Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
124     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
125     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
151                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
152
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159         fix3             = _mm_setzero_pd();
160         fiy3             = _mm_setzero_pd();
161         fiz3             = _mm_setzero_pd();
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx10             = _mm_sub_pd(ix1,jx0);
182             dy10             = _mm_sub_pd(iy1,jy0);
183             dz10             = _mm_sub_pd(iz1,jz0);
184             dx20             = _mm_sub_pd(ix2,jx0);
185             dy20             = _mm_sub_pd(iy2,jy0);
186             dz20             = _mm_sub_pd(iz2,jz0);
187             dx30             = _mm_sub_pd(ix3,jx0);
188             dy30             = _mm_sub_pd(iy3,jy0);
189             dz30             = _mm_sub_pd(iz3,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
193             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
194             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
195
196             rinv10           = gmx_mm_invsqrt_pd(rsq10);
197             rinv20           = gmx_mm_invsqrt_pd(rsq20);
198             rinv30           = gmx_mm_invsqrt_pd(rsq30);
199
200             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
201             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
202             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
206
207             fjx0             = _mm_setzero_pd();
208             fjy0             = _mm_setzero_pd();
209             fjz0             = _mm_setzero_pd();
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             r10              = _mm_mul_pd(rsq10,rinv10);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq10             = _mm_mul_pd(iq1,jq0);
219
220             /* EWALD ELECTROSTATICS */
221
222             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
223             ewrt             = _mm_mul_pd(r10,ewtabscale);
224             ewitab           = _mm_cvttpd_epi32(ewrt);
225 #ifdef __XOP__
226             eweps            = _mm_frcz_pd(ewrt);
227 #else
228             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
229 #endif
230             twoeweps         = _mm_add_pd(eweps,eweps);
231             ewitab           = _mm_slli_epi32(ewitab,2);
232             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
233             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
234             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
235             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
236             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
237             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
238             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
239             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
240             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
241             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velecsum         = _mm_add_pd(velecsum,velec);
245
246             fscal            = felec;
247
248             /* Update vectorial force */
249             fix1             = _mm_macc_pd(dx10,fscal,fix1);
250             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
251             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
252             
253             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
254             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
255             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r20              = _mm_mul_pd(rsq20,rinv20);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq20             = _mm_mul_pd(iq2,jq0);
265
266             /* EWALD ELECTROSTATICS */
267
268             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
269             ewrt             = _mm_mul_pd(r20,ewtabscale);
270             ewitab           = _mm_cvttpd_epi32(ewrt);
271 #ifdef __XOP__
272             eweps            = _mm_frcz_pd(ewrt);
273 #else
274             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
275 #endif
276             twoeweps         = _mm_add_pd(eweps,eweps);
277             ewitab           = _mm_slli_epi32(ewitab,2);
278             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
279             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
280             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
281             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
282             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
283             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
284             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
285             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
286             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
287             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm_add_pd(velecsum,velec);
291
292             fscal            = felec;
293
294             /* Update vectorial force */
295             fix2             = _mm_macc_pd(dx20,fscal,fix2);
296             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
297             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
298             
299             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
300             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
301             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             r30              = _mm_mul_pd(rsq30,rinv30);
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq30             = _mm_mul_pd(iq3,jq0);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm_mul_pd(r30,ewtabscale);
316             ewitab           = _mm_cvttpd_epi32(ewrt);
317 #ifdef __XOP__
318             eweps            = _mm_frcz_pd(ewrt);
319 #else
320             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
321 #endif
322             twoeweps         = _mm_add_pd(eweps,eweps);
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
326             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
327             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
328             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
329             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
330             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
331             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
332             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
333             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Update vectorial force */
341             fix3             = _mm_macc_pd(dx30,fscal,fix3);
342             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
343             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
344             
345             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
346             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
347             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
348
349             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
350
351             /* Inner loop uses 135 flops */
352         }
353
354         if(jidx<j_index_end)
355         {
356
357             jnrA             = jjnr[jidx];
358             j_coord_offsetA  = DIM*jnrA;
359
360             /* load j atom coordinates */
361             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
362                                               &jx0,&jy0,&jz0);
363
364             /* Calculate displacement vector */
365             dx10             = _mm_sub_pd(ix1,jx0);
366             dy10             = _mm_sub_pd(iy1,jy0);
367             dz10             = _mm_sub_pd(iz1,jz0);
368             dx20             = _mm_sub_pd(ix2,jx0);
369             dy20             = _mm_sub_pd(iy2,jy0);
370             dz20             = _mm_sub_pd(iz2,jz0);
371             dx30             = _mm_sub_pd(ix3,jx0);
372             dy30             = _mm_sub_pd(iy3,jy0);
373             dz30             = _mm_sub_pd(iz3,jz0);
374
375             /* Calculate squared distance and things based on it */
376             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
377             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
