7ba8efadaded4f680dfcba49b09479c37bcd911b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          ewitab;
105     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
106     real             *ewtab;
107     __m128d          dummy_mask,cutoff_mask;
108     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
109     __m128d          one     = _mm_set1_pd(1.0);
110     __m128d          two     = _mm_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_pd(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
136     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
137     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
165
166         fix0             = _mm_setzero_pd();
167         fiy0             = _mm_setzero_pd();
168         fiz0             = _mm_setzero_pd();
169         fix1             = _mm_setzero_pd();
170         fiy1             = _mm_setzero_pd();
171         fiz1             = _mm_setzero_pd();
172         fix2             = _mm_setzero_pd();
173         fiy2             = _mm_setzero_pd();
174         fiz2             = _mm_setzero_pd();
175         fix3             = _mm_setzero_pd();
176         fiy3             = _mm_setzero_pd();
177         fiz3             = _mm_setzero_pd();
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_pd();
181         vvdwsum          = _mm_setzero_pd();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             j_coord_offsetA  = DIM*jnrA;
191             j_coord_offsetB  = DIM*jnrB;
192
193             /* load j atom coordinates */
194             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_pd(ix0,jx0);
199             dy00             = _mm_sub_pd(iy0,jy0);
200             dz00             = _mm_sub_pd(iz0,jz0);
201             dx10             = _mm_sub_pd(ix1,jx0);
202             dy10             = _mm_sub_pd(iy1,jy0);
203             dz10             = _mm_sub_pd(iz1,jz0);
204             dx20             = _mm_sub_pd(ix2,jx0);
205             dy20             = _mm_sub_pd(iy2,jy0);
206             dz20             = _mm_sub_pd(iz2,jz0);
207             dx30             = _mm_sub_pd(ix3,jx0);
208             dy30             = _mm_sub_pd(iy3,jy0);
209             dz30             = _mm_sub_pd(iz3,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
216
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219             rinv30           = gmx_mm_invsqrt_pd(rsq30);
220
221             rinvsq00         = gmx_mm_inv_pd(rsq00);
222             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
223             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
224             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
247             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
248             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
249             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
253
254             fscal            = fvdw;
255
256             /* Update vectorial force */
257             fix0             = _mm_macc_pd(dx00,fscal,fix0);
258             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
259             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
260             
261             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
262             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
263             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
264
265             /**************************
266              * CALCULATE INTERACTIONS *
267              **************************/
268
269             r10              = _mm_mul_pd(rsq10,rinv10);
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm_mul_pd(iq1,jq0);
273
274             /* EWALD ELECTROSTATICS */
275
276             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
277             ewrt             = _mm_mul_pd(r10,ewtabscale);
278             ewitab           = _mm_cvttpd_epi32(ewrt);
279 #ifdef __XOP__
280             eweps            = _mm_frcz_pd(ewrt);
281 #else
282             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
283 #endif
284             twoeweps         = _mm_add_pd(eweps,eweps);
285             ewitab           = _mm_slli_epi32(ewitab,2);
286             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
287             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
288             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
289             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
290             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
291             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
292             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
293             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
294             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
295             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_pd(velecsum,velec);
299
300             fscal            = felec;
301
302             /* Update vectorial force */
303             fix1             = _mm_macc_pd(dx10,fscal,fix1);
304             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
305             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
306             
307             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
308             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
309             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
310
311             /**************************
312              * CALCULATE INTERACTIONS *
313              **************************/
314
315             r20              = _mm_mul_pd(rsq20,rinv20);
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq20             = _mm_mul_pd(iq2,jq0);
319
320             /* EWALD ELECTROSTATICS */
321
322             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323             ewrt             = _mm_mul_pd(r20,ewtabscale);
324             ewitab           = _mm_cvttpd_epi32(ewrt);
325 #ifdef __XOP__
326             eweps            = _mm_frcz_pd(ewrt);
327 #else
328             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
329 #endif
330             twoeweps         = _mm_add_pd(eweps,eweps);
331             ewitab           = _mm_slli_epi32(ewitab,2);
332             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
333             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
334             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
335             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
336             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
337             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
338             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
339             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
340             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
341             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Update vectorial force */
349             fix2             = _mm_macc_pd(dx20,fscal,fix2);
350             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
351             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
352             
