Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
116     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
121     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
122     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
148                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
149
150         fix0             = _mm_setzero_pd();
151         fiy0             = _mm_setzero_pd();
152         fiz0             = _mm_setzero_pd();
153         fix1             = _mm_setzero_pd();
154         fiy1             = _mm_setzero_pd();
155         fiz1             = _mm_setzero_pd();
156         fix2             = _mm_setzero_pd();
157         fiy2             = _mm_setzero_pd();
158         fiz2             = _mm_setzero_pd();
159
160         /* Reset potential sums */
161         velecsum         = _mm_setzero_pd();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172
173             /* load j atom coordinates */
174             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                               &jx0,&jy0,&jz0);
176
177             /* Calculate displacement vector */
178             dx00             = _mm_sub_pd(ix0,jx0);
179             dy00             = _mm_sub_pd(iy0,jy0);
180             dz00             = _mm_sub_pd(iz0,jz0);
181             dx10             = _mm_sub_pd(ix1,jx0);
182             dy10             = _mm_sub_pd(iy1,jy0);
183             dz10             = _mm_sub_pd(iz1,jz0);
184             dx20             = _mm_sub_pd(ix2,jx0);
185             dy20             = _mm_sub_pd(iy2,jy0);
186             dz20             = _mm_sub_pd(iz2,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
190             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
191             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
192
193             rinv00           = avx128fma_invsqrt_d(rsq00);
194             rinv10           = avx128fma_invsqrt_d(rsq10);
195             rinv20           = avx128fma_invsqrt_d(rsq20);
196
197             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
198             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
199             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
203
204             fjx0             = _mm_setzero_pd();
205             fjy0             = _mm_setzero_pd();
206             fjz0             = _mm_setzero_pd();
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm_mul_pd(iq0,jq0);
216
217             /* EWALD ELECTROSTATICS */
218
219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
220             ewrt             = _mm_mul_pd(r00,ewtabscale);
221             ewitab           = _mm_cvttpd_epi32(ewrt);
222 #ifdef __XOP__
223             eweps            = _mm_frcz_pd(ewrt);
224 #else
225             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
226 #endif
227             twoeweps         = _mm_add_pd(eweps,eweps);
228             ewitab           = _mm_slli_epi32(ewitab,2);
229             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
230             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
231             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
232             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
233             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
234             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
235             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
236             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
237             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
238             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velecsum         = _mm_add_pd(velecsum,velec);
242
243             fscal            = felec;
244
245             /* Update vectorial force */
246             fix0             = _mm_macc_pd(dx00,fscal,fix0);
247             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
248             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
249             
250             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
251             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
252             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r10              = _mm_mul_pd(rsq10,rinv10);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq10             = _mm_mul_pd(iq1,jq0);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_pd(r10,ewtabscale);
267             ewitab           = _mm_cvttpd_epi32(ewrt);
268 #ifdef __XOP__
269             eweps            = _mm_frcz_pd(ewrt);
270 #else
271             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
272 #endif
273             twoeweps         = _mm_add_pd(eweps,eweps);
274             ewitab           = _mm_slli_epi32(ewitab,2);
275             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
276             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
277             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
278             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
279             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
281             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
282             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
283             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
284             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velecsum         = _mm_add_pd(velecsum,velec);
288
289             fscal            = felec;
290
291             /* Update vectorial force */
292             fix1             = _mm_macc_pd(dx10,fscal,fix1);
293             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
294             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
295             
296             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
297             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
298             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r20              = _mm_mul_pd(rsq20,rinv20);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq20             = _mm_mul_pd(iq2,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r20,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314 #ifdef __XOP__
315             eweps            = _mm_frcz_pd(ewrt);
316 #else
317             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
318 #endif
319             twoeweps         = _mm_add_pd(eweps,eweps);
320             ewitab           = _mm_slli_epi32(ewitab,2);
321             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
322             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
323             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
324             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
325             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
326             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
327             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
328             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