378             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
379
380             rinv10           = gmx_mm_invsqrt_pd(rsq10);
381             rinv20           = gmx_mm_invsqrt_pd(rsq20);
382             rinv30           = gmx_mm_invsqrt_pd(rsq30);
383
384             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
385             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
386             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
387
388             /* Load parameters for j particles */
389             jq0              = _mm_load_sd(charge+jnrA+0);
390
391             fjx0             = _mm_setzero_pd();
392             fjy0             = _mm_setzero_pd();
393             fjz0             = _mm_setzero_pd();
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             r10              = _mm_mul_pd(rsq10,rinv10);
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq10             = _mm_mul_pd(iq1,jq0);
403
404             /* EWALD ELECTROSTATICS */
405
406             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
407             ewrt             = _mm_mul_pd(r10,ewtabscale);
408             ewitab           = _mm_cvttpd_epi32(ewrt);
409 #ifdef __XOP__
410             eweps            = _mm_frcz_pd(ewrt);
411 #else
412             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
413 #endif
414             twoeweps         = _mm_add_pd(eweps,eweps);
415             ewitab           = _mm_slli_epi32(ewitab,2);
416             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
417             ewtabD           = _mm_setzero_pd();
418             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
419             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
420             ewtabFn          = _mm_setzero_pd();
421             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
422             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
423             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
424             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
425             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
429             velecsum         = _mm_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
434
435             /* Update vectorial force */
436             fix1             = _mm_macc_pd(dx10,fscal,fix1);
437             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
438             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
439             
440             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
441             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
442             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             r20              = _mm_mul_pd(rsq20,rinv20);
449
450             /* Compute parameters for interactions between i and j atoms */
451             qq20             = _mm_mul_pd(iq2,jq0);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm_mul_pd(r20,ewtabscale);
457             ewitab           = _mm_cvttpd_epi32(ewrt);
458 #ifdef __XOP__
459             eweps            = _mm_frcz_pd(ewrt);
460 #else
461             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
462 #endif
463             twoeweps         = _mm_add_pd(eweps,eweps);
464             ewitab           = _mm_slli_epi32(ewitab,2);
465             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
466             ewtabD           = _mm_setzero_pd();
467             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
468             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
469             ewtabFn          = _mm_setzero_pd();
470             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
471             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
472             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
473             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
474             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
478             velecsum         = _mm_add_pd(velecsum,velec);
479
480             fscal            = felec;
481
482             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
483
484             /* Update vectorial force */
485             fix2             = _mm_macc_pd(dx20,fscal,fix2);
486             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
487             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
488             
489             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
490             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
491             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r30              = _mm_mul_pd(rsq30,rinv30);
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq30             = _mm_mul_pd(iq3,jq0);
501
502             /* EWALD ELECTROSTATICS */
503
504             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
505             ewrt             = _mm_mul_pd(r30,ewtabscale);
506             ewitab           = _mm_cvttpd_epi32(ewrt);
507 #ifdef __XOP__
508             eweps            = _mm_frcz_pd(ewrt);
509 #else
510             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
511 #endif
512             twoeweps         = _mm_add_pd(eweps,eweps);
513             ewitab           = _mm_slli_epi32(ewitab,2);
514             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
515             ewtabD           = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
517             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
518             ewtabFn          = _mm_setzero_pd();
519             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
520             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
521             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
522             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
523             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
527             velecsum         = _mm_add_pd(velecsum,velec);
528
529             fscal            = felec;
530
531             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
532
533             /* Update vectorial force */
534             fix3             = _mm_macc_pd(dx30,fscal,fix3);
535             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
536             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
537             
538             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
539             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
540             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
541
542             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
543
544             /* Inner loop uses 135 flops */
545         }
546
547         /* End of innermost loop */
548
549         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
550                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
551
552         ggid                        = gid[iidx];
553         /* Update potential energies */
554         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
555
556         /* Increment number of inner iterations */
557         inneriter                  += j_index_end - j_index_start;
558
559         /* Outer loop uses 19 flops */
560     }
561
562     /* Increment number of outer iterations */
563     outeriter        += nri;
564
565     /* Update outer/inner flops */
566
567     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*135);
568 }
569 /*
570  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_double
571  * Electrostatics interaction: Ewald
572  * VdW interaction:            None
573  * Geometry:                   Water4-Particle
574  * Calculate force/pot:        Force
575  */
576 void
577 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_avx_128_fma_double
578                     (t_nblist                    * gmx_restrict       nlist,
579                      rvec                        * gmx_restrict          xx,
580                      rvec                        * gmx_restrict          ff,
581                      t_forcerec                  * gmx_restrict          fr,
582                      t_mdatoms                   * gmx_restrict     mdatoms,
583                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
584                      t_nrnb                      * gmx_restrict        nrnb)
585 {
586     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
587      * just 0 for non-waters.
