Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            None
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     __m128i          ewitab;
88     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     real             *ewtab;
90     __m128d          dummy_mask,cutoff_mask;
91     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
92     __m128d          one     = _mm_set1_pd(1.0);
93     __m128d          two     = _mm_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
109     ewtab            = fr->ic->tabq_coul_FDV0;
110     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
111     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117
118     outeriter        = 0;
119     inneriter        = 0;
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_pd();
139         fiy0             = _mm_setzero_pd();
140         fiz0             = _mm_setzero_pd();
141
142         /* Load parameters for i particles */
143         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
144
145         /* Reset potential sums */
146         velecsum         = _mm_setzero_pd();
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
150         {
151
152             /* Get j neighbor index, and coordinate index */
153             jnrA             = jjnr[jidx];
154             jnrB             = jjnr[jidx+1];
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157
158             /* load j atom coordinates */
159             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
160                                               &jx0,&jy0,&jz0);
161
162             /* Calculate displacement vector */
163             dx00             = _mm_sub_pd(ix0,jx0);
164             dy00             = _mm_sub_pd(iy0,jy0);
165             dz00             = _mm_sub_pd(iz0,jz0);
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
169
170             rinv00           = gmx_mm_invsqrt_pd(rsq00);
171
172             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
173
174             /* Load parameters for j particles */
175             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
176
177             /**************************
178              * CALCULATE INTERACTIONS *
179              **************************/
180
181             r00              = _mm_mul_pd(rsq00,rinv00);
182
183             /* Compute parameters for interactions between i and j atoms */
184             qq00             = _mm_mul_pd(iq0,jq0);
185
186             /* EWALD ELECTROSTATICS */
187
188             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
189             ewrt             = _mm_mul_pd(r00,ewtabscale);
190             ewitab           = _mm_cvttpd_epi32(ewrt);
191 #ifdef __XOP__
192             eweps            = _mm_frcz_pd(ewrt);
193 #else
194             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
195 #endif
196             twoeweps         = _mm_add_pd(eweps,eweps);
197             ewitab           = _mm_slli_epi32(ewitab,2);
198             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
199             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
200             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
201             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
202             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
203             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
204             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
205             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
206             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
207             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
208
209             /* Update potential sum for this i atom from the interaction with this j atom. */
210             velecsum         = _mm_add_pd(velecsum,velec);
211
212             fscal            = felec;
213
214             /* Update vectorial force */
215             fix0             = _mm_macc_pd(dx00,fscal,fix0);
216             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
217             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
218             
219             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
220                                                    _mm_mul_pd(dx00,fscal),
221                                                    _mm_mul_pd(dy00,fscal),
222                                                    _mm_mul_pd(dz00,fscal));
223
224             /* Inner loop uses 44 flops */
225         }
226
227         if(jidx<j_index_end)
228         {
229
230             jnrA             = jjnr[jidx];
231             j_coord_offsetA  = DIM*jnrA;
232
233             /* load j atom coordinates */
234             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
235                                               &jx0,&jy0,&jz0);
236
237             /* Calculate displacement vector */
238             dx00             = _mm_sub_pd(ix0,jx0);
239             dy00             = _mm_sub_pd(iy0,jy0);
240             dz00             = _mm_sub_pd(iz0,jz0);
241
242             /* Calculate squared distance and things based on it */
243             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
244
245             rinv00           = gmx_mm_invsqrt_pd(rsq00);
246
247             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
248
249             /* Load parameters for j particles */
250             jq0              = _mm_load_sd(charge+jnrA+0);
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             r00              = _mm_mul_pd(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm_mul_pd(iq0,jq0);
260
261             /* EWALD ELECTROSTATICS */
262
263             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
264             ewrt             = _mm_mul_pd(r00,ewtabscale);
265             ewitab           = _mm_cvttpd_epi32(ewrt);
266 #ifdef __XOP__
267             eweps            = _mm_frcz_pd(ewrt);
268 #else
269             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
270 #endif
271             twoeweps         = _mm_add_pd(eweps,eweps);
