Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     __m128i          ewitab;
90     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     real             *ewtab;
92     __m128d          dummy_mask,cutoff_mask;
93     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
94     __m128d          one     = _mm_set1_pd(1.0);
95     __m128d          two     = _mm_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109
110     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm_setzero_pd();
141         fiy0             = _mm_setzero_pd();
142         fiz0             = _mm_setzero_pd();
143
144         /* Load parameters for i particles */
145         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
146
147         /* Reset potential sums */
148         velecsum         = _mm_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             j_coord_offsetA  = DIM*jnrA;
158             j_coord_offsetB  = DIM*jnrB;
159
160             /* load j atom coordinates */
161             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                               &jx0,&jy0,&jz0);
163
164             /* Calculate displacement vector */
165             dx00             = _mm_sub_pd(ix0,jx0);
166             dy00             = _mm_sub_pd(iy0,jy0);
167             dz00             = _mm_sub_pd(iz0,jz0);
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
171
172             rinv00           = gmx_mm_invsqrt_pd(rsq00);
173
174             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
175
176             /* Load parameters for j particles */
177             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             r00              = _mm_mul_pd(rsq00,rinv00);
184
185             /* Compute parameters for interactions between i and j atoms */
186             qq00             = _mm_mul_pd(iq0,jq0);
187
188             /* EWALD ELECTROSTATICS */
189
190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
191             ewrt             = _mm_mul_pd(r00,ewtabscale);
192             ewitab           = _mm_cvttpd_epi32(ewrt);
193 #ifdef __XOP__
194             eweps            = _mm_frcz_pd(ewrt);
195 #else
196             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
197 #endif
198             twoeweps         = _mm_add_pd(eweps,eweps);
199             ewitab           = _mm_slli_epi32(ewitab,2);
200             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
201             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
202             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
203             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
204             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
205             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
206             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
207             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
208             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
209             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             velecsum         = _mm_add_pd(velecsum,velec);
213
214             fscal            = felec;
215
216             /* Update vectorial force */
217             fix0             = _mm_macc_pd(dx00,fscal,fix0);
218             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
219             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
220             
221             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
222                                                    _mm_mul_pd(dx00,fscal),
223                                                    _mm_mul_pd(dy00,fscal),
224                                                    _mm_mul_pd(dz00,fscal));
225
226             /* Inner loop uses 44 flops */
227         }
228
229         if(jidx<j_index_end)
230         {
231
232             jnrA             = jjnr[jidx];
233             j_coord_offsetA  = DIM*jnrA;
234
235             /* load j atom coordinates */
236             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
237                                               &jx0,&jy0,&jz0);
238
239             /* Calculate displacement vector */
240             dx00             = _mm_sub_pd(ix0,jx0);
241             dy00             = _mm_sub_pd(iy0,jy0);
242             dz00             = _mm_sub_pd(iz0,jz0);
243
244             /* Calculate squared distance and things based on it */
245             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
246
247             rinv00           = gmx_mm_invsqrt_pd(rsq00);
248
249             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
250
251             /* Load parameters for j particles */
252             jq0              = _mm_load_sd(charge+jnrA+0);
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             r00              = _mm_mul_pd(rsq00,rinv00);
259
260             /* Compute parameters for interactions between i and j atoms */
261             qq00             = _mm_mul_pd(iq0,jq0);
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = _mm_mul_pd(r00,ewtabscale);
267             ewitab           = _mm_cvttpd_epi32(ewrt);
268 #ifdef __XOP__
269             eweps            = _mm_frcz_pd(ewrt);
270 #else
271             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
272 #endif
273             twoeweps         = _mm_add_pd(eweps,eweps);
274             ewitab           = _mm_slli_epi32(ewitab,2);
275             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
276             ewtabD           = _mm_setzero_pd();
277             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
278             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
279             ewtabFn          = _mm_setzero_pd();
280             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