353             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
354             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
355             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
356
357             /**************************
358              * CALCULATE INTERACTIONS *
359              **************************/
360
361             r30              = _mm_mul_pd(rsq30,rinv30);
362
363             /* Compute parameters for interactions between i and j atoms */
364             qq30             = _mm_mul_pd(iq3,jq0);
365
366             /* EWALD ELECTROSTATICS */
367
368             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
369             ewrt             = _mm_mul_pd(r30,ewtabscale);
370             ewitab           = _mm_cvttpd_epi32(ewrt);
371 #ifdef __XOP__
372             eweps            = _mm_frcz_pd(ewrt);
373 #else
374             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
375 #endif
376             twoeweps         = _mm_add_pd(eweps,eweps);
377             ewitab           = _mm_slli_epi32(ewitab,2);
378             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
379             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
380             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
381             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
382             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
383             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
384             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
385             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
386             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
387             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Update vectorial force */
395             fix3             = _mm_macc_pd(dx30,fscal,fix3);
396             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
397             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
398             
399             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
400             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
401             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
402
403             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
404
405             /* Inner loop uses 170 flops */
406         }
407
408         if(jidx<j_index_end)
409         {
410
411             jnrA             = jjnr[jidx];
412             j_coord_offsetA  = DIM*jnrA;
413
414             /* load j atom coordinates */
415             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
416                                               &jx0,&jy0,&jz0);
417
418             /* Calculate displacement vector */
419             dx00             = _mm_sub_pd(ix0,jx0);
420             dy00             = _mm_sub_pd(iy0,jy0);
421             dz00             = _mm_sub_pd(iz0,jz0);
422             dx10             = _mm_sub_pd(ix1,jx0);
423             dy10             = _mm_sub_pd(iy1,jy0);
424             dz10             = _mm_sub_pd(iz1,jz0);
425             dx20             = _mm_sub_pd(ix2,jx0);
426             dy20             = _mm_sub_pd(iy2,jy0);
427             dz20             = _mm_sub_pd(iz2,jz0);
428             dx30             = _mm_sub_pd(ix3,jx0);
429             dy30             = _mm_sub_pd(iy3,jy0);
430             dz30             = _mm_sub_pd(iz3,jz0);
431
432             /* Calculate squared distance and things based on it */
433             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
434             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
435             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
436             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
437
438             rinv10           = gmx_mm_invsqrt_pd(rsq10);
439             rinv20           = gmx_mm_invsqrt_pd(rsq20);
440             rinv30           = gmx_mm_invsqrt_pd(rsq30);
441
442             rinvsq00         = gmx_mm_inv_pd(rsq00);
443             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
444             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
445             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
446
447             /* Load parameters for j particles */
448             jq0              = _mm_load_sd(charge+jnrA+0);
449             vdwjidx0A        = 2*vdwtype[jnrA+0];
450
451             fjx0             = _mm_setzero_pd();
452             fjy0             = _mm_setzero_pd();
453             fjz0             = _mm_setzero_pd();
454
455             /**************************
456              * CALCULATE INTERACTIONS *
457              **************************/
458
459             /* Compute parameters for interactions between i and j atoms */
460             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
461
462             /* LENNARD-JONES DISPERSION/REPULSION */
463
464             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
465             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
466             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
467             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
468             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
469
470             /* Update potential sum for this i atom from the interaction with this j atom. */
471             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
472             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
473
474             fscal            = fvdw;
475
476             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
477
478             /* Update vectorial force */
479             fix0             = _mm_macc_pd(dx00,fscal,fix0);
480             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
481             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
482             
483             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
484             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
485             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r10              = _mm_mul_pd(rsq10,rinv10);
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq10             = _mm_mul_pd(iq1,jq0);
495
496             /* EWALD ELECTROSTATICS */
497
498             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499             ewrt             = _mm_mul_pd(r10,ewtabscale);
500             ewitab           = _mm_cvttpd_epi32(ewrt);
501 #ifdef __XOP__
502             eweps            = _mm_frcz_pd(ewrt);
503 #else
504             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
505 #endif
506             twoeweps         = _mm_add_pd(eweps,eweps);
507             ewitab           = _mm_slli_epi32(ewitab,2);
508             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
509             ewtabD           = _mm_setzero_pd();
510             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
511             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
512             ewtabFn          = _mm_setzero_pd();
513             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
514             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
