554a2c3186323940a6dbf5d86858f22c6a5d6a9c
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
163
164         fix0             = _mm_setzero_pd();
165         fiy0             = _mm_setzero_pd();
166         fiz0             = _mm_setzero_pd();
167         fix1             = _mm_setzero_pd();
168         fiy1             = _mm_setzero_pd();
169         fiz1             = _mm_setzero_pd();
170         fix2             = _mm_setzero_pd();
171         fiy2             = _mm_setzero_pd();
172         fiz2             = _mm_setzero_pd();
173         fix3             = _mm_setzero_pd();
174         fiy3             = _mm_setzero_pd();
175         fiz3             = _mm_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_pd();
179         vvdwsum          = _mm_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_pd(ix0,jx0);
197             dy00             = _mm_sub_pd(iy0,jy0);
198             dz00             = _mm_sub_pd(iz0,jz0);
199             dx10             = _mm_sub_pd(ix1,jx0);
200             dy10             = _mm_sub_pd(iy1,jy0);
201             dz10             = _mm_sub_pd(iz1,jz0);
202             dx20             = _mm_sub_pd(ix2,jx0);
203             dy20             = _mm_sub_pd(iy2,jy0);
204             dz20             = _mm_sub_pd(iz2,jz0);
205             dx30             = _mm_sub_pd(ix3,jx0);
206             dy30             = _mm_sub_pd(iy3,jy0);
207             dz30             = _mm_sub_pd(iz3,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
214
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217             rinv30           = gmx_mm_invsqrt_pd(rsq30);
218
219             rinvsq00         = gmx_mm_inv_pd(rsq00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _mm_setzero_pd();
230             fjy0             = _mm_setzero_pd();
231             fjz0             = _mm_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             /* Compute parameters for interactions between i and j atoms */
238             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
239                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
245             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
246             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
247             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
251
252             fscal            = fvdw;
253
254             /* Update vectorial force */
255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
258             
259             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
260             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
261             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r10              = _mm_mul_pd(rsq10,rinv10);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm_mul_pd(iq1,jq0);
271
272             /* EWALD ELECTROSTATICS */
273
274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275             ewrt             = _mm_mul_pd(r10,ewtabscale);
276             ewitab           = _mm_cvttpd_epi32(ewrt);
277 #ifdef __XOP__
278             eweps            = _mm_frcz_pd(ewrt);
279 #else
280             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
281 #endif
282             twoeweps         = _mm_add_pd(eweps,eweps);
283             ewitab           = _mm_slli_epi32(ewitab,2);
284             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
285             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
286             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
287             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
288             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
289             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
290             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
291             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
292             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
293             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velecsum         = _mm_add_pd(velecsum,velec);
297
298             fscal            = felec;
299
300             /* Update vectorial force */
301             fix1             = _mm_macc_pd(dx10,fscal,fix1);
302             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
303             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
304             
305             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
306             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
307             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             r20              = _mm_mul_pd(rsq20,rinv20);
314
315             /* Compute parameters for interactions between i and j atoms */
316             qq20             = _mm_mul_pd(iq2,jq0);
317
318             /* EWALD ELECTROSTATICS */
319
320             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
321             ewrt             = _mm_mul_pd(r20,ewtabscale);
322             ewitab           = _mm_cvttpd_epi32(ewrt);
323 #ifdef __XOP__
324             eweps            = _mm_frcz_pd(ewrt);
325 #else
326             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
327 #endif
328             twoeweps         = _mm_add_pd(eweps,eweps);
329             ewitab           = _mm_slli_epi32(ewitab,2);
330             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
331             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
332             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
333             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
334             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
335             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
336             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
337             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
338             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
339             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Update vectorial force */
347             fix2             = _mm_macc_pd(dx20,fscal,fix2);
348             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
349             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
350             
351             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
352             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
353             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r30              = _mm_mul_pd(rsq30,rinv30);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq30             = _mm_mul_pd(iq3,jq0);
363
364             /* EWALD ELECTROSTATICS */
365
366             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