281             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
282             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
283             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
284             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
288             velecsum         = _mm_add_pd(velecsum,velec);
289
290             fscal            = felec;
291
292             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
293
294             /* Update vectorial force */
295             fix0             = _mm_macc_pd(dx00,fscal,fix0);
296             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
297             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
298             
299             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
300                                                    _mm_mul_pd(dx00,fscal),
301                                                    _mm_mul_pd(dy00,fscal),
302                                                    _mm_mul_pd(dz00,fscal));
303
304             /* Inner loop uses 44 flops */
305         }
306
307         /* End of innermost loop */
308
309         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
310                                               f+i_coord_offset,fshift+i_shift_offset);
311
312         ggid                        = gid[iidx];
313         /* Update potential energies */
314         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
315
316         /* Increment number of inner iterations */
317         inneriter                  += j_index_end - j_index_start;
318
319         /* Outer loop uses 8 flops */
320     }
321
322     /* Increment number of outer iterations */
323     outeriter        += nri;
324
325     /* Update outer/inner flops */
326
327     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
328 }
329 /*
330  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
331  * Electrostatics interaction: Ewald
332  * VdW interaction:            None
333  * Geometry:                   Particle-Particle
334  * Calculate force/pot:        Force
335  */
336 void
337 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_128_fma_double
338                     (t_nblist                    * gmx_restrict       nlist,
339                      rvec                        * gmx_restrict          xx,
340                      rvec                        * gmx_restrict          ff,
341                      t_forcerec                  * gmx_restrict          fr,
342                      t_mdatoms                   * gmx_restrict     mdatoms,
343                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
344                      t_nrnb                      * gmx_restrict        nrnb)
345 {
346     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
347      * just 0 for non-waters.
348      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
349      * jnr indices corresponding to data put in the four positions in the SIMD register.
350      */
351     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
352     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
353     int              jnrA,jnrB;
354     int              j_coord_offsetA,j_coord_offsetB;
355     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
356     real             rcutoff_scalar;
357     real             *shiftvec,*fshift,*x,*f;
358     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
359     int              vdwioffset0;
360     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
361     int              vdwjidx0A,vdwjidx0B;
362     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
363     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
364     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
365     real             *charge;
366     __m128i          ewitab;
367     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
368     real             *ewtab;
369     __m128d          dummy_mask,cutoff_mask;
370     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
371     __m128d          one     = _mm_set1_pd(1.0);
372     __m128d          two     = _mm_set1_pd(2.0);
373     x                = xx[0];
374     f                = ff[0];
375
376     nri              = nlist->nri;
377     iinr             = nlist->iinr;
378     jindex           = nlist->jindex;
379     jjnr             = nlist->jjnr;
380     shiftidx         = nlist->shift;
381     gid              = nlist->gid;
382     shiftvec         = fr->shift_vec[0];
383     fshift           = fr->fshift[0];
384     facel            = _mm_set1_pd(fr->epsfac);
385     charge           = mdatoms->chargeA;
386
387     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
388     ewtab            = fr->ic->tabq_coul_F;
389     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
390     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
391
392     /* Avoid stupid compiler warnings */
393     jnrA = jnrB = 0;
394     j_coord_offsetA = 0;
395     j_coord_offsetB = 0;
396
397     outeriter        = 0;
398     inneriter        = 0;
399
400     /* Start outer loop over neighborlists */
401     for(iidx=0; iidx<nri; iidx++)
402     {
403         /* Load shift vector for this list */
404         i_shift_offset   = DIM*shiftidx[iidx];
405
406         /* Load limits for loop over neighbors */
407         j_index_start    = jindex[iidx];
408         j_index_end      = jindex[iidx+1];
409
410         /* Get outer coordinate index */
411         inr              = iinr[iidx];
412         i_coord_offset   = DIM*inr;
413
414         /* Load i particle coords and add shift vector */
415         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
416
417         fix0             = _mm_setzero_pd();