515             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
516             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
517             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
521             velecsum         = _mm_add_pd(velecsum,velec);
522
523             fscal            = felec;
524
525             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
526
527             /* Update vectorial force */
528             fix1             = _mm_macc_pd(dx10,fscal,fix1);
529             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
530             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
531             
532             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
533             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
534             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r20              = _mm_mul_pd(rsq20,rinv20);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq20             = _mm_mul_pd(iq2,jq0);
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = _mm_mul_pd(r20,ewtabscale);
549             ewitab           = _mm_cvttpd_epi32(ewrt);
550 #ifdef __XOP__
551             eweps            = _mm_frcz_pd(ewrt);
552 #else
553             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
554 #endif
555             twoeweps         = _mm_add_pd(eweps,eweps);
556             ewitab           = _mm_slli_epi32(ewitab,2);
557             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
558             ewtabD           = _mm_setzero_pd();
559             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
560             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
561             ewtabFn          = _mm_setzero_pd();
562             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
563             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
564             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
565             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
566             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
570             velecsum         = _mm_add_pd(velecsum,velec);
571
572             fscal            = felec;
573
574             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
575
576             /* Update vectorial force */
577             fix2             = _mm_macc_pd(dx20,fscal,fix2);
578             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
579             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
580             
581             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
582             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
583             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
584
585             /**************************
586              * CALCULATE INTERACTIONS *
587              **************************/
588
589             r30              = _mm_mul_pd(rsq30,rinv30);
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq30             = _mm_mul_pd(iq3,jq0);
593
594             /* EWALD ELECTROSTATICS */
595
596             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597             ewrt             = _mm_mul_pd(r30,ewtabscale);
598             ewitab           = _mm_cvttpd_epi32(ewrt);
599 #ifdef __XOP__
600             eweps            = _mm_frcz_pd(ewrt);
601 #else
602             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
603 #endif
604             twoeweps         = _mm_add_pd(eweps,eweps);
605             ewitab           = _mm_slli_epi32(ewitab,2);
606             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
607             ewtabD           = _mm_setzero_pd();
608             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
609             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
610             ewtabFn          = _mm_setzero_pd();
611             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
612             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
613             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
614             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
615             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
616
617             /* Update potential sum for this i atom from the interaction with this j atom. */
618             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
619             velecsum         = _mm_add_pd(velecsum,velec);
620
621             fscal            = felec;
622
623             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
624
625             /* Update vectorial force */
626             fix3             = _mm_macc_pd(dx30,fscal,fix3);
627             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
628             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
629             
630             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
631             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
632             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
633
634             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
635
636             /* Inner loop uses 170 flops */
637         }
638
639         /* End of innermost loop */
640
641         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
642                                               f+i_coord_offset,fshift+i_shift_offset);
643
644         ggid                        = gid[iidx];
645         /* Update potential energies */
646         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
647         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
648
649         /* Increment number of inner iterations */
650         inneriter                  += j_index_end - j_index_start;
651
652         /* Outer loop uses 26 flops */
653     }
654
655     /* Increment number of outer iterations */
656     outeriter        += nri;
657
658     /* Update outer/inner flops */
659
660     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
661 }
662 /*
663  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
664  * Electrostatics interaction: Ewald
665  * VdW interaction:            LennardJones
666  * Geometry:                   Water4-Particle
667  * Calculate force/pot:        Force
668  */
669 void
670 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
671                     (t_nblist                    * gmx_restrict       nlist,
672                      rvec                        * gmx_restrict          xx,
673                      rvec                        * gmx_restrict          ff,
674                      t_forcerec                  * gmx_restrict          fr,
675                      t_mdatoms                   * gmx_restrict     mdatoms,
676                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
677                      t_nrnb                      * gmx_restrict        nrnb)
678 {
679     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
680      * just 0 for non-waters.
681      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
682      * jnr indices corresponding to data put in the four positions in the SIMD register.