329             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
330             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             /* Update vectorial force */
338             fix2             = _mm_macc_pd(dx20,fscal,fix2);
339             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
340             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
341             
342             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
343             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
344             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
345
346             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
347
348             /* Inner loop uses 135 flops */
349         }
350
351         if(jidx<j_index_end)
352         {
353
354             jnrA             = jjnr[jidx];
355             j_coord_offsetA  = DIM*jnrA;
356
357             /* load j atom coordinates */
358             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
359                                               &jx0,&jy0,&jz0);
360
361             /* Calculate displacement vector */
362             dx00             = _mm_sub_pd(ix0,jx0);
363             dy00             = _mm_sub_pd(iy0,jy0);
364             dz00             = _mm_sub_pd(iz0,jz0);
365             dx10             = _mm_sub_pd(ix1,jx0);
366             dy10             = _mm_sub_pd(iy1,jy0);
367             dz10             = _mm_sub_pd(iz1,jz0);
368             dx20             = _mm_sub_pd(ix2,jx0);
369             dy20             = _mm_sub_pd(iy2,jy0);
370             dz20             = _mm_sub_pd(iz2,jz0);
371
372             /* Calculate squared distance and things based on it */
373             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
374             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
375             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
376
377             rinv00           = avx128fma_invsqrt_d(rsq00);
378             rinv10           = avx128fma_invsqrt_d(rsq10);
379             rinv20           = avx128fma_invsqrt_d(rsq20);
380
381             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
382             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
383             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
384
385             /* Load parameters for j particles */
386             jq0              = _mm_load_sd(charge+jnrA+0);
387
388             fjx0             = _mm_setzero_pd();
389             fjy0             = _mm_setzero_pd();
390             fjz0             = _mm_setzero_pd();
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             r00              = _mm_mul_pd(rsq00,rinv00);
397
398             /* Compute parameters for interactions between i and j atoms */
399             qq00             = _mm_mul_pd(iq0,jq0);
400
401             /* EWALD ELECTROSTATICS */
402
403             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
404             ewrt             = _mm_mul_pd(r00,ewtabscale);
405             ewitab           = _mm_cvttpd_epi32(ewrt);
406 #ifdef __XOP__
407             eweps            = _mm_frcz_pd(ewrt);
408 #else
409             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
410 #endif
411             twoeweps         = _mm_add_pd(eweps,eweps);
412             ewitab           = _mm_slli_epi32(ewitab,2);
413             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
414             ewtabD           = _mm_setzero_pd();
415             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
416             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
417             ewtabFn          = _mm_setzero_pd();
418             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
419             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
420             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
421             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
422             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
423
424             /* Update potential sum for this i atom from the interaction with this j atom. */
425             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
426             velecsum         = _mm_add_pd(velecsum,velec);
427
428             fscal            = felec;
429
430             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
431
432             /* Update vectorial force */
433             fix0             = _mm_macc_pd(dx00,fscal,fix0);
434             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
435             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
436             
437             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
438             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
439             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
440
441             /**************************
442              * CALCULATE INTERACTIONS *
443              **************************/
444
445             r10              = _mm_mul_pd(rsq10,rinv10);
446
447             /* Compute parameters for interactions between i and j atoms */
448             qq10             = _mm_mul_pd(iq1,jq0);
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = _mm_mul_pd(r10,ewtabscale);
454             ewitab           = _mm_cvttpd_epi32(ewrt);
455 #ifdef __XOP__
456             eweps            = _mm_frcz_pd(ewrt);
457 #else
458             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
459 #endif
460             twoeweps         = _mm_add_pd(eweps,eweps);
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
465             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
466             ewtabFn          = _mm_setzero_pd();
467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
468             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
469             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
470             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
471             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
475             velecsum         = _mm_add_pd(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
480
481             /* Update vectorial force */
482             fix1             = _mm_macc_pd(dx10,fscal,fix1);
483             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
484             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
485             
486             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
487             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
488             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r20              = _mm_mul_pd(rsq20,rinv20);
495
496             /* Compute parameters for interactions between i and j atoms */
497             qq20             = _mm_mul_pd(iq2,jq0);
498
499             /* EWALD ELECTROSTATICS */
500
501             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
502             ewrt             = _mm_mul_pd(r20,ewtabscale);
