Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_128_fma_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_double.h"
34 #include "kernelutil_x86_avx_128_fma_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB;
61     int              j_coord_offsetA,j_coord_offsetB;
62     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
63     real             rcutoff_scalar;
64     real             *shiftvec,*fshift,*x,*f;
65     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
66     int              vdwioffset1;
67     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
68     int              vdwioffset2;
69     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
70     int              vdwioffset3;
71     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
72     int              vdwjidx0A,vdwjidx0B;
73     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
75     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
76     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
77     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m128i          ewitab;
80     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
81     real             *ewtab;
82     __m128d          dummy_mask,cutoff_mask;
83     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
84     __m128d          one     = _mm_set1_pd(1.0);
85     __m128d          two     = _mm_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
101     ewtab            = fr->ic->tabq_coul_FDV0;
102     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
103     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
104
105     /* Setup water-specific parameters */
106     inr              = nlist->iinr[0];
107     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
108     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
109     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
135                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
136
137         fix1             = _mm_setzero_pd();
138         fiy1             = _mm_setzero_pd();
139         fiz1             = _mm_setzero_pd();
140         fix2             = _mm_setzero_pd();
141         fiy2             = _mm_setzero_pd();
142         fiz2             = _mm_setzero_pd();
143         fix3             = _mm_setzero_pd();
144         fiy3             = _mm_setzero_pd();
145         fiz3             = _mm_setzero_pd();
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx10             = _mm_sub_pd(ix1,jx0);
166             dy10             = _mm_sub_pd(iy1,jy0);
167             dz10             = _mm_sub_pd(iz1,jz0);
168             dx20             = _mm_sub_pd(ix2,jx0);
169             dy20             = _mm_sub_pd(iy2,jy0);
170             dz20             = _mm_sub_pd(iz2,jz0);
171             dx30             = _mm_sub_pd(ix3,jx0);
172             dy30             = _mm_sub_pd(iy3,jy0);
173             dz30             = _mm_sub_pd(iz3,jz0);
174
175             /* Calculate squared distance and things based on it */
176             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
177             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
178             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
179
180             rinv10           = gmx_mm_invsqrt_pd(rsq10);
181             rinv20           = gmx_mm_invsqrt_pd(rsq20);
182             rinv30           = gmx_mm_invsqrt_pd(rsq30);
183
184             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
185             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
186             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
187
188             /* Load parameters for j particles */
189             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
190
191             fjx0             = _mm_setzero_pd();
192             fjy0             = _mm_setzero_pd();
193             fjz0             = _mm_setzero_pd();
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             r10              = _mm_mul_pd(rsq10,rinv10);
200
201             /* Compute parameters for interactions between i and j atoms */
202             qq10             = _mm_mul_pd(iq1,jq0);
203
204             /* EWALD ELECTROSTATICS */
205
206             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
207             ewrt             = _mm_mul_pd(r10,ewtabscale);
208             ewitab           = _mm_cvttpd_epi32(ewrt);
209 #ifdef __XOP__
210             eweps            = _mm_frcz_pd(ewrt);
211 #else
212             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
213 #endif
214             twoeweps         = _mm_add_pd(eweps,eweps);
215             ewitab           = _mm_slli_epi32(ewitab,2);
216             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
217             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
218             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
219             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
220             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
221             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
222             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
223             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
224             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
225             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
226
227             /* Update potential sum for this i atom from the interaction with this j atom. */
228             velecsum         = _mm_add_pd(velecsum,velec);
229
230             fscal            = felec;
231
232             /* Update vectorial force */
233             fix1             = _mm_macc_pd(dx10,fscal,fix1);
234             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
235             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
236             
237             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
238             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
239             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r20              = _mm_mul_pd(rsq20,rinv20);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq20             = _mm_mul_pd(iq2,jq0);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
253             ewrt             = _mm_mul_pd(r20,ewtabscale);
254             ewitab           = _mm_cvttpd_epi32(ewrt);
255 #ifdef __XOP__
256             eweps            = _mm_frcz_pd(ewrt);
257 #else
258             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
259 #endif
260             twoeweps         = _mm_add_pd(eweps,eweps);
261             ewitab           = _mm_slli_epi32(ewitab,2);
262             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
263             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
264             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
265             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
266             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
268             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
269             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
270             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
271             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velecsum         = _mm_add_pd(velecsum,velec);
275
276             fscal            = felec;
277
278             /* Update vectorial force */