272             ewitab           = _mm_slli_epi32(ewitab,2);
273             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
274             ewtabD           = _mm_setzero_pd();
275             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
276             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
277             ewtabFn          = _mm_setzero_pd();
278             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
279             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
280             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
281             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
282             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
286             velecsum         = _mm_add_pd(velecsum,velec);
287
288             fscal            = felec;
289
290             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
291
292             /* Update vectorial force */
293             fix0             = _mm_macc_pd(dx00,fscal,fix0);
294             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
295             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
296             
297             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
298                                                    _mm_mul_pd(dx00,fscal),
299                                                    _mm_mul_pd(dy00,fscal),
300                                                    _mm_mul_pd(dz00,fscal));
301
302             /* Inner loop uses 44 flops */
303         }
304
305         /* End of innermost loop */
306
307         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
308                                               f+i_coord_offset,fshift+i_shift_offset);
309
310         ggid                        = gid[iidx];
311         /* Update potential energies */
312         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
313
314         /* Increment number of inner iterations */
315         inneriter                  += j_index_end - j_index_start;
316
317         /* Outer loop uses 8 flops */
318     }
319
320     /* Increment number of outer iterations */
321     outeriter        += nri;
322
323     /* Update outer/inner flops */
324
325     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
326 }
327 /*
328  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
329  * Electrostatics interaction: Ewald
330  * VdW interaction:            None
331  * Geometry:                   Particle-Particle
332  * Calculate force/pot:        Force
333  */
334 void
335 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
336                     (t_nblist                    * gmx_restrict       nlist,
337                      rvec                        * gmx_restrict          xx,
338                      rvec                        * gmx_restrict          ff,
339                      t_forcerec                  * gmx_restrict          fr,
340                      t_mdatoms                   * gmx_restrict     mdatoms,
341                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
342                      t_nrnb                      * gmx_restrict        nrnb)
343 {
344     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
345      * just 0 for non-waters.
346      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
347      * jnr indices corresponding to data put in the four positions in the SIMD register.
348      */
349     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
350     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
351     int              jnrA,jnrB;
352     int              j_coord_offsetA,j_coord_offsetB;
353     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
354     real             rcutoff_scalar;
355     real             *shiftvec,*fshift,*x,*f;
356     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
357     int              vdwioffset0;
358     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
359     int              vdwjidx0A,vdwjidx0B;
360     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
361     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
362     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
363     real             *charge;
364     __m128i          ewitab;
365     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
366     real             *ewtab;
367     __m128d          dummy_mask,cutoff_mask;
368     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
369     __m128d          one     = _mm_set1_pd(1.0);
370     __m128d          two     = _mm_set1_pd(2.0);
371     x                = xx[0];
372     f                = ff[0];
373
374     nri              = nlist->nri;
375     iinr             = nlist->iinr;
376     jindex           = nlist->jindex;
377     jjnr             = nlist->jjnr;
378     shiftidx         = nlist->shift;
379     gid              = nlist->gid;
380     shiftvec         = fr->shift_vec[0];
381     fshift           = fr->fshift[0];
382     facel            = _mm_set1_pd(fr->epsfac);
383     charge           = mdatoms->chargeA;
384
385     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
386     ewtab            = fr->ic->tabq_coul_F;
387     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
388     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
389
390     /* Avoid stupid compiler warnings */
391     jnrA = jnrB = 0;
392     j_coord_offsetA = 0;
393     j_coord_offsetB = 0;
394
395     outeriter        = 0;
396     inneriter        = 0;
397
398     /* Start outer loop over neighborlists */
399     for(iidx=0; iidx<nri; iidx++)
400     {
401         /* Load shift vector for this list */
402         i_shift_offset   = DIM*shiftidx[iidx];
403
404         /* Load limits for loop over neighbors */
405         j_index_start    = jindex[iidx];
406         j_index_end      = jindex[iidx+1];
407
408         /* Get outer coordinate index */
409         inr              = iinr[iidx];
410         i_coord_offset   = DIM*inr;
411
412         /* Load i particle coords and add shift vector */
413         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