503             ewitab           = _mm_cvttpd_epi32(ewrt);
504 #ifdef __XOP__
505             eweps            = _mm_frcz_pd(ewrt);
506 #else
507             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
508 #endif
509             twoeweps         = _mm_add_pd(eweps,eweps);
510             ewitab           = _mm_slli_epi32(ewitab,2);
511             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
512             ewtabD           = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
514             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
515             ewtabFn          = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
517             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
518             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
519             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
520             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
524             velecsum         = _mm_add_pd(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
529
530             /* Update vectorial force */
531             fix2             = _mm_macc_pd(dx20,fscal,fix2);
532             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
533             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
534             
535             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
536             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
537             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
538
539             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
540
541             /* Inner loop uses 135 flops */
542         }
543
544         /* End of innermost loop */
545
546         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
547                                               f+i_coord_offset,fshift+i_shift_offset);
548
549         ggid                        = gid[iidx];
550         /* Update potential energies */
551         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
552
553         /* Increment number of inner iterations */
554         inneriter                  += j_index_end - j_index_start;
555
556         /* Outer loop uses 19 flops */
557     }
558
559     /* Increment number of outer iterations */
560     outeriter        += nri;
561
562     /* Update outer/inner flops */
563
564     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*135);
565 }
566 /*
567  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_128_fma_double
568  * Electrostatics interaction: Ewald
569  * VdW interaction:            None
570  * Geometry:                   Water3-Particle
571  * Calculate force/pot:        Force
572  */
573 void
574 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_128_fma_double
575                     (t_nblist                    * gmx_restrict       nlist,
576                      rvec                        * gmx_restrict          xx,
577                      rvec                        * gmx_restrict          ff,
578                      struct t_forcerec           * gmx_restrict          fr,
579                      t_mdatoms                   * gmx_restrict     mdatoms,
580                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
581                      t_nrnb                      * gmx_restrict        nrnb)
582 {
583     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
584      * just 0 for non-waters.
585      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
586      * jnr indices corresponding to data put in the four positions in the SIMD register.
587      */
588     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
589     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
590     int              jnrA,jnrB;
591     int              j_coord_offsetA,j_coord_offsetB;
592     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
593     real             rcutoff_scalar;
594     real             *shiftvec,*fshift,*x,*f;
595     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
596     int              vdwioffset0;
597     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
598     int              vdwioffset1;
599     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
600     int              vdwioffset2;
601     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
602     int              vdwjidx0A,vdwjidx0B;
603     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
604     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
605     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
606     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
607     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
608     real             *charge;
609     __m128i          ewitab;
610     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
611     real             *ewtab;
612     __m128d          dummy_mask,cutoff_mask;
613     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
614     __m128d          one     = _mm_set1_pd(1.0);
615     __m128d          two     = _mm_set1_pd(2.0);
616     x                = xx[0];
617     f                = ff[0];
618
619     nri              = nlist->nri;
620     iinr             = nlist->iinr;
621     jindex           = nlist->jindex;
622     jjnr             = nlist->jjnr;
623     shiftidx         = nlist->shift;
624     gid              = nlist->gid;
625     shiftvec         = fr->shift_vec[0];
626     fshift           = fr->fshift[0];
627     facel            = _mm_set1_pd(fr->ic->epsfac);
628     charge           = mdatoms->chargeA;
629
630     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
631     ewtab            = fr->ic->tabq_coul_F;
632     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
633     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
634
635     /* Setup water-specific parameters */
636     inr              = nlist->iinr[0];
637     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
638     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
639     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
640
641     /* Avoid stupid compiler warnings */
642     jnrA = jnrB = 0;
643     j_coord_offsetA = 0;
644     j_coord_offsetB = 0;
645
646     outeriter        = 0;
647     inneriter        = 0;
648
649     /* Start outer loop over neighborlists */
650     for(iidx=0; iidx<nri; iidx++)
651     {
652         /* Load shift vector for this list */
653         i_shift_offset   = DIM*shiftidx[iidx];
654
655         /* Load limits for loop over neighbors */
656         j_index_start    = jindex[iidx];
657         j_index_end      = jindex[iidx+1];
658
659         /* Get outer coordinate index */
660         inr              = iinr[iidx];
661         i_coord_offset   = DIM*inr;
662
663         /* Load i particle coords and add shift vector */
664         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
665                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
666
667         fix0             = _mm_setzero_pd();
668         fiy0             = _mm_setzero_pd();