418         fiy0             = _mm_setzero_pd();
419         fiz0             = _mm_setzero_pd();
420
421         /* Load parameters for i particles */
422         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
423
424         /* Start inner kernel loop */
425         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
426         {
427
428             /* Get j neighbor index, and coordinate index */
429             jnrA             = jjnr[jidx];
430             jnrB             = jjnr[jidx+1];
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
436                                               &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm_sub_pd(ix0,jx0);
440             dy00             = _mm_sub_pd(iy0,jy0);
441             dz00             = _mm_sub_pd(iz0,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
445
446             rinv00           = gmx_mm_invsqrt_pd(rsq00);
447
448             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             r00              = _mm_mul_pd(rsq00,rinv00);
458
459             /* Compute parameters for interactions between i and j atoms */
460             qq00             = _mm_mul_pd(iq0,jq0);
461
462             /* EWALD ELECTROSTATICS */
463
464             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465             ewrt             = _mm_mul_pd(r00,ewtabscale);
466             ewitab           = _mm_cvttpd_epi32(ewrt);
467 #ifdef __XOP__
468             eweps            = _mm_frcz_pd(ewrt);
469 #else
470             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
471 #endif
472             twoeweps         = _mm_add_pd(eweps,eweps);
473             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
474                                          &ewtabF,&ewtabFn);
475             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
476             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
477
478             fscal            = felec;
479
480             /* Update vectorial force */
481             fix0             = _mm_macc_pd(dx00,fscal,fix0);
482             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
483             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
484             
485             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
486                                                    _mm_mul_pd(dx00,fscal),
487                                                    _mm_mul_pd(dy00,fscal),
488                                                    _mm_mul_pd(dz00,fscal));
489
490             /* Inner loop uses 39 flops */
491         }
492
493         if(jidx<j_index_end)
494         {
495
496             jnrA             = jjnr[jidx];
497             j_coord_offsetA  = DIM*jnrA;
498
499             /* load j atom coordinates */
500             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
501                                               &jx0,&jy0,&jz0);
502
503             /* Calculate displacement vector */
504             dx00             = _mm_sub_pd(ix0,jx0);
505             dy00             = _mm_sub_pd(iy0,jy0);
506             dz00             = _mm_sub_pd(iz0,jz0);
507
508             /* Calculate squared distance and things based on it */
509             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
510
511             rinv00           = gmx_mm_invsqrt_pd(rsq00);
512
513             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
514
515             /* Load parameters for j particles */
516             jq0              = _mm_load_sd(charge+jnrA+0);
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             r00              = _mm_mul_pd(rsq00,rinv00);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq00             = _mm_mul_pd(iq0,jq0);
526
527             /* EWALD ELECTROSTATICS */
528
529             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
530             ewrt             = _mm_mul_pd(r00,ewtabscale);
531             ewitab           = _mm_cvttpd_epi32(ewrt);
532 #ifdef __XOP__
533             eweps            = _mm_frcz_pd(ewrt);
534 #else
535             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
536 #endif
537             twoeweps         = _mm_add_pd(eweps,eweps);
538             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
539             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
540             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
541
542             fscal            = felec;
543
544             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
545
546             /* Update vectorial force */
547             fix0             = _mm_macc_pd(dx00,fscal,fix0);
548             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
549             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
550             
551             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
552                                                    _mm_mul_pd(dx00,fscal),
553                                                    _mm_mul_pd(dy00,fscal),
554                                                    _mm_mul_pd(dz00,fscal));
555
556             /* Inner loop uses 39 flops */
557         }
558
559         /* End of innermost loop */
560
561         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
562                                               f+i_coord_offset,fshift+i_shift_offset);
563
564         /* Increment number of inner iterations */
565         inneriter                  += j_index_end - j_index_start;
566
567         /* Outer loop uses 7 flops */
568     }
569
570     /* Increment number of outer iterations */
571     outeriter        += nri;
572
573     /* Update outer/inner flops */
574
575     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*39);
576 }