414
415         fix0             = _mm_setzero_pd();
416         fiy0             = _mm_setzero_pd();
417         fiz0             = _mm_setzero_pd();
418
419         /* Load parameters for i particles */
420         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
421
422         /* Start inner kernel loop */
423         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrA             = jjnr[jidx];
428             jnrB             = jjnr[jidx+1];
429             j_coord_offsetA  = DIM*jnrA;
430             j_coord_offsetB  = DIM*jnrB;
431
432             /* load j atom coordinates */
433             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _mm_sub_pd(ix0,jx0);
438             dy00             = _mm_sub_pd(iy0,jy0);
439             dz00             = _mm_sub_pd(iz0,jz0);
440
441             /* Calculate squared distance and things based on it */
442             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
443
444             rinv00           = gmx_mm_invsqrt_pd(rsq00);
445
446             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
447
448             /* Load parameters for j particles */
449             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
450
451             /**************************
452              * CALCULATE INTERACTIONS *
453              **************************/
454
455             r00              = _mm_mul_pd(rsq00,rinv00);
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq00             = _mm_mul_pd(iq0,jq0);
459
460             /* EWALD ELECTROSTATICS */
461
462             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
463             ewrt             = _mm_mul_pd(r00,ewtabscale);
464             ewitab           = _mm_cvttpd_epi32(ewrt);
465 #ifdef __XOP__
466             eweps            = _mm_frcz_pd(ewrt);
467 #else
468             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
469 #endif
470             twoeweps         = _mm_add_pd(eweps,eweps);
471             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
472                                          &ewtabF,&ewtabFn);
473             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
474             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
475
476             fscal            = felec;
477
478             /* Update vectorial force */
479             fix0             = _mm_macc_pd(dx00,fscal,fix0);
480             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
481             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
482             
483             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
484                                                    _mm_mul_pd(dx00,fscal),
485                                                    _mm_mul_pd(dy00,fscal),
486                                                    _mm_mul_pd(dz00,fscal));
487
488             /* Inner loop uses 39 flops */
489         }
490
491         if(jidx<j_index_end)
492         {
493
494             jnrA             = jjnr[jidx];
495             j_coord_offsetA  = DIM*jnrA;
496
497             /* load j atom coordinates */
498             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
499                                               &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm_sub_pd(ix0,jx0);
503             dy00             = _mm_sub_pd(iy0,jy0);
504             dz00             = _mm_sub_pd(iz0,jz0);
505
506             /* Calculate squared distance and things based on it */
507             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
508
509             rinv00           = gmx_mm_invsqrt_pd(rsq00);
510
511             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
512
513             /* Load parameters for j particles */
514             jq0              = _mm_load_sd(charge+jnrA+0);
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             r00              = _mm_mul_pd(rsq00,rinv00);
521
522             /* Compute parameters for interactions between i and j atoms */
523             qq00             = _mm_mul_pd(iq0,jq0);
524
525             /* EWALD ELECTROSTATICS */
526
527             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
528             ewrt             = _mm_mul_pd(r00,ewtabscale);
529             ewitab           = _mm_cvttpd_epi32(ewrt);
530 #ifdef __XOP__
531             eweps            = _mm_frcz_pd(ewrt);
532 #else
533             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
534 #endif
535             twoeweps         = _mm_add_pd(eweps,eweps);
536             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
537             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
538             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
539
540             fscal            = felec;
541
542             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543
544             /* Update vectorial force */
545             fix0             = _mm_macc_pd(dx00,fscal,fix0);
546             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
547             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
548             
549             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
550                                                    _mm_mul_pd(dx00,fscal),
551                                                    _mm_mul_pd(dy00,fscal),
552                                                    _mm_mul_pd(dz00,fscal));
553
554             /* Inner loop uses 39 flops */
555         }
556
557         /* End of innermost loop */
558
559         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
560                                               f+i_coord_offset,fshift+i_shift_offset);
561
562         /* Increment number of inner iterations */
563         inneriter                  += j_index_end - j_index_start;
564
565         /* Outer loop uses 7 flops */
566     }
567
568     /* Increment number of outer iterations */
569     outeriter        += nri;
570
571     /* Update outer/inner flops */
572
573     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
574 }