669         fiz0             = _mm_setzero_pd();
670         fix1             = _mm_setzero_pd();
671         fiy1             = _mm_setzero_pd();
672         fiz1             = _mm_setzero_pd();
673         fix2             = _mm_setzero_pd();
674         fiy2             = _mm_setzero_pd();
675         fiz2             = _mm_setzero_pd();
676
677         /* Start inner kernel loop */
678         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
679         {
680
681             /* Get j neighbor index, and coordinate index */
682             jnrA             = jjnr[jidx];
683             jnrB             = jjnr[jidx+1];
684             j_coord_offsetA  = DIM*jnrA;
685             j_coord_offsetB  = DIM*jnrB;
686
687             /* load j atom coordinates */
688             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
689                                               &jx0,&jy0,&jz0);
690
691             /* Calculate displacement vector */
692             dx00             = _mm_sub_pd(ix0,jx0);
693             dy00             = _mm_sub_pd(iy0,jy0);
694             dz00             = _mm_sub_pd(iz0,jz0);
695             dx10             = _mm_sub_pd(ix1,jx0);
696             dy10             = _mm_sub_pd(iy1,jy0);
697             dz10             = _mm_sub_pd(iz1,jz0);
698             dx20             = _mm_sub_pd(ix2,jx0);
699             dy20             = _mm_sub_pd(iy2,jy0);
700             dz20             = _mm_sub_pd(iz2,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
704             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
705             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
706
707             rinv00           = avx128fma_invsqrt_d(rsq00);
708             rinv10           = avx128fma_invsqrt_d(rsq10);
709             rinv20           = avx128fma_invsqrt_d(rsq20);
710
711             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
712             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
713             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
717
718             fjx0             = _mm_setzero_pd();
719             fjy0             = _mm_setzero_pd();
720             fjz0             = _mm_setzero_pd();
721
722             /**************************
723              * CALCULATE INTERACTIONS *
724              **************************/
725
726             r00              = _mm_mul_pd(rsq00,rinv00);
727
728             /* Compute parameters for interactions between i and j atoms */
729             qq00             = _mm_mul_pd(iq0,jq0);
730
731             /* EWALD ELECTROSTATICS */
732
733             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
734             ewrt             = _mm_mul_pd(r00,ewtabscale);
735             ewitab           = _mm_cvttpd_epi32(ewrt);
736 #ifdef __XOP__
737             eweps            = _mm_frcz_pd(ewrt);
738 #else
739             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
740 #endif
741             twoeweps         = _mm_add_pd(eweps,eweps);
742             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
743                                          &ewtabF,&ewtabFn);
744             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
745             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
746
747             fscal            = felec;
748
749             /* Update vectorial force */
750             fix0             = _mm_macc_pd(dx00,fscal,fix0);
751             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
752             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
753             
754             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
755             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
756             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             r10              = _mm_mul_pd(rsq10,rinv10);
763
764             /* Compute parameters for interactions between i and j atoms */
765             qq10             = _mm_mul_pd(iq1,jq0);
766
767             /* EWALD ELECTROSTATICS */
768
769             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
770             ewrt             = _mm_mul_pd(r10,ewtabscale);
771             ewitab           = _mm_cvttpd_epi32(ewrt);
772 #ifdef __XOP__
773             eweps            = _mm_frcz_pd(ewrt);
774 #else
775             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
776 #endif
777             twoeweps         = _mm_add_pd(eweps,eweps);
778             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
779                                          &ewtabF,&ewtabFn);
780             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
781             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
782
783             fscal            = felec;
784
785             /* Update vectorial force */
786             fix1             = _mm_macc_pd(dx10,fscal,fix1);
787             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
788             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
789             
790             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
791             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
792             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
793
794             /**************************
795              * CALCULATE INTERACTIONS *
796              **************************/
797
798             r20              = _mm_mul_pd(rsq20,rinv20);
799
800             /* Compute parameters for interactions between i and j atoms */
801             qq20             = _mm_mul_pd(iq2,jq0);
802
803             /* EWALD ELECTROSTATICS */
804
805             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
806             ewrt             = _mm_mul_pd(r20,ewtabscale);
807             ewitab           = _mm_cvttpd_epi32(ewrt);
808 #ifdef __XOP__
809             eweps            = _mm_frcz_pd(ewrt);
810 #else
811             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
812 #endif
813             twoeweps         = _mm_add_pd(eweps,eweps);
814             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
815                                          &ewtabF,&ewtabFn);
816             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
817             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
818
819             fscal            = felec;
820
821             /* Update vectorial force */
822             fix2             = _mm_macc_pd(dx20,fscal,fix2);
823             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
824             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
825             
826             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
827             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
828             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
829
830             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
831
832             /* Inner loop uses 120 flops */
833         }