279             fix2             = _mm_macc_pd(dx20,fscal,fix2);
280             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
281             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
282             
283             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
284             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
285             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
286
287             /**************************
288              * CALCULATE INTERACTIONS *
289              **************************/
290
291             r30              = _mm_mul_pd(rsq30,rinv30);
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq30             = _mm_mul_pd(iq3,jq0);
295
296             /* EWALD ELECTROSTATICS */
297
298             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
299             ewrt             = _mm_mul_pd(r30,ewtabscale);
300             ewitab           = _mm_cvttpd_epi32(ewrt);
301 #ifdef __XOP__
302             eweps            = _mm_frcz_pd(ewrt);
303 #else
304             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
305 #endif
306             twoeweps         = _mm_add_pd(eweps,eweps);
307             ewitab           = _mm_slli_epi32(ewitab,2);
308             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
309             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
310             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
311             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
312             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
313             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
314             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
315             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
316             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
317             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velecsum         = _mm_add_pd(velecsum,velec);
321
322             fscal            = felec;
323
324             /* Update vectorial force */
325             fix3             = _mm_macc_pd(dx30,fscal,fix3);
326             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
327             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
328             
329             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
330             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
331             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
332
333             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
334
335             /* Inner loop uses 135 flops */
336         }
337
338         if(jidx<j_index_end)
339         {
340
341             jnrA             = jjnr[jidx];
342             j_coord_offsetA  = DIM*jnrA;
343
344             /* load j atom coordinates */
345             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
346                                               &jx0,&jy0,&jz0);
347
348             /* Calculate displacement vector */
349             dx10             = _mm_sub_pd(ix1,jx0);
350             dy10             = _mm_sub_pd(iy1,jy0);
351             dz10             = _mm_sub_pd(iz1,jz0);
352             dx20             = _mm_sub_pd(ix2,jx0);
353             dy20             = _mm_sub_pd(iy2,jy0);
354             dz20             = _mm_sub_pd(iz2,jz0);
355             dx30             = _mm_sub_pd(ix3,jx0);
356             dy30             = _mm_sub_pd(iy3,jy0);
357             dz30             = _mm_sub_pd(iz3,jz0);
358
359             /* Calculate squared distance and things based on it */
360             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
361             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
362             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
363
364             rinv10           = gmx_mm_invsqrt_pd(rsq10);
365             rinv20           = gmx_mm_invsqrt_pd(rsq20);
366             rinv30           = gmx_mm_invsqrt_pd(rsq30);
367
368             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
369             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
370             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
371
372             /* Load parameters for j particles */
373             jq0              = _mm_load_sd(charge+jnrA+0);
374
375             fjx0             = _mm_setzero_pd();
376             fjy0             = _mm_setzero_pd();
377             fjz0             = _mm_setzero_pd();
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r10              = _mm_mul_pd(rsq10,rinv10);
384
385             /* Compute parameters for interactions between i and j atoms */
386             qq10             = _mm_mul_pd(iq1,jq0);
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = _mm_mul_pd(r10,ewtabscale);
392             ewitab           = _mm_cvttpd_epi32(ewrt);
393 #ifdef __XOP__
394             eweps            = _mm_frcz_pd(ewrt);
395 #else
396             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
397 #endif
398             twoeweps         = _mm_add_pd(eweps,eweps);
399             ewitab           = _mm_slli_epi32(ewitab,2);
400             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
401             ewtabD           = _mm_setzero_pd();
402             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
403             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
404             ewtabFn          = _mm_setzero_pd();
405             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
406             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
407             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
408             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
409             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
413             velecsum         = _mm_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
418
419             /* Update vectorial force */
420             fix1             = _mm_macc_pd(dx10,fscal,fix1);
421             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
422             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
423             
424             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
425             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
426             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r20              = _mm_mul_pd(rsq20,rinv20);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq20             = _mm_mul_pd(iq2,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = _mm_mul_pd(r20,ewtabscale);
441             ewitab           = _mm_cvttpd_epi32(ewrt);
442 #ifdef __XOP__
443             eweps            = _mm_frcz_pd(ewrt);
444 #else
445             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
446 #endif
447             twoeweps         = _mm_add_pd(eweps,eweps);
448             ewitab           = _mm_slli_epi32(ewitab,2);
449             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
450             ewtabD           = _mm_setzero_pd();
451             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
452             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
453             ewtabFn          = _mm_setzero_pd();
454             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
455             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
