_pd(rsq22,rinv22);
1927
1928             /* EWALD ELECTROSTATICS */
1929
1930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1931             ewrt             = _mm_mul_pd(r22,ewtabscale);
1932             ewitab           = _mm_cvttpd_epi32(ewrt);
1933 #ifdef __XOP__
1934             eweps            = _mm_frcz_pd(ewrt);
1935 #else
1936             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1937 #endif
1938             twoeweps         = _mm_add_pd(eweps,eweps);
1939             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1940             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1941             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1942
1943             fscal            = felec;
1944
1945             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1946
1947             /* Update vectorial force */
1948             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1949             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1950             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1951             
1952             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1953             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1954             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1955
1956             /**************************
1957              * CALCULATE INTERACTIONS *
1958              **************************/
1959
1960             r23              = _mm_mul_pd(rsq23,rinv23);
1961
1962             /* EWALD ELECTROSTATICS */
1963
1964             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1965             ewrt             = _mm_mul_pd(r23,ewtabscale);
1966             ewitab           = _mm_cvttpd_epi32(ewrt);
1967 #ifdef __XOP__
1968             eweps            = _mm_frcz_pd(ewrt);
1969 #else
1970             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1971 #endif
1972             twoeweps         = _mm_add_pd(eweps,eweps);
1973             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1974             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1975             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1976
1977             fscal            = felec;
1978
1979             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1980
1981             /* Update vectorial force */
1982             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1983             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1984             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1985             
1986             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1987             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1988             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1989
1990             /**************************
1991              * CALCULATE INTERACTIONS *
1992              **************************/
1993
1994             r31              = _mm_mul_pd(rsq31,rinv31);
1995
1996             /* EWALD ELECTROSTATICS */
1997
1998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1999             ewrt             = _mm_mul_pd(r31,ewtabscale);
2000             ewitab           = _mm_cvttpd_epi32(ewrt);
2001 #ifdef __XOP__
2002             eweps            = _mm_frcz_pd(ewrt);
2003 #else
2004             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2005 #endif
2006             twoeweps         = _mm_add_pd(eweps,eweps);
2007             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2008             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2009             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2010
2011             fscal            = felec;
2012
2013             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2014
2015             /* Update vectorial force */
2016             fix3             = _mm_macc_pd(dx31,fscal,fix3);
2017             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
2018             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
2019             
2020             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
2021             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
2022             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
2023
2024             /**************************
2025              * CALCULATE INTERACTIONS *
2026              **************************/
2027
2028             r32              = _mm_mul_pd(rsq32,rinv32);
2029
2030             /* EWALD ELECTROSTATICS */
2031
2032             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2033             ewrt             = _mm_mul_pd(r32,ewtabscale);
2034             ewitab           = _mm_cvttpd_epi32(ewrt);
2035 #ifdef __XOP__
2036             eweps            = _mm_frcz_pd(ewrt);
2037 #else
2038             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2039 #endif
2040             twoeweps         = _mm_add_pd(eweps,eweps);
2041             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2042             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2043             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2044
2045             fscal            = felec;
2046
2047             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2048
2049             /* Update vectorial force */
2050             fix3             = _mm_macc_pd(dx32,fscal,fix3);
2051             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
2052             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
2053             
2054             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
2055             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
2056             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
2057
2058             /**************************
2059              * CALCULATE INTERACTIONS *
2060              **************************/
2061
2062             r33              = _mm_mul_pd(rsq33,rinv33);
2063
2064             /* EWALD ELECTROSTATICS */
2065
2066             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2067             ewrt             = _mm_mul_pd(r33,ewtabscale);
2068             ewitab           = _mm_cvttpd_epi32(ewrt);
2069 #ifdef __XOP__
2070             eweps            = _mm_frcz_pd(ewrt);
2071 #else
2072             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2073 #endif
2074             twoeweps         = _mm_add_pd(eweps,eweps);
2075             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2076             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2077             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2078
2079             fscal            = felec;
2080
2081             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2082
2083             /* Update vectorial force */
2084             fix3             = _mm_macc_pd(dx33,fscal,fix3);
2085             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
2086             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
2087             
2088             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
2089             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
2090             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
2091
2092             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA+DIM,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2093
2094             /* Inner loop uses 351 flops */
2095         }
2096
2097         /* End of innermost loop */
2098
2099         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2100                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
2101
2102         /* Increment number of inner iterations */
2103         inneriter                  += j_index_end - j_index_start;
2104
2105         /* Outer loop uses 18 flops */
2106     }
2107
2108     /* Increment number of outer iterations */
2109     outeriter        += nri;
2110
2111     /* Update outer/inner flops */
2112
2113     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*18 + inneriter*351);
2114 }