834
835         if(jidx<j_index_end)
836         {
837
838             jnrA             = jjnr[jidx];
839             j_coord_offsetA  = DIM*jnrA;
840
841             /* load j atom coordinates */
842             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
843                                               &jx0,&jy0,&jz0);
844
845             /* Calculate displacement vector */
846             dx00             = _mm_sub_pd(ix0,jx0);
847             dy00             = _mm_sub_pd(iy0,jy0);
848             dz00             = _mm_sub_pd(iz0,jz0);
849             dx10             = _mm_sub_pd(ix1,jx0);
850             dy10             = _mm_sub_pd(iy1,jy0);
851             dz10             = _mm_sub_pd(iz1,jz0);
852             dx20             = _mm_sub_pd(ix2,jx0);
853             dy20             = _mm_sub_pd(iy2,jy0);
854             dz20             = _mm_sub_pd(iz2,jz0);
855
856             /* Calculate squared distance and things based on it */
857             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
858             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
859             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
860
861             rinv00           = avx128fma_invsqrt_d(rsq00);
862             rinv10           = avx128fma_invsqrt_d(rsq10);
863             rinv20           = avx128fma_invsqrt_d(rsq20);
864
865             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
866             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
867             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
868
869             /* Load parameters for j particles */
870             jq0              = _mm_load_sd(charge+jnrA+0);
871
872             fjx0             = _mm_setzero_pd();
873             fjy0             = _mm_setzero_pd();
874             fjz0             = _mm_setzero_pd();
875
876             /**************************
877              * CALCULATE INTERACTIONS *
878              **************************/
879
880             r00              = _mm_mul_pd(rsq00,rinv00);
881
882             /* Compute parameters for interactions between i and j atoms */
883             qq00             = _mm_mul_pd(iq0,jq0);
884
885             /* EWALD ELECTROSTATICS */
886
887             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
888             ewrt             = _mm_mul_pd(r00,ewtabscale);
889             ewitab           = _mm_cvttpd_epi32(ewrt);
890 #ifdef __XOP__
891             eweps            = _mm_frcz_pd(ewrt);
892 #else
893             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
894 #endif
895             twoeweps         = _mm_add_pd(eweps,eweps);
896             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
897             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
898             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
899
900             fscal            = felec;
901
902             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
903
904             /* Update vectorial force */
905             fix0             = _mm_macc_pd(dx00,fscal,fix0);
906             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
907             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
908             
909             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
910             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
911             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r10              = _mm_mul_pd(rsq10,rinv10);
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq10             = _mm_mul_pd(iq1,jq0);
921
922             /* EWALD ELECTROSTATICS */
923
924             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925             ewrt             = _mm_mul_pd(r10,ewtabscale);
926             ewitab           = _mm_cvttpd_epi32(ewrt);
927 #ifdef __XOP__
928             eweps            = _mm_frcz_pd(ewrt);
929 #else
930             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
931 #endif
932             twoeweps         = _mm_add_pd(eweps,eweps);
933             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
934             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
935             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
936
937             fscal            = felec;
938
939             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
940
941             /* Update vectorial force */
942             fix1             = _mm_macc_pd(dx10,fscal,fix1);
943             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
944             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
945             
946             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
947             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
948             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r20              = _mm_mul_pd(rsq20,rinv20);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq20             = _mm_mul_pd(iq2,jq0);
958
959             /* EWALD ELECTROSTATICS */
960
961             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962             ewrt             = _mm_mul_pd(r20,ewtabscale);
963             ewitab           = _mm_cvttpd_epi32(ewrt);
964 #ifdef __XOP__
965             eweps            = _mm_frcz_pd(ewrt);
966 #else
967             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
968 #endif
969             twoeweps         = _mm_add_pd(eweps,eweps);
970             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
971             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
972             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
973
974             fscal            = felec;
975
976             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
977
978             /* Update vectorial force */
979             fix2             = _mm_macc_pd(dx20,fscal,fix2);
980             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
981             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
982             
983             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
984             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
985             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
986
987             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
988
989             /* Inner loop uses 120 flops */
990         }
991
992         /* End of innermost loop */
993
994         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
995                                               f+i_coord_offset,fshift+i_shift_offset);
996
997         /* Increment number of inner iterations */
998         inneriter                  += j_index_end - j_index_start;
999
1000         /* Outer loop uses 18 flops */
1001     }
1002
1003     /* Increment number of outer iterations */
1004     outeriter        += nri;
1005
1006     /* Update outer/inner flops */
1007
1008     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*120);
1009 }