367             ewrt             = _mm_mul_pd(r30,ewtabscale);
368             ewitab           = _mm_cvttpd_epi32(ewrt);
369 #ifdef __XOP__
370             eweps            = _mm_frcz_pd(ewrt);
371 #else
372             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
373 #endif
374             twoeweps         = _mm_add_pd(eweps,eweps);
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
383             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
384             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Update vectorial force */
393             fix3             = _mm_macc_pd(dx30,fscal,fix3);
394             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
395             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
396             
397             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
398             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
399             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
400
401             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
402
403             /* Inner loop uses 170 flops */
404         }
405
406         if(jidx<j_index_end)
407         {
408
409             jnrA             = jjnr[jidx];
410             j_coord_offsetA  = DIM*jnrA;
411
412             /* load j atom coordinates */
413             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
414                                               &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm_sub_pd(ix0,jx0);
418             dy00             = _mm_sub_pd(iy0,jy0);
419             dz00             = _mm_sub_pd(iz0,jz0);
420             dx10             = _mm_sub_pd(ix1,jx0);
421             dy10             = _mm_sub_pd(iy1,jy0);
422             dz10             = _mm_sub_pd(iz1,jz0);
423             dx20             = _mm_sub_pd(ix2,jx0);
424             dy20             = _mm_sub_pd(iy2,jy0);
425             dz20             = _mm_sub_pd(iz2,jz0);
426             dx30             = _mm_sub_pd(ix3,jx0);
427             dy30             = _mm_sub_pd(iy3,jy0);
428             dz30             = _mm_sub_pd(iz3,jz0);
429
430             /* Calculate squared distance and things based on it */
431             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
432             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
433             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
434             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
435
436             rinv10           = gmx_mm_invsqrt_pd(rsq10);
437             rinv20           = gmx_mm_invsqrt_pd(rsq20);
438             rinv30           = gmx_mm_invsqrt_pd(rsq30);
439
440             rinvsq00         = gmx_mm_inv_pd(rsq00);
441             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
442             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
443             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
444
445             /* Load parameters for j particles */
446             jq0              = _mm_load_sd(charge+jnrA+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448
449             fjx0             = _mm_setzero_pd();
450             fjy0             = _mm_setzero_pd();
451             fjz0             = _mm_setzero_pd();
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             /* Compute parameters for interactions between i and j atoms */
458             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
459
460             /* LENNARD-JONES DISPERSION/REPULSION */
461
462             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
463             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
464             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
465             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
466             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
467
468             /* Update potential sum for this i atom from the interaction with this j atom. */
469             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
470             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
471
472             fscal            = fvdw;
473
474             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
475
476             /* Update vectorial force */
477             fix0             = _mm_macc_pd(dx00,fscal,fix0);
478             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
479             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
480             
481             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
482             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
483             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             r10              = _mm_mul_pd(rsq10,rinv10);
490
491             /* Compute parameters for interactions between i and j atoms */
492             qq10             = _mm_mul_pd(iq1,jq0);
493
494             /* EWALD ELECTROSTATICS */
495
496             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
497             ewrt             = _mm_mul_pd(r10,ewtabscale);
498             ewitab           = _mm_cvttpd_epi32(ewrt);
499 #ifdef __XOP__
500             eweps            = _mm_frcz_pd(ewrt);
501 #else
502             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
503 #endif
504             twoeweps         = _mm_add_pd(eweps,eweps);
505             ewitab           = _mm_slli_epi32(ewitab,2);
506             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
507             ewtabD           = _mm_setzero_pd();
508             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
509             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
510             ewtabFn          = _mm_setzero_pd();
511             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
512             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
513             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
514             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
515             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
516
517             /* Update potential sum for this i atom from the interaction with this j atom. */
518             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
519             velecsum         = _mm_add_pd(velecsum,velec);
520
521             fscal            = felec;
522
523             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
524
525             /* Update vectorial force */
526             fix1             = _mm_macc_pd(dx10,fscal,fix1);
527             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