588      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
589      * jnr indices corresponding to data put in the four positions in the SIMD register.
590      */
591     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
592     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
593     int              jnrA,jnrB;
594     int              j_coord_offsetA,j_coord_offsetB;
595     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
596     real             rcutoff_scalar;
597     real             *shiftvec,*fshift,*x,*f;
598     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
599     int              vdwioffset1;
600     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
601     int              vdwioffset2;
602     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
603     int              vdwioffset3;
604     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
605     int              vdwjidx0A,vdwjidx0B;
606     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
607     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
608     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
609     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
610     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
611     real             *charge;
612     __m128i          ewitab;
613     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
614     real             *ewtab;
615     __m128d          dummy_mask,cutoff_mask;
616     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
617     __m128d          one     = _mm_set1_pd(1.0);
618     __m128d          two     = _mm_set1_pd(2.0);
619     x                = xx[0];
620     f                = ff[0];
621
622     nri              = nlist->nri;
623     iinr             = nlist->iinr;
624     jindex           = nlist->jindex;
625     jjnr             = nlist->jjnr;
626     shiftidx         = nlist->shift;
627     gid              = nlist->gid;
628     shiftvec         = fr->shift_vec[0];
629     fshift           = fr->fshift[0];
630     facel            = _mm_set1_pd(fr->epsfac);
631     charge           = mdatoms->chargeA;
632
633     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
634     ewtab            = fr->ic->tabq_coul_F;
635     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
636     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
637
638     /* Setup water-specific parameters */
639     inr              = nlist->iinr[0];
640     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
641     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
642     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
643
644     /* Avoid stupid compiler warnings */
645     jnrA = jnrB = 0;
646     j_coord_offsetA = 0;
647     j_coord_offsetB = 0;
648
649     outeriter        = 0;
650     inneriter        = 0;
651
652     /* Start outer loop over neighborlists */
653     for(iidx=0; iidx<nri; iidx++)
654     {
655         /* Load shift vector for this list */
656         i_shift_offset   = DIM*shiftidx[iidx];
657
658         /* Load limits for loop over neighbors */
659         j_index_start    = jindex[iidx];
660         j_index_end      = jindex[iidx+1];
661
662         /* Get outer coordinate index */
663         inr              = iinr[iidx];
664         i_coord_offset   = DIM*inr;
665
666         /* Load i particle coords and add shift vector */
667         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
668                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
669
670         fix1             = _mm_setzero_pd();
671         fiy1             = _mm_setzero_pd();
672         fiz1             = _mm_setzero_pd();
673         fix2             = _mm_setzero_pd();
674         fiy2             = _mm_setzero_pd();
675         fiz2             = _mm_setzero_pd();
676         fix3             = _mm_setzero_pd();
677         fiy3             = _mm_setzero_pd();
678         fiz3             = _mm_setzero_pd();
679
680         /* Start inner kernel loop */
681         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
682         {
683
684             /* Get j neighbor index, and coordinate index */
685             jnrA             = jjnr[jidx];
686             jnrB             = jjnr[jidx+1];
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689
690             /* load j atom coordinates */
691             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
692                                               &jx0,&jy0,&jz0);
693
694             /* Calculate displacement vector */
695             dx10             = _mm_sub_pd(ix1,jx0);
696             dy10             = _mm_sub_pd(iy1,jy0);
697             dz10             = _mm_sub_pd(iz1,jz0);
698             dx20             = _mm_sub_pd(ix2,jx0);
699             dy20             = _mm_sub_pd(iy2,jy0);
700             dz20             = _mm_sub_pd(iz2,jz0);
701             dx30             = _mm_sub_pd(ix3,jx0);
702             dy30             = _mm_sub_pd(iy3,jy0);
703             dz30             = _mm_sub_pd(iz3,jz0);
704
705             /* Calculate squared distance and things based on it */
706             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
707             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
708             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
709
710             rinv10           = gmx_mm_invsqrt_pd(rsq10);
711             rinv20           = gmx_mm_invsqrt_pd(rsq20);
712             rinv30           = gmx_mm_invsqrt_pd(rsq30);
713
714             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
715             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
716             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
717
718             /* Load parameters for j particles */
719             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
720
721             fjx0             = _mm_setzero_pd();
722             fjy0             = _mm_setzero_pd();
723             fjz0             = _mm_setzero_pd();
