Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     __m128i          ewitab;
87     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     real             *ewtab;
89     __m128d          dummy_mask,cutoff_mask;
90     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
91     __m128d          one     = _mm_set1_pd(1.0);
92     __m128d          two     = _mm_set1_pd(2.0);
93     x                = xx[0];
94     f                = ff[0];
95
96     nri              = nlist->nri;
97     iinr             = nlist->iinr;
98     jindex           = nlist->jindex;
99     jjnr             = nlist->jjnr;
100     shiftidx         = nlist->shift;
101     gid              = nlist->gid;
102     shiftvec         = fr->shift_vec[0];
103     fshift           = fr->fshift[0];
104     facel            = _mm_set1_pd(fr->ic->epsfac);
105     charge           = mdatoms->chargeA;
106
107     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
108     ewtab            = fr->ic->tabq_coul_FDV0;
109     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
110     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
136
137         fix0             = _mm_setzero_pd();
138         fiy0             = _mm_setzero_pd();
139         fiz0             = _mm_setzero_pd();
140
141         /* Load parameters for i particles */
142         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
143
144         /* Reset potential sums */
145         velecsum         = _mm_setzero_pd();
146
147         /* Start inner kernel loop */
148         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
149         {
150
151             /* Get j neighbor index, and coordinate index */
152             jnrA             = jjnr[jidx];
153             jnrB             = jjnr[jidx+1];
154             j_coord_offsetA  = DIM*jnrA;
155             j_coord_offsetB  = DIM*jnrB;
156
157             /* load j atom coordinates */
158             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
159                                               &jx0,&jy0,&jz0);
160
161             /* Calculate displacement vector */
162             dx00             = _mm_sub_pd(ix0,jx0);
163             dy00             = _mm_sub_pd(iy0,jy0);
164             dz00             = _mm_sub_pd(iz0,jz0);
165
166             /* Calculate squared distance and things based on it */
167             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
168
169             rinv00           = avx128fma_invsqrt_d(rsq00);
170
171             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
172
173             /* Load parameters for j particles */
174             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             r00              = _mm_mul_pd(rsq00,rinv00);
181
182             /* Compute parameters for interactions between i and j atoms */
183             qq00             = _mm_mul_pd(iq0,jq0);
184
185             /* EWALD ELECTROSTATICS */
186
187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
188             ewrt             = _mm_mul_pd(r00,ewtabscale);
189             ewitab           = _mm_cvttpd_epi32(ewrt);
190 #ifdef __XOP__
191             eweps            = _mm_frcz_pd(ewrt);
192 #else
193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
194 #endif
195             twoeweps         = _mm_add_pd(eweps,eweps);
196             ewitab           = _mm_slli_epi32(ewitab,2);
197             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
198             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
199             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
200             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
201             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
202             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
203             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
204             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
205             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
206             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
207
208             /* Update potential sum for this i atom from the interaction with this j atom. */
209             velecsum         = _mm_add_pd(velecsum,velec);
210
211             fscal            = felec;
212
213             /* Update vectorial force */
214             fix0             = _mm_macc_pd(dx00,fscal,fix0);
215             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
216             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
217             
218             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
219                                                    _mm_mul_pd(dx00,fscal),
220                                                    _mm_mul_pd(dy00,fscal),
221                                                    _mm_mul_pd(dz00,fscal));
222
223             /* Inner loop uses 44 flops */
224         }
225
226         if(jidx<j_index_end)
227         {
228
229             jnrA             = jjnr[jidx];
230             j_coord_offsetA  = DIM*jnrA;
231
232             /* load j atom coordinates */
233             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
234                                               &jx0,&jy0,&jz0);
235
236             /* Calculate displacement vector */
237             dx00             = _mm_sub_pd(ix0,jx0);
238             dy00             = _mm_sub_pd(iy0,jy0);
239             dz00             = _mm_sub_pd(iz0,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
243
244             rinv00           = avx128fma_invsqrt_d(rsq00);
245
246             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
247
248             /* Load parameters for j particles */
249             jq0              = _mm_load_sd(charge+jnrA+0);
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             qq00             = _mm_mul_pd(iq0,jq0);
259
260             /* EWALD ELECTROSTATICS */
261
262             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
263             ewrt             = _mm_mul_pd(r00,ewtabscale);
264             ewitab           = _mm_cvttpd_epi32(ewrt);
265 #ifdef __XOP__