683      */
684     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
685     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
686     int              jnrA,jnrB;
687     int              j_coord_offsetA,j_coord_offsetB;
688     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
689     real             rcutoff_scalar;
690     real             *shiftvec,*fshift,*x,*f;
691     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset0;
693     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694     int              vdwioffset1;
695     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696     int              vdwioffset2;
697     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698     int              vdwioffset3;
699     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
700     int              vdwjidx0A,vdwjidx0B;
701     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
702     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
703     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
704     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
705     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
706     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
707     real             *charge;
708     int              nvdwtype;
709     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
710     int              *vdwtype;
711     real             *vdwparam;
712     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
713     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
714     __m128i          ewitab;
715     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
716     real             *ewtab;
717     __m128d          dummy_mask,cutoff_mask;
718     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
719     __m128d          one     = _mm_set1_pd(1.0);
720     __m128d          two     = _mm_set1_pd(2.0);
721     x                = xx[0];
722     f                = ff[0];
723
724     nri              = nlist->nri;
725     iinr             = nlist->iinr;
726     jindex           = nlist->jindex;
727     jjnr             = nlist->jjnr;
728     shiftidx         = nlist->shift;
729     gid              = nlist->gid;
730     shiftvec         = fr->shift_vec[0];
731     fshift           = fr->fshift[0];
732     facel            = _mm_set1_pd(fr->epsfac);
733     charge           = mdatoms->chargeA;
734     nvdwtype         = fr->ntype;
735     vdwparam         = fr->nbfp;
736     vdwtype          = mdatoms->typeA;
737
738     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
739     ewtab            = fr->ic->tabq_coul_F;
740     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
741     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
742
743     /* Setup water-specific parameters */
744     inr              = nlist->iinr[0];
745     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
746     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
747     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
748     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754
755     outeriter        = 0;
756     inneriter        = 0;
757
758     /* Start outer loop over neighborlists */
759     for(iidx=0; iidx<nri; iidx++)
760     {
761         /* Load shift vector for this list */
762         i_shift_offset   = DIM*shiftidx[iidx];
763
764         /* Load limits for loop over neighbors */
765         j_index_start    = jindex[iidx];
766         j_index_end      = jindex[iidx+1];
767
768         /* Get outer coordinate index */
769         inr              = iinr[iidx];
770         i_coord_offset   = DIM*inr;
771
772         /* Load i particle coords and add shift vector */
773         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
774                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
775
776         fix0             = _mm_setzero_pd();
777         fiy0             = _mm_setzero_pd();
778         fiz0             = _mm_setzero_pd();
779         fix1             = _mm_setzero_pd();
780         fiy1             = _mm_setzero_pd();
781         fiz1             = _mm_setzero_pd();
782         fix2             = _mm_setzero_pd();
783         fiy2             = _mm_setzero_pd();
784         fiz2             = _mm_setzero_pd();
785         fix3             = _mm_setzero_pd();
786         fiy3             = _mm_setzero_pd();
787         fiz3             = _mm_setzero_pd();
788
789         /* Start inner kernel loop */
790         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrA             = jjnr[jidx];
795             jnrB             = jjnr[jidx+1];
796             j_coord_offsetA  = DIM*jnrA;
797             j_coord_offsetB  = DIM*jnrB;
798
799             /* load j atom coordinates */
800             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_pd(ix0,jx0);
805             dy00             = _mm_sub_pd(iy0,jy0);
806             dz00             = _mm_sub_pd(iz0,jz0);
807             dx10             = _mm_sub_pd(ix1,jx0);
808             dy10             = _mm_sub_pd(iy1,jy0);
809             dz10             = _mm_sub_pd(iz1,jz0);
810             dx20             = _mm_sub_pd(ix2,jx0);
811             dy20             = _mm_sub_pd(iy2,jy0);
812             dz20             = _mm_sub_pd(iz2,jz0);
813             dx30             = _mm_sub_pd(ix3,jx0);
814             dy30             = _mm_sub_pd(iy3,jy0);
815             dz30             = _mm_sub_pd(iz3,jz0);
816
817             /* Calculate squared distance and things based on it */
818             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
819             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
820             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
821             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
822
823             rinv10           = gmx_mm_invsqrt_pd(rsq10);
824             rinv20           = gmx_mm_invsqrt_pd(rsq20);
825             rinv30           = gmx_mm_invsqrt_pd(rsq30);
826
827             rinvsq00         = gmx_mm_inv_pd(rsq00);
828             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
829             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
830             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
831
832             /* Load parameters for j particles */
833             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
834             vdwjidx0A        = 2*vdwtype[jnrA+0];
835             vdwjidx0B        = 2*vdwtype[jnrB+0];
836
837             fjx0             = _mm_setzero_pd();
838             fjy0             = _mm_setzero_pd();
839             fjz0             = _mm_setzero_pd();
840
841             /**************************
842              * CALCULATE INTERACTIONS *
843              **************************/
844