528             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
529             
530             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
531             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
532             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
533
534             /**************************
535              * CALCULATE INTERACTIONS *
536              **************************/
537
538             r20              = _mm_mul_pd(rsq20,rinv20);
539
540             /* Compute parameters for interactions between i and j atoms */
541             qq20             = _mm_mul_pd(iq2,jq0);
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = _mm_mul_pd(r20,ewtabscale);
547             ewitab           = _mm_cvttpd_epi32(ewrt);
548 #ifdef __XOP__
549             eweps            = _mm_frcz_pd(ewrt);
550 #else
551             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
552 #endif
553             twoeweps         = _mm_add_pd(eweps,eweps);
554             ewitab           = _mm_slli_epi32(ewitab,2);
555             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
556             ewtabD           = _mm_setzero_pd();
557             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
558             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
559             ewtabFn          = _mm_setzero_pd();
560             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
561             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
562             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
563             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
564             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
565
566             /* Update potential sum for this i atom from the interaction with this j atom. */
567             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
568             velecsum         = _mm_add_pd(velecsum,velec);
569
570             fscal            = felec;
571
572             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
573
574             /* Update vectorial force */
575             fix2             = _mm_macc_pd(dx20,fscal,fix2);
576             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
577             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
578             
579             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
580             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
581             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
582
583             /**************************
584              * CALCULATE INTERACTIONS *
585              **************************/
586
587             r30              = _mm_mul_pd(rsq30,rinv30);
588
589             /* Compute parameters for interactions between i and j atoms */
590             qq30             = _mm_mul_pd(iq3,jq0);
591
592             /* EWALD ELECTROSTATICS */
593
594             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595             ewrt             = _mm_mul_pd(r30,ewtabscale);
596             ewitab           = _mm_cvttpd_epi32(ewrt);
597 #ifdef __XOP__
598             eweps            = _mm_frcz_pd(ewrt);
599 #else
600             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
601 #endif
602             twoeweps         = _mm_add_pd(eweps,eweps);
603             ewitab           = _mm_slli_epi32(ewitab,2);
604             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
605             ewtabD           = _mm_setzero_pd();
606             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
607             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
608             ewtabFn          = _mm_setzero_pd();
609             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
610             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
611             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
612             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
613             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
617             velecsum         = _mm_add_pd(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
622
623             /* Update vectorial force */
624             fix3             = _mm_macc_pd(dx30,fscal,fix3);
625             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
626             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
627             
628             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
629             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
630             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
631
632             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
633
634             /* Inner loop uses 170 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
640                                               f+i_coord_offset,fshift+i_shift_offset);
641
642         ggid                        = gid[iidx];
643         /* Update potential energies */
644         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
645         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
646
647         /* Increment number of inner iterations */
648         inneriter                  += j_index_end - j_index_start;
649
650         /* Outer loop uses 26 flops */
651     }
652
653     /* Increment number of outer iterations */
654     outeriter        += nri;
655
656     /* Update outer/inner flops */
657
658     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*170);
659 }
660 /*
661  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
662  * Electrostatics interaction: Ewald
663  * VdW interaction:            LennardJones
664  * Geometry:                   Water4-Particle
665  * Calculate force/pot:        Force
666  */
667 void
668 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_128_fma_double
669                     (t_nblist                    * gmx_restrict       nlist,
670                      rvec                        * gmx_restrict          xx,
671                      rvec                        * gmx_restrict          ff,
672                      t_forcerec                  * gmx_restrict          fr,
673                      t_mdatoms                   * gmx_restrict     mdatoms,
674                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
675                      t_nrnb                      * gmx_restrict        nrnb)
676 {
677     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
678      * just 0 for non-waters.
679      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
680      * jnr indices corresponding to data put in the four positions in the SIMD register.