266             eweps            = _mm_frcz_pd(ewrt);
267 #else
268             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
269 #endif
270             twoeweps         = _mm_add_pd(eweps,eweps);
271             ewitab           = _mm_slli_epi32(ewitab,2);
272             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
273             ewtabD           = _mm_setzero_pd();
274             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
275             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
276             ewtabFn          = _mm_setzero_pd();
277             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
278             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
279             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
280             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
281             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
285             velecsum         = _mm_add_pd(velecsum,velec);
286
287             fscal            = felec;
288
289             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
290
291             /* Update vectorial force */
292             fix0             = _mm_macc_pd(dx00,fscal,fix0);
293             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
294             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
295             
296             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
297                                                    _mm_mul_pd(dx00,fscal),
298                                                    _mm_mul_pd(dy00,fscal),
299                                                    _mm_mul_pd(dz00,fscal));
300
301             /* Inner loop uses 44 flops */
302         }
303
304         /* End of innermost loop */
305
306         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
307                                               f+i_coord_offset,fshift+i_shift_offset);
308
309         ggid                        = gid[iidx];
310         /* Update potential energies */
311         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
312
313         /* Increment number of inner iterations */
314         inneriter                  += j_index_end - j_index_start;
315
316         /* Outer loop uses 8 flops */
317     }
318
319     /* Increment number of outer iterations */
320     outeriter        += nri;
321
322     /* Update outer/inner flops */
323
324     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
325 }
326 /*
327  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
328  * Electrostatics interaction: Ewald
329  * VdW interaction:            None
330  * Geometry:                   Particle-Particle
331  * Calculate force/pot:        Force
332  */
333 void
334 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
335                     (t_nblist                    * gmx_restrict       nlist,
336                      rvec                        * gmx_restrict          xx,
337                      rvec                        * gmx_restrict          ff,
338                      struct t_forcerec           * gmx_restrict          fr,
339                      t_mdatoms                   * gmx_restrict     mdatoms,
340                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
341                      t_nrnb                      * gmx_restrict        nrnb)
342 {
343     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
344      * just 0 for non-waters.
345      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
346      * jnr indices corresponding to data put in the four positions in the SIMD register.
347      */
348     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
349     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
350     int              jnrA,jnrB;
351     int              j_coord_offsetA,j_coord_offsetB;
352     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
353     real             rcutoff_scalar;
354     real             *shiftvec,*fshift,*x,*f;
355     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
356     int              vdwioffset0;
357     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
358     int              vdwjidx0A,vdwjidx0B;
359     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
360     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
361     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
362     real             *charge;
363     __m128i          ewitab;
364     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
365     real             *ewtab;
366     __m128d          dummy_mask,cutoff_mask;
367     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
368     __m128d          one     = _mm_set1_pd(1.0);
369     __m128d          two     = _mm_set1_pd(2.0);
370     x                = xx[0];
371     f                = ff[0];
372
373     nri              = nlist->nri;
374     iinr             = nlist->iinr;
375     jindex           = nlist->jindex;
376     jjnr             = nlist->jjnr;
377     shiftidx         = nlist->shift;
378     gid              = nlist->gid;
379     shiftvec         = fr->shift_vec[0];
380     fshift           = fr->fshift[0];
381     facel            = _mm_set1_pd(fr->ic->epsfac);
382     charge           = mdatoms->chargeA;
383
384     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
385     ewtab            = fr->ic->tabq_coul_F;
386     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
387     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
388
389     /* Avoid stupid compiler warnings */
390     jnrA = jnrB = 0;
391     j_coord_offsetA = 0;
392     j_coord_offsetB = 0;
393
394     outeriter        = 0;
395     inneriter        = 0;
396
397     /* Start outer loop over neighborlists */
398     for(iidx=0; iidx<nri; iidx++)
399     {
400         /* Load shift vector for this list */
401         i_shift_offset   = DIM*shiftidx[iidx];
402
403         /* Load limits for loop over neighbors */
404         j_index_start    = jindex[iidx];
405         j_index_end      = jindex[iidx+1];
406
407         /* Get outer coordinate index */
408         inr              = iinr[iidx];