456             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
457             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
458             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
459
460             /* Update potential sum for this i atom from the interaction with this j atom. */
461             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
462             velecsum         = _mm_add_pd(velecsum,velec);
463
464             fscal            = felec;
465
466             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
467
468             /* Update vectorial force */
469             fix2             = _mm_macc_pd(dx20,fscal,fix2);
470             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
471             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
472             
473             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
474             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
475             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r30              = _mm_mul_pd(rsq30,rinv30);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq30             = _mm_mul_pd(iq3,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm_mul_pd(r30,ewtabscale);
490             ewitab           = _mm_cvttpd_epi32(ewrt);
491 #ifdef __XOP__
492             eweps            = _mm_frcz_pd(ewrt);
493 #else
494             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
495 #endif
496             twoeweps         = _mm_add_pd(eweps,eweps);
497             ewitab           = _mm_slli_epi32(ewitab,2);
498             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
499             ewtabD           = _mm_setzero_pd();
500             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
501             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
502             ewtabFn          = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
504             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
505             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
506             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
507             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
511             velecsum         = _mm_add_pd(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Update vectorial force */
518             fix3             = _mm_macc_pd(dx30,fscal,fix3);
519             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
520             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
521             
522             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
523             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
524             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
525
526             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
527
528             /* Inner loop uses 135 flops */
529         }
530
531         /* End of innermost loop */
532
533         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
534                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
535
536         ggid                        = gid[iidx];
537         /* Update potential energies */
538         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
539
540         /* Increment number of inner iterations */
541         inneriter                  += j_index_end - j_index_start;
542
543         /* Outer loop uses 19 flops */
544     }
545
546     /* Increment number of outer iterations */
547     outeriter        += nri;
548
549     /* Update outer/inner flops */
550
551     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*135);
552 }
553 /*
554  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_double
555  * Electrostatics interaction: Ewald
556  * VdW interaction:            None
557  * Geometry:                   Water4-Particle
558  * Calculate force/pot:        Force
559  */
560 void
561 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_double
562                     (t_nblist * gmx_restrict                nlist,
563                      rvec * gmx_restrict                    xx,
564                      rvec * gmx_restrict                    ff,
565                      t_forcerec * gmx_restrict              fr,
566                      t_mdatoms * gmx_restrict               mdatoms,
567                      nb_kernel_data_t * gmx_restrict        kernel_data,
568                      t_nrnb * gmx_restrict                  nrnb)
569 {
570     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
571      * just 0 for non-waters.
572      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
573      * jnr indices corresponding to data put in the four positions in the SIMD register.
574      */
575     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
576     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
577     int              jnrA,jnrB;
578     int              j_coord_offsetA,j_coord_offsetB;
579     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
580     real             rcutoff_scalar;
581     real             *shiftvec,*fshift,*x,*f;
582     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
583     int              vdwioffset1;
584     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
585     int              vdwioffset2;
586     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
587     int              vdwioffset3;
588     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
589     int              vdwjidx0A,vdwjidx0B;
590     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
591     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
592     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
593     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
594     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
595     real             *charge;
596     __m128i          ewitab;
597     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
598     real             *ewtab;
599     __m128d          dummy_mask,cutoff_mask;
600     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
601     __m128d          one     = _mm_set1_pd(1.0);
602     __m128d          two     = _mm_set1_pd(2.0);
603     x                = xx[0];
604     f                = ff[0];
605
606     nri              = nlist->nri;
607     iinr             = nlist->iinr;
608     jindex           = nlist->jindex;
609     jjnr             = nlist->jjnr;
610     shiftidx         = nlist->shift;
611     gid              = nlist->gid;
612     shiftvec         = fr->shift_vec[0];
613     fshift           = fr->fshift[0];
614     facel            = _mm_set1_pd(fr->epsfac);
615     charge           = mdatoms->chargeA;
616
617     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
618     ewtab            = fr->ic->tabq_coul_F;
619     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
620     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
621
622     /* Setup water-specific parameters */
623     inr              = nlist->iinr[0];
624     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
625     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
626     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
627
628     /* Avoid stupid compiler warnings */
629     jnrA = jnrB = 0;
630     j_coord_offsetA = 0;
631     j_coord_offsetB = 0;
632
633     outeriter        = 0;
634     inneriter        = 0;
635
636     /* Start outer loop over neighborlists */