681      */
682     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
683     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
684     int              jnrA,jnrB;
685     int              j_coord_offsetA,j_coord_offsetB;
686     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
687     real             rcutoff_scalar;
688     real             *shiftvec,*fshift,*x,*f;
689     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
690     int              vdwioffset0;
691     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
692     int              vdwioffset1;
693     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694     int              vdwioffset2;
695     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696     int              vdwioffset3;
697     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
698     int              vdwjidx0A,vdwjidx0B;
699     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
704     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
705     real             *charge;
706     int              nvdwtype;
707     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
708     int              *vdwtype;
709     real             *vdwparam;
710     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
711     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
712     __m128i          ewitab;
713     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
714     real             *ewtab;
715     __m128d          dummy_mask,cutoff_mask;
716     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
717     __m128d          one     = _mm_set1_pd(1.0);
718     __m128d          two     = _mm_set1_pd(2.0);
719     x                = xx[0];
720     f                = ff[0];
721
722     nri              = nlist->nri;
723     iinr             = nlist->iinr;
724     jindex           = nlist->jindex;
725     jjnr             = nlist->jjnr;
726     shiftidx         = nlist->shift;
727     gid              = nlist->gid;
728     shiftvec         = fr->shift_vec[0];
729     fshift           = fr->fshift[0];
730     facel            = _mm_set1_pd(fr->epsfac);
731     charge           = mdatoms->chargeA;
732     nvdwtype         = fr->ntype;
733     vdwparam         = fr->nbfp;
734     vdwtype          = mdatoms->typeA;
735
736     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
737     ewtab            = fr->ic->tabq_coul_F;
738     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
739     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
740
741     /* Setup water-specific parameters */
742     inr              = nlist->iinr[0];
743     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
744     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
745     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
746     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
747
748     /* Avoid stupid compiler warnings */
749     jnrA = jnrB = 0;
750     j_coord_offsetA = 0;
751     j_coord_offsetB = 0;
752
753     outeriter        = 0;
754     inneriter        = 0;
755
756     /* Start outer loop over neighborlists */
757     for(iidx=0; iidx<nri; iidx++)
758     {
759         /* Load shift vector for this list */
760         i_shift_offset   = DIM*shiftidx[iidx];
761
762         /* Load limits for loop over neighbors */
763         j_index_start    = jindex[iidx];
764         j_index_end      = jindex[iidx+1];
765
766         /* Get outer coordinate index */
767         inr              = iinr[iidx];
768         i_coord_offset   = DIM*inr;
769
770         /* Load i particle coords and add shift vector */
771         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
772                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
773
774         fix0             = _mm_setzero_pd();
775         fiy0             = _mm_setzero_pd();
776         fiz0             = _mm_setzero_pd();
777         fix1             = _mm_setzero_pd();
778         fiy1             = _mm_setzero_pd();
779         fiz1             = _mm_setzero_pd();
780         fix2             = _mm_setzero_pd();
781         fiy2             = _mm_setzero_pd();
782         fiz2             = _mm_setzero_pd();
783         fix3             = _mm_setzero_pd();
784         fiy3             = _mm_setzero_pd();
785         fiz3             = _mm_setzero_pd();
786
787         /* Start inner kernel loop */
788         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
789         {
790
791             /* Get j neighbor index, and coordinate index */
792             jnrA             = jjnr[jidx];
793             jnrB             = jjnr[jidx+1];
794             j_coord_offsetA  = DIM*jnrA;
795             j_coord_offsetB  = DIM*jnrB;
796
797             /* load j atom coordinates */
798             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
799                                               &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm_sub_pd(ix0,jx0);
803             dy00             = _mm_sub_pd(iy0,jy0);
804             dz00             = _mm_sub_pd(iz0,jz0);
805             dx10             = _mm_sub_pd(ix1,jx0);
806             dy10             = _mm_sub_pd(iy1,jy0);
807             dz10             = _mm_sub_pd(iz1,jz0);
808             dx20             = _mm_sub_pd(ix2,jx0);
809             dy20             = _mm_sub_pd(iy2,jy0);
810             dz20             = _mm_sub_pd(iz2,jz0);
811             dx30             = _mm_sub_pd(ix3,jx0);
812             dy30             = _mm_sub_pd(iy3,jy0);
813             dz30             = _mm_sub_pd(iz3,jz0);
814
815             /* Calculate squared distance and things based on it */
816             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
817             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
818             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
819             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
820
821             rinv10           = gmx_mm_invsqrt_pd(rsq10);
822             rinv20           = gmx_mm_invsqrt_pd(rsq20);
823             rinv30           = gmx_mm_invsqrt_pd(rsq30);
824
825             rinvsq00         = gmx_mm_inv_pd(rsq00);
826             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
827             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
828             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
829
830             /* Load parameters for j particles */
831             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
832             vdwjidx0A        = 2*vdwtype[jnrA+0];
833             vdwjidx0B        = 2*vdwtype[jnrB+0];
834