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             r10              = _mm_mul_pd(rsq10,rinv10);
730
731             /* Compute parameters for interactions between i and j atoms */
732             qq10             = _mm_mul_pd(iq1,jq0);
733
734             /* EWALD ELECTROSTATICS */
735
736             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
737             ewrt             = _mm_mul_pd(r10,ewtabscale);
738             ewitab           = _mm_cvttpd_epi32(ewrt);
739 #ifdef __XOP__
740             eweps            = _mm_frcz_pd(ewrt);
741 #else
742             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
743 #endif
744             twoeweps         = _mm_add_pd(eweps,eweps);
745             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
746                                          &ewtabF,&ewtabFn);
747             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
748             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
749
750             fscal            = felec;
751
752             /* Update vectorial force */
753             fix1             = _mm_macc_pd(dx10,fscal,fix1);
754             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
755             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
756             
757             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
758             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
759             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
760
761             /**************************
762              * CALCULATE INTERACTIONS *
763              **************************/
764
765             r20              = _mm_mul_pd(rsq20,rinv20);
766
767             /* Compute parameters for interactions between i and j atoms */
768             qq20             = _mm_mul_pd(iq2,jq0);
769
770             /* EWALD ELECTROSTATICS */
771
772             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
773             ewrt             = _mm_mul_pd(r20,ewtabscale);
774             ewitab           = _mm_cvttpd_epi32(ewrt);
775 #ifdef __XOP__
776             eweps            = _mm_frcz_pd(ewrt);
777 #else
778             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
779 #endif
780             twoeweps         = _mm_add_pd(eweps,eweps);
781             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
782                                          &ewtabF,&ewtabFn);
783             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
784             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
785
786             fscal            = felec;
787
788             /* Update vectorial force */
789             fix2             = _mm_macc_pd(dx20,fscal,fix2);
790             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
791             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
792             
793             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
794             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
795             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             r30              = _mm_mul_pd(rsq30,rinv30);
802
803             /* Compute parameters for interactions between i and j atoms */
804             qq30             = _mm_mul_pd(iq3,jq0);
805
806             /* EWALD ELECTROSTATICS */
807
808             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
809             ewrt             = _mm_mul_pd(r30,ewtabscale);
810             ewitab           = _mm_cvttpd_epi32(ewrt);
811 #ifdef __XOP__
812             eweps            = _mm_frcz_pd(ewrt);
813 #else
814             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
815 #endif
816             twoeweps         = _mm_add_pd(eweps,eweps);
817             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
818                                          &ewtabF,&ewtabFn);
819             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
820             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
821
822             fscal            = felec;
823
824             /* Update vectorial force */
825             fix3             = _mm_macc_pd(dx30,fscal,fix3);
826             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
827             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
828             
829             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
830             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
831             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
832
833             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
834
835             /* Inner loop uses 120 flops */
836         }
837
838         if(jidx<j_index_end)
839         {
840
841             jnrA             = jjnr[jidx];
842             j_coord_offsetA  = DIM*jnrA;
843
844             /* load j atom coordinates */
845             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
846                                               &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx10             = _mm_sub_pd(ix1,jx0);
850             dy10             = _mm_sub_pd(iy1,jy0);
851             dz10             = _mm_sub_pd(iz1,jz0);
852             dx20             = _mm_sub_pd(ix2,jx0);
853             dy20             = _mm_sub_pd(iy2,jy0);
854             dz20             = _mm_sub_pd(iz2,jz0);
855             dx30             = _mm_sub_pd(ix3,jx0);
856             dy30             = _mm_sub_pd(iy3,jy0);
857             dz30             = _mm_sub_pd(iz3,jz0);
858
859             /* Calculate squared distance and things based on it */
860             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
861             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
862             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
863
864             rinv10           = gmx_mm_invsqrt_pd(rsq10);
865             rinv20           = gmx_mm_invsqrt_pd(rsq20);
866             rinv30           = gmx_mm_invsqrt_pd(rsq30);
867