637     for(iidx=0; iidx<nri; iidx++)
638     {
639         /* Load shift vector for this list */
640         i_shift_offset   = DIM*shiftidx[iidx];
641
642         /* Load limits for loop over neighbors */
643         j_index_start    = jindex[iidx];
644         j_index_end      = jindex[iidx+1];
645
646         /* Get outer coordinate index */
647         inr              = iinr[iidx];
648         i_coord_offset   = DIM*inr;
649
650         /* Load i particle coords and add shift vector */
651         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
652                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
653
654         fix1             = _mm_setzero_pd();
655         fiy1             = _mm_setzero_pd();
656         fiz1             = _mm_setzero_pd();
657         fix2             = _mm_setzero_pd();
658         fiy2             = _mm_setzero_pd();
659         fiz2             = _mm_setzero_pd();
660         fix3             = _mm_setzero_pd();
661         fiy3             = _mm_setzero_pd();
662         fiz3             = _mm_setzero_pd();
663
664         /* Start inner kernel loop */
665         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
666         {
667
668             /* Get j neighbor index, and coordinate index */
669             jnrA             = jjnr[jidx];
670             jnrB             = jjnr[jidx+1];
671             j_coord_offsetA  = DIM*jnrA;
672             j_coord_offsetB  = DIM*jnrB;
673
674             /* load j atom coordinates */
675             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
676                                               &jx0,&jy0,&jz0);
677
678             /* Calculate displacement vector */
679             dx10             = _mm_sub_pd(ix1,jx0);
680             dy10             = _mm_sub_pd(iy1,jy0);
681             dz10             = _mm_sub_pd(iz1,jz0);
682             dx20             = _mm_sub_pd(ix2,jx0);
683             dy20             = _mm_sub_pd(iy2,jy0);
684             dz20             = _mm_sub_pd(iz2,jz0);
685             dx30             = _mm_sub_pd(ix3,jx0);
686             dy30             = _mm_sub_pd(iy3,jy0);
687             dz30             = _mm_sub_pd(iz3,jz0);
688
689             /* Calculate squared distance and things based on it */
690             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
691             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
692             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
693
694             rinv10           = gmx_mm_invsqrt_pd(rsq10);
695             rinv20           = gmx_mm_invsqrt_pd(rsq20);
696             rinv30           = gmx_mm_invsqrt_pd(rsq30);
697
698             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
699             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
700             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
701
702             /* Load parameters for j particles */
703             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
704
705             fjx0             = _mm_setzero_pd();
706             fjy0             = _mm_setzero_pd();
707             fjz0             = _mm_setzero_pd();
708
709             /**************************
710              * CALCULATE INTERACTIONS *
711              **************************/
712
713             r10              = _mm_mul_pd(rsq10,rinv10);
714
715             /* Compute parameters for interactions between i and j atoms */
716             qq10             = _mm_mul_pd(iq1,jq0);
717
718             /* EWALD ELECTROSTATICS */
719
720             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
721             ewrt             = _mm_mul_pd(r10,ewtabscale);
722             ewitab           = _mm_cvttpd_epi32(ewrt);
723 #ifdef __XOP__
724             eweps            = _mm_frcz_pd(ewrt);
725 #else
726             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
727 #endif
728             twoeweps         = _mm_add_pd(eweps,eweps);
729             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
730                                          &ewtabF,&ewtabFn);
731             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
732             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
733
734             fscal            = felec;
735
736             /* Update vectorial force */
737             fix1             = _mm_macc_pd(dx10,fscal,fix1);
738             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
739             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
740             
741             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
742             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
743             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
744
745             /**************************
746              * CALCULATE INTERACTIONS *
747              **************************/
748
749             r20              = _mm_mul_pd(rsq20,rinv20);
750
751             /* Compute parameters for interactions between i and j atoms */
752             qq20             = _mm_mul_pd(iq2,jq0);
753
754             /* EWALD ELECTROSTATICS */
755
756             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
757             ewrt             = _mm_mul_pd(r20,ewtabscale);
758             ewitab           = _mm_cvttpd_epi32(ewrt);
759 #ifdef __XOP__
760             eweps            = _mm_frcz_pd(ewrt);
761 #else
762             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
763 #endif
764             twoeweps         = _mm_add_pd(eweps,eweps);
765             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
766                                          &ewtabF,&ewtabFn);
767             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
768             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
769
770             fscal            = felec;
771
772             /* Update vectorial force */
773             fix2             = _mm_macc_pd(dx20,fscal,fix2);
774             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
775             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
776             
777             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
778             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
779             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
780
781             /**************************
782              * CALCULATE INTERACTIONS *
783              **************************/
784
785             r30              = _mm_mul_pd(rsq30,rinv30);
786
787             /* Compute parameters for interactions between i and j atoms */
788             qq30             = _mm_mul_pd(iq3,jq0);
789
790             /* EWALD ELECTROSTATICS */
791
792             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
793             ewrt             = _mm_mul_pd(r30,ewtabscale);
794             ewitab           = _mm_cvttpd_epi32(ewrt);
795 #ifdef __XOP__
796             eweps            = _mm_frcz_pd(ewrt);
797 #else
798             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
799 #endif
800             twoeweps         = _mm_add_pd(eweps,eweps);
801             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
802                                          &ewtabF,&ewtabFn);
803             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