845             /* Compute parameters for interactions between i and j atoms */
846             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
847                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
848
849             /* LENNARD-JONES DISPERSION/REPULSION */
850
851             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
852             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
853
854             fscal            = fvdw;
855
856             /* Update vectorial force */
857             fix0             = _mm_macc_pd(dx00,fscal,fix0);
858             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
859             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
860             
861             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
862             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
863             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             r10              = _mm_mul_pd(rsq10,rinv10);
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq10             = _mm_mul_pd(iq1,jq0);
873
874             /* EWALD ELECTROSTATICS */
875
876             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
877             ewrt             = _mm_mul_pd(r10,ewtabscale);
878             ewitab           = _mm_cvttpd_epi32(ewrt);
879 #ifdef __XOP__
880             eweps            = _mm_frcz_pd(ewrt);
881 #else
882             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
883 #endif
884             twoeweps         = _mm_add_pd(eweps,eweps);
885             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
886                                          &ewtabF,&ewtabFn);
887             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
888             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
889
890             fscal            = felec;
891
892             /* Update vectorial force */
893             fix1             = _mm_macc_pd(dx10,fscal,fix1);
894             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
895             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
896             
897             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
898             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
899             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r20              = _mm_mul_pd(rsq20,rinv20);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_pd(iq2,jq0);
909
910             /* EWALD ELECTROSTATICS */
911
912             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
913             ewrt             = _mm_mul_pd(r20,ewtabscale);
914             ewitab           = _mm_cvttpd_epi32(ewrt);
915 #ifdef __XOP__
916             eweps            = _mm_frcz_pd(ewrt);
917 #else
918             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
919 #endif
920             twoeweps         = _mm_add_pd(eweps,eweps);
921             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
922                                          &ewtabF,&ewtabFn);
923             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
924             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
925
926             fscal            = felec;
927
928             /* Update vectorial force */
929             fix2             = _mm_macc_pd(dx20,fscal,fix2);
930             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
931             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
932             
933             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
934             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
935             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
936
937             /**************************
938              * CALCULATE INTERACTIONS *
939              **************************/
940
941             r30              = _mm_mul_pd(rsq30,rinv30);
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq30             = _mm_mul_pd(iq3,jq0);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _mm_mul_pd(r30,ewtabscale);
950             ewitab           = _mm_cvttpd_epi32(ewrt);
951 #ifdef __XOP__
952             eweps            = _mm_frcz_pd(ewrt);
953 #else
954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
955 #endif
956             twoeweps         = _mm_add_pd(eweps,eweps);
957             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
958                                          &ewtabF,&ewtabFn);
959             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
960             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
961
962             fscal            = felec;
963
964             /* Update vectorial force */
965             fix3             = _mm_macc_pd(dx30,fscal,fix3);
966             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
967             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
968             
969             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
970             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
971             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
972
973             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
974
975             /* Inner loop uses 150 flops */
976         }
977
978         if(jidx<j_index_end)
979         {
980
981             jnrA             = jjnr[jidx];
982             j_coord_offsetA  = DIM*jnrA;
983
984             /* load j atom coordinates */
985             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
986                                               &jx0,&jy0,&jz0);
987
988             /* Calculate displacement vector */
989             dx00             = _mm_sub_pd(ix0,jx0);
990             dy00             = _mm_sub_pd(iy0,jy0);
991             dz00             = _mm_sub_pd(iz0,jz0);
992             dx10             = _mm_sub_pd(ix1,jx0);
993             dy10             = _mm_sub_pd(iy1,jy0);
994             dz10             = _mm_sub_pd(iz1,jz0);
995             dx20             = _mm_sub_pd(ix2,jx0);
996             dy20             = _mm_sub_pd(iy2,jy0);
997             dz20             = _mm_sub_pd(iz2,jz0);
998             dx30             = _mm_sub_pd(ix3,jx0);
999             dy30             = _mm_sub_pd(iy3,jy0);
1000             dz30             = _mm_sub_pd(iz3,jz0);
1001
1002             /* Calculate squared distance and things based on it */
1003             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1004             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1005             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1006             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1007
1008             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1009             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1010             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1011