409         i_coord_offset   = DIM*inr;
410
411         /* Load i particle coords and add shift vector */
412         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
413
414         fix0             = _mm_setzero_pd();
415         fiy0             = _mm_setzero_pd();
416         fiz0             = _mm_setzero_pd();
417
418         /* Load parameters for i particles */
419         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
420
421         /* Start inner kernel loop */
422         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrA             = jjnr[jidx];
427             jnrB             = jjnr[jidx+1];
428             j_coord_offsetA  = DIM*jnrA;
429             j_coord_offsetB  = DIM*jnrB;
430
431             /* load j atom coordinates */
432             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
433                                               &jx0,&jy0,&jz0);
434
435             /* Calculate displacement vector */
436             dx00             = _mm_sub_pd(ix0,jx0);
437             dy00             = _mm_sub_pd(iy0,jy0);
438             dz00             = _mm_sub_pd(iz0,jz0);
439
440             /* Calculate squared distance and things based on it */
441             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
442
443             rinv00           = avx128fma_invsqrt_d(rsq00);
444
445             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             r00              = _mm_mul_pd(rsq00,rinv00);
455
456             /* Compute parameters for interactions between i and j atoms */
457             qq00             = _mm_mul_pd(iq0,jq0);
458
459             /* EWALD ELECTROSTATICS */
460
461             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
462             ewrt             = _mm_mul_pd(r00,ewtabscale);
463             ewitab           = _mm_cvttpd_epi32(ewrt);
464 #ifdef __XOP__
465             eweps            = _mm_frcz_pd(ewrt);
466 #else
467             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
468 #endif
469             twoeweps         = _mm_add_pd(eweps,eweps);
470             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
471                                          &ewtabF,&ewtabFn);
472             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
473             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
474
475             fscal            = felec;
476
477             /* Update vectorial force */
478             fix0             = _mm_macc_pd(dx00,fscal,fix0);
479             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
480             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
481             
482             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
483                                                    _mm_mul_pd(dx00,fscal),
484                                                    _mm_mul_pd(dy00,fscal),
485                                                    _mm_mul_pd(dz00,fscal));
486
487             /* Inner loop uses 39 flops */
488         }
489
490         if(jidx<j_index_end)
491         {
492
493             jnrA             = jjnr[jidx];
494             j_coord_offsetA  = DIM*jnrA;
495
496             /* load j atom coordinates */
497             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
498                                               &jx0,&jy0,&jz0);
499
500             /* Calculate displacement vector */
501             dx00             = _mm_sub_pd(ix0,jx0);
502             dy00             = _mm_sub_pd(iy0,jy0);
503             dz00             = _mm_sub_pd(iz0,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
507
508             rinv00           = avx128fma_invsqrt_d(rsq00);
509
510             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
511
512             /* Load parameters for j particles */
513             jq0              = _mm_load_sd(charge+jnrA+0);
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             r00              = _mm_mul_pd(rsq00,rinv00);
520
521             /* Compute parameters for interactions between i and j atoms */
522             qq00             = _mm_mul_pd(iq0,jq0);
523
524             /* EWALD ELECTROSTATICS */
525
526             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
527             ewrt             = _mm_mul_pd(r00,ewtabscale);
528             ewitab           = _mm_cvttpd_epi32(ewrt);
529 #ifdef __XOP__
530             eweps            = _mm_frcz_pd(ewrt);
531 #else
532             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
533 #endif
534             twoeweps         = _mm_add_pd(eweps,eweps);
535             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
536             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
537             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
538
539             fscal            = felec;
540
541             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
542
543             /* Update vectorial force */
544             fix0             = _mm_macc_pd(dx00,fscal,fix0);
545             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
546             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
547             
548             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
549                                                    _mm_mul_pd(dx00,fscal),
550                                                    _mm_mul_pd(dy00,fscal),
551                                                    _mm_mul_pd(dz00,fscal));
552
553             /* Inner loop uses 39 flops */
554         }
555
556         /* End of innermost loop */
557
558         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
559                                               f+i_coord_offset,fshift+i_shift_offset);
560
561         /* Increment number of inner iterations */
562         inneriter                  += j_index_end - j_index_start;
563
564         /* Outer loop uses 7 flops */
565     }
566
567     /* Increment number of outer iterations */
568     outeriter        += nri;
569
570     /* Update outer/inner flops */
571
572     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
573 }