804             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
805
806             fscal            = felec;
807
808             /* Update vectorial force */
809             fix3             = _mm_macc_pd(dx30,fscal,fix3);
810             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
811             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
812             
813             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
814             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
815             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
816
817             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
818
819             /* Inner loop uses 120 flops */
820         }
821
822         if(jidx<j_index_end)
823         {
824
825             jnrA             = jjnr[jidx];
826             j_coord_offsetA  = DIM*jnrA;
827
828             /* load j atom coordinates */
829             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
830                                               &jx0,&jy0,&jz0);
831
832             /* Calculate displacement vector */
833             dx10             = _mm_sub_pd(ix1,jx0);
834             dy10             = _mm_sub_pd(iy1,jy0);
835             dz10             = _mm_sub_pd(iz1,jz0);
836             dx20             = _mm_sub_pd(ix2,jx0);
837             dy20             = _mm_sub_pd(iy2,jy0);
838             dz20             = _mm_sub_pd(iz2,jz0);
839             dx30             = _mm_sub_pd(ix3,jx0);
840             dy30             = _mm_sub_pd(iy3,jy0);
841             dz30             = _mm_sub_pd(iz3,jz0);
842
843             /* Calculate squared distance and things based on it */
844             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
845             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
846             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
847
848             rinv10           = gmx_mm_invsqrt_pd(rsq10);
849             rinv20           = gmx_mm_invsqrt_pd(rsq20);
850             rinv30           = gmx_mm_invsqrt_pd(rsq30);
851
852             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
853             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
854             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
855
856             /* Load parameters for j particles */
857             jq0              = _mm_load_sd(charge+jnrA+0);
858
859             fjx0             = _mm_setzero_pd();
860             fjy0             = _mm_setzero_pd();
861             fjz0             = _mm_setzero_pd();
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r10              = _mm_mul_pd(rsq10,rinv10);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq10             = _mm_mul_pd(iq1,jq0);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
875             ewrt             = _mm_mul_pd(r10,ewtabscale);
876             ewitab           = _mm_cvttpd_epi32(ewrt);
877 #ifdef __XOP__
878             eweps            = _mm_frcz_pd(ewrt);
879 #else
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881 #endif
882             twoeweps         = _mm_add_pd(eweps,eweps);
883             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
884             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
885             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
886
887             fscal            = felec;
888
889             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
890
891             /* Update vectorial force */
892             fix1             = _mm_macc_pd(dx10,fscal,fix1);
893             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
894             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
895             
896             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
897             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
898             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
899
900             /**************************
901              * CALCULATE INTERACTIONS *
902              **************************/
903
904             r20              = _mm_mul_pd(rsq20,rinv20);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq20             = _mm_mul_pd(iq2,jq0);
908
909             /* EWALD ELECTROSTATICS */
910
911             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
912             ewrt             = _mm_mul_pd(r20,ewtabscale);
913             ewitab           = _mm_cvttpd_epi32(ewrt);
914 #ifdef __XOP__
915             eweps            = _mm_frcz_pd(ewrt);
916 #else
917             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
918 #endif
919             twoeweps         = _mm_add_pd(eweps,eweps);
920             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
921             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
923
924             fscal            = felec;
925
926             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
927
928             /* Update vectorial force */
929             fix2             = _mm_macc_pd(dx20,fscal,fix2);
930             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
931             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
932             
933             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
934             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
935             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r30              = _mm_mul_pd(rsq30,rinv30);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq30             = _mm_mul_pd(iq3,jq0);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _mm_mul_pd(r30,ewtabscale);
950             ewitab           = _mm_cvttpd_epi32(ewrt);
951 #ifdef __XOP__
952             eweps            = _mm_frcz_pd(ewrt);
953 #else
954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
955 #endif
956             twoeweps         = _mm_add_pd(eweps,eweps);
957             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
958             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
959             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
960
961             fscal            = felec;
962
963             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
964
965             /* Update vectorial force */
966             fix3             = _mm_macc_pd(dx30,fscal,fix3);
967             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
968             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
969             
970             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
971             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
972             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
973
974             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
975
976             /* Inner loop uses 120 flops */
977         }
978
979         /* End of innermost loop */
980
981         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
982                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
983
984         /* Increment number of inner iterations */
985         inneriter                  += j_index_end - j_index_start;
986
987         /* Outer loop uses 18 flops */
988     }
989
990     /* Increment number of outer iterations */
991     outeriter        += nri;
992
993     /* Update outer/inner flops */
994
995     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
996 }