835             fjx0             = _mm_setzero_pd();
836             fjy0             = _mm_setzero_pd();
837             fjz0             = _mm_setzero_pd();
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             /* Compute parameters for interactions between i and j atoms */
844             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
845                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
846
847             /* LENNARD-JONES DISPERSION/REPULSION */
848
849             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
850             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
851
852             fscal            = fvdw;
853
854             /* Update vectorial force */
855             fix0             = _mm_macc_pd(dx00,fscal,fix0);
856             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
857             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
858             
859             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
860             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
861             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r10              = _mm_mul_pd(rsq10,rinv10);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq10             = _mm_mul_pd(iq1,jq0);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
875             ewrt             = _mm_mul_pd(r10,ewtabscale);
876             ewitab           = _mm_cvttpd_epi32(ewrt);
877 #ifdef __XOP__
878             eweps            = _mm_frcz_pd(ewrt);
879 #else
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881 #endif
882             twoeweps         = _mm_add_pd(eweps,eweps);
883             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
884                                          &ewtabF,&ewtabFn);
885             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
886             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
887
888             fscal            = felec;
889
890             /* Update vectorial force */
891             fix1             = _mm_macc_pd(dx10,fscal,fix1);
892             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
893             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
894             
895             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
896             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
897             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r20              = _mm_mul_pd(rsq20,rinv20);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq20             = _mm_mul_pd(iq2,jq0);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_pd(r20,ewtabscale);
912             ewitab           = _mm_cvttpd_epi32(ewrt);
913 #ifdef __XOP__
914             eweps            = _mm_frcz_pd(ewrt);
915 #else
916             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
917 #endif
918             twoeweps         = _mm_add_pd(eweps,eweps);
919             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
920                                          &ewtabF,&ewtabFn);
921             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
923
924             fscal            = felec;
925
926             /* Update vectorial force */
927             fix2             = _mm_macc_pd(dx20,fscal,fix2);
928             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
929             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
930             
931             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
932             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
933             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
934
935             /**************************
936              * CALCULATE INTERACTIONS *
937              **************************/
938
939             r30              = _mm_mul_pd(rsq30,rinv30);
940
941             /* Compute parameters for interactions between i and j atoms */
942             qq30             = _mm_mul_pd(iq3,jq0);
943
944             /* EWALD ELECTROSTATICS */
945
946             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
947             ewrt             = _mm_mul_pd(r30,ewtabscale);
948             ewitab           = _mm_cvttpd_epi32(ewrt);
949 #ifdef __XOP__
950             eweps            = _mm_frcz_pd(ewrt);
951 #else
952             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
953 #endif
954             twoeweps         = _mm_add_pd(eweps,eweps);
955             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
956                                          &ewtabF,&ewtabFn);
957             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
958             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
959
960             fscal            = felec;
961
962             /* Update vectorial force */
963             fix3             = _mm_macc_pd(dx30,fscal,fix3);
964             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
965             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
966             
967             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
968             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
969             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
970
971             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
972
973             /* Inner loop uses 150 flops */
974         }
975
976         if(jidx<j_index_end)
977         {
978
979             jnrA             = jjnr[jidx];
980             j_coord_offsetA  = DIM*jnrA;
981
982             /* load j atom coordinates */
983             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
984                                               &jx0,&jy0,&jz0);
985
986             /* Calculate displacement vector */
987             dx00             = _mm_sub_pd(ix0,jx0);
988             dy00             = _mm_sub_pd(iy0,jy0);
989             dz00             = _mm_sub_pd(iz0,jz0);
990             dx10             = _mm_sub_pd(ix1,jx0);
991             dy10             = _mm_sub_pd(iy1,jy0);
992             dz10             = _mm_sub_pd(iz1,jz0);
993             dx20             = _mm_sub_pd(ix2,jx0);
994             dy20             = _mm_sub_pd(iy2,jy0);
995             dz20             = _mm_sub_pd(iz2,jz0);
996             dx30             = _mm_sub_pd(ix3,jx0);
997             dy30             = _mm_sub_pd(iy3,jy0);
998             dz30             = _mm_sub_pd(iz3,jz0);
999
1000             /* Calculate squared distance and things based on it */