868             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
869             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
870             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
871
872             /* Load parameters for j particles */
873             jq0              = _mm_load_sd(charge+jnrA+0);
874
875             fjx0             = _mm_setzero_pd();
876             fjy0             = _mm_setzero_pd();
877             fjz0             = _mm_setzero_pd();
878
879             /**************************
880              * CALCULATE INTERACTIONS *
881              **************************/
882
883             r10              = _mm_mul_pd(rsq10,rinv10);
884
885             /* Compute parameters for interactions between i and j atoms */
886             qq10             = _mm_mul_pd(iq1,jq0);
887
888             /* EWALD ELECTROSTATICS */
889
890             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
891             ewrt             = _mm_mul_pd(r10,ewtabscale);
892             ewitab           = _mm_cvttpd_epi32(ewrt);
893 #ifdef __XOP__
894             eweps            = _mm_frcz_pd(ewrt);
895 #else
896             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
897 #endif
898             twoeweps         = _mm_add_pd(eweps,eweps);
899             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
900             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
901             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
902
903             fscal            = felec;
904
905             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
906
907             /* Update vectorial force */
908             fix1             = _mm_macc_pd(dx10,fscal,fix1);
909             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
910             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
911             
912             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
913             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
914             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
915
916             /**************************
917              * CALCULATE INTERACTIONS *
918              **************************/
919
920             r20              = _mm_mul_pd(rsq20,rinv20);
921
922             /* Compute parameters for interactions between i and j atoms */
923             qq20             = _mm_mul_pd(iq2,jq0);
924
925             /* EWALD ELECTROSTATICS */
926
927             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
928             ewrt             = _mm_mul_pd(r20,ewtabscale);
929             ewitab           = _mm_cvttpd_epi32(ewrt);
930 #ifdef __XOP__
931             eweps            = _mm_frcz_pd(ewrt);
932 #else
933             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
934 #endif
935             twoeweps         = _mm_add_pd(eweps,eweps);
936             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
937             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
938             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
939
940             fscal            = felec;
941
942             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
943
944             /* Update vectorial force */
945             fix2             = _mm_macc_pd(dx20,fscal,fix2);
946             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
947             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
948             
949             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
950             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
951             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
952
953             /**************************
954              * CALCULATE INTERACTIONS *
955              **************************/
956
957             r30              = _mm_mul_pd(rsq30,rinv30);
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq30             = _mm_mul_pd(iq3,jq0);
961
962             /* EWALD ELECTROSTATICS */
963
964             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
965             ewrt             = _mm_mul_pd(r30,ewtabscale);
966             ewitab           = _mm_cvttpd_epi32(ewrt);
967 #ifdef __XOP__
968             eweps            = _mm_frcz_pd(ewrt);
969 #else
970             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
971 #endif
972             twoeweps         = _mm_add_pd(eweps,eweps);
973             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
974             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
975             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
976
977             fscal            = felec;
978
979             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
980
981             /* Update vectorial force */
982             fix3             = _mm_macc_pd(dx30,fscal,fix3);
983             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
984             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
985             
986             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
987             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
988             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
989
990             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
991
992             /* Inner loop uses 120 flops */
993         }
994
995         /* End of innermost loop */
996
997         gmx_mm_update_iforce_3atom_swizzle_pd(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
998                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
999
1000         /* Increment number of inner iterations */
1001         inneriter                  += j_index_end - j_index_start;
1002
1003         /* Outer loop uses 18 flops */
1004     }
1005
1006     /* Increment number of outer iterations */
1007     outeriter        += nri;
1008
1009     /* Update outer/inner flops */
1010
1011     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120);
1012 }