1012             rinvsq00         = gmx_mm_inv_pd(rsq00);
1013             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1014             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1015             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1016
1017             /* Load parameters for j particles */
1018             jq0              = _mm_load_sd(charge+jnrA+0);
1019             vdwjidx0A        = 2*vdwtype[jnrA+0];
1020
1021             fjx0             = _mm_setzero_pd();
1022             fjy0             = _mm_setzero_pd();
1023             fjz0             = _mm_setzero_pd();
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             /* Compute parameters for interactions between i and j atoms */
1030             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1031
1032             /* LENNARD-JONES DISPERSION/REPULSION */
1033
1034             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1035             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1036
1037             fscal            = fvdw;
1038
1039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040
1041             /* Update vectorial force */
1042             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1043             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1044             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1045             
1046             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1047             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1048             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             r10              = _mm_mul_pd(rsq10,rinv10);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm_mul_pd(iq1,jq0);
1058
1059             /* EWALD ELECTROSTATICS */
1060
1061             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1062             ewrt             = _mm_mul_pd(r10,ewtabscale);
1063             ewitab           = _mm_cvttpd_epi32(ewrt);
1064 #ifdef __XOP__
1065             eweps            = _mm_frcz_pd(ewrt);
1066 #else
1067             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1068 #endif
1069             twoeweps         = _mm_add_pd(eweps,eweps);
1070             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1071             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1072             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1073
1074             fscal            = felec;
1075
1076             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1077
1078             /* Update vectorial force */
1079             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1080             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1081             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1082             
1083             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1084             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1085             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1086
1087             /**************************
1088              * CALCULATE INTERACTIONS *
1089              **************************/
1090
1091             r20              = _mm_mul_pd(rsq20,rinv20);
1092
1093             /* Compute parameters for interactions between i and j atoms */
1094             qq20             = _mm_mul_pd(iq2,jq0);
1095
1096             /* EWALD ELECTROSTATICS */
1097
1098             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1099             ewrt             = _mm_mul_pd(r20,ewtabscale);
1100             ewitab           = _mm_cvttpd_epi32(ewrt);
1101 #ifdef __XOP__
1102             eweps            = _mm_frcz_pd(ewrt);
1103 #else
1104             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1105 #endif
1106             twoeweps         = _mm_add_pd(eweps,eweps);
1107             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1108             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1109             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1110
1111             fscal            = felec;
1112
1113             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1114
1115             /* Update vectorial force */
1116             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1117             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1118             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1119             
1120             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1121             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1122             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             r30              = _mm_mul_pd(rsq30,rinv30);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq30             = _mm_mul_pd(iq3,jq0);
1132
1133             /* EWALD ELECTROSTATICS */
1134
1135             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136             ewrt             = _mm_mul_pd(r30,ewtabscale);
1137             ewitab           = _mm_cvttpd_epi32(ewrt);
1138 #ifdef __XOP__
1139             eweps            = _mm_frcz_pd(ewrt);
1140 #else
1141             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1142 #endif
1143             twoeweps         = _mm_add_pd(eweps,eweps);
1144             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1145             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1146             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1151
1152             /* Update vectorial force */
1153             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1154             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1155             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1156             
1157             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1158             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1159             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1160
1161             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1162
1163             /* Inner loop uses 150 flops */
1164         }
1165
1166         /* End of innermost loop */
1167
1168         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1169                                               f+i_coord_offset,fshift+i_shift_offset);
1170
1171         /* Increment number of inner iterations */
1172         inneriter                  += j_index_end - j_index_start;
1173
1174         /* Outer loop uses 24 flops */
1175     }
1176
1177     /* Increment number of outer iterations */
1178     outeriter        += nri;
1179
1180     /* Update outer/inner flops */
1181
1182     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1183 }