1001             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1002             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1003             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1004             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1005
1006             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1007             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1008             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1009
1010             rinvsq00         = gmx_mm_inv_pd(rsq00);
1011             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1012             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1013             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1014
1015             /* Load parameters for j particles */
1016             jq0              = _mm_load_sd(charge+jnrA+0);
1017             vdwjidx0A        = 2*vdwtype[jnrA+0];
1018
1019             fjx0             = _mm_setzero_pd();
1020             fjy0             = _mm_setzero_pd();
1021             fjz0             = _mm_setzero_pd();
1022
1023             /**************************
1024              * CALCULATE INTERACTIONS *
1025              **************************/
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1029
1030             /* LENNARD-JONES DISPERSION/REPULSION */
1031
1032             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1033             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
1034
1035             fscal            = fvdw;
1036
1037             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1038
1039             /* Update vectorial force */
1040             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1041             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1042             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1043             
1044             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1045             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1046             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r10              = _mm_mul_pd(rsq10,rinv10);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq10             = _mm_mul_pd(iq1,jq0);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r10,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062 #ifdef __XOP__
1063             eweps            = _mm_frcz_pd(ewrt);
1064 #else
1065             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1066 #endif
1067             twoeweps         = _mm_add_pd(eweps,eweps);
1068             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1069             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1070             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1075
1076             /* Update vectorial force */
1077             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1078             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1079             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1080             
1081             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1082             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1083             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             r20              = _mm_mul_pd(rsq20,rinv20);
1090
1091             /* Compute parameters for interactions between i and j atoms */
1092             qq20             = _mm_mul_pd(iq2,jq0);
1093
1094             /* EWALD ELECTROSTATICS */
1095
1096             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1097             ewrt             = _mm_mul_pd(r20,ewtabscale);
1098             ewitab           = _mm_cvttpd_epi32(ewrt);
1099 #ifdef __XOP__
1100             eweps            = _mm_frcz_pd(ewrt);
1101 #else
1102             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1103 #endif
1104             twoeweps         = _mm_add_pd(eweps,eweps);
1105             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1106             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1107             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1108
1109             fscal            = felec;
1110
1111             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1112
1113             /* Update vectorial force */
1114             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1115             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1116             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1117             
1118             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1119             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1120             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             r30              = _mm_mul_pd(rsq30,rinv30);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq30             = _mm_mul_pd(iq3,jq0);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r30,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136 #ifdef __XOP__
1137             eweps            = _mm_frcz_pd(ewrt);
1138 #else
1139             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1140 #endif
1141             twoeweps         = _mm_add_pd(eweps,eweps);
1142             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1143             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1144             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1149
1150             /* Update vectorial force */
1151             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1152             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1153             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1154             
1155             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1156             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1157             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1158
1159             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1160
1161             /* Inner loop uses 150 flops */
1162         }
1163
1164         /* End of innermost loop */
1165
1166         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1167                                               f+i_coord_offset,fshift+i_shift_offset);
1168
1169         /* Increment number of inner iterations */
1170         inneriter                  += j_index_end - j_index_start;
1171
1172         /* Outer loop uses 24 flops */
1173     }
1174
1175     /* Increment number of outer iterations */
1176     outeriter        += nri;
1177
1178     /* Update outer/inner flops */
1179
1180     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*150);
1181 }