Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          ewitab;
102     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
103     real             *ewtab;
104     __m128d          dummy_mask,cutoff_mask;
105     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
106     __m128d          one     = _mm_set1_pd(1.0);
107     __m128d          two     = _mm_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
133     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
134     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* Avoid stupid compiler warnings */
138     jnrA = jnrB = 0;
139     j_coord_offsetA = 0;
140     j_coord_offsetB = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
161                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
162
163         fix0             = _mm_setzero_pd();
164         fiy0             = _mm_setzero_pd();
165         fiz0             = _mm_setzero_pd();
166         fix1             = _mm_setzero_pd();
167         fiy1             = _mm_setzero_pd();
168         fiz1             = _mm_setzero_pd();
169         fix2             = _mm_setzero_pd();
170         fiy2             = _mm_setzero_pd();
171         fiz2             = _mm_setzero_pd();
172
173         /* Reset potential sums */
174         velecsum         = _mm_setzero_pd();
175         vvdwsum          = _mm_setzero_pd();
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
179         {
180
181             /* Get j neighbor index, and coordinate index */
182             jnrA             = jjnr[jidx];
183             jnrB             = jjnr[jidx+1];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm_sub_pd(ix0,jx0);
193             dy00             = _mm_sub_pd(iy0,jy0);
194             dz00             = _mm_sub_pd(iz0,jz0);
195             dx10             = _mm_sub_pd(ix1,jx0);
196             dy10             = _mm_sub_pd(iy1,jy0);
197             dz10             = _mm_sub_pd(iz1,jz0);
198             dx20             = _mm_sub_pd(ix2,jx0);
199             dy20             = _mm_sub_pd(iy2,jy0);
200             dz20             = _mm_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = gmx_mm_invsqrt_pd(rsq00);
208             rinv10           = gmx_mm_invsqrt_pd(rsq10);
209             rinv20           = gmx_mm_invsqrt_pd(rsq20);
210
211             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
212             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219
220             fjx0             = _mm_setzero_pd();
221             fjy0             = _mm_setzero_pd();
222             fjz0             = _mm_setzero_pd();
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm_mul_pd(iq0,jq0);
232             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
233                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = _mm_mul_pd(r00,ewtabscale);
239             ewitab           = _mm_cvttpd_epi32(ewrt);
240 #ifdef __XOP__
241             eweps            = _mm_frcz_pd(ewrt);
242 #else
243             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
244 #endif
245             twoeweps         = _mm_add_pd(eweps,eweps);
246             ewitab           = _mm_slli_epi32(ewitab,2);
247             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
248             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
249             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
250             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
251             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
252             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
253             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
254             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
255             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
256             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
262             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
263             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
264             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_pd(velecsum,velec);
268             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
269
270             fscal            = _mm_add_pd(felec,fvdw);
271
272             /* Update vectorial force */
273             fix0             = _mm_macc_pd(dx00,fscal,fix0);
274             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
276             
277             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
278             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
279             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             r10              = _mm_mul_pd(rsq10,rinv10);
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq10             = _mm_mul_pd(iq1,jq0);
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = _mm_mul_pd(r10,ewtabscale);
294             ewitab           = _mm_cvttpd_epi32(ewrt);
295 #ifdef __XOP__
296             eweps            = _mm_frcz_pd(ewrt);
297 #else
298             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
299 #endif
300             twoeweps         = _mm_add_pd(eweps,eweps);
301             ewitab           = _mm_slli_epi32(ewitab,2);
302             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
303             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
304             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
305             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
306             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
307             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
308             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
309             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
310             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
311             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm_add_pd(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Update vectorial force */
319             fix1             = _mm_macc_pd(dx10,fscal,fix1);
320             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
321             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
322             
323             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
324             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
325             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r20              = _mm_mul_pd(rsq20,rinv20);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq20             = _mm_mul_pd(iq2,jq0);
335
336             /* EWALD ELECTROSTATICS */
337
338             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339             ewrt             = _mm_mul_pd(r20,ewtabscale);
340             ewitab           = _mm_cvttpd_epi32(ewrt);
341 #ifdef __XOP__
342             eweps            = _mm_frcz_pd(ewrt);
343 #else
344             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
345 #endif
346             twoeweps         = _mm_add_pd(eweps,eweps);
347             ewitab           = _mm_slli_epi32(ewitab,2);
348             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
349             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
350             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
351             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
352             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
353             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
354             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
355             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
356             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
357             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             velecsum         = _mm_add_pd(velecsum,velec);
361
362             fscal            = felec;
363
364             /* Update vectorial force */
365             fix2             = _mm_macc_pd(dx20,fscal,fix2);
366             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
367             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
368             
369             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
370             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
371             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
372
373             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
374
375             /* Inner loop uses 147 flops */
376         }
377
378         if(jidx<j_index_end)
379         {
380
381             jnrA             = jjnr[jidx];
382             j_coord_offsetA  = DIM*jnrA;
383
384             /* load j atom coordinates */
385             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
386                                               &jx0,&jy0,&jz0);
387
388             /* Calculate displacement vector */
389             dx00             = _mm_sub_pd(ix0,jx0);
390             dy00             = _mm_sub_pd(iy0,jy0);
391             dz00             = _mm_sub_pd(iz0,jz0);
392             dx10             = _mm_sub_pd(ix1,jx0);
393             dy10             = _mm_sub_pd(iy1,jy0);
394             dz10             = _mm_sub_pd(iz1,jz0);
395             dx20             = _mm_sub_pd(ix2,jx0);
396             dy20             = _mm_sub_pd(iy2,jy0);
397             dz20             = _mm_sub_pd(iz2,jz0);
398
399             /* Calculate squared distance and things based on it */
400             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
401             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
402             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
403
404             rinv00           = gmx_mm_invsqrt_pd(rsq00);
405             rinv10           = gmx_mm_invsqrt_pd(rsq10);
406             rinv20           = gmx_mm_invsqrt_pd(rsq20);
407
408             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
409             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
410             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
411
412             /* Load parameters for j particles */
413             jq0              = _mm_load_sd(charge+jnrA+0);
414             vdwjidx0A        = 2*vdwtype[jnrA+0];
415
416             fjx0             = _mm_setzero_pd();
417             fjy0             = _mm_setzero_pd();
418             fjz0             = _mm_setzero_pd();
419
420             /**************************
421              * CALCULATE INTERACTIONS *
422              **************************/
423
424             r00              = _mm_mul_pd(rsq00,rinv00);
425
426             /* Compute parameters for interactions between i and j atoms */
427             qq00             = _mm_mul_pd(iq0,jq0);
428             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
429
430             /* EWALD ELECTROSTATICS */
431
432             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
433             ewrt             = _mm_mul_pd(r00,ewtabscale);
434             ewitab           = _mm_cvttpd_epi32(ewrt);
435 #ifdef __XOP__
436             eweps            = _mm_frcz_pd(ewrt);
437 #else
438             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
439 #endif
440             twoeweps         = _mm_add_pd(eweps,eweps);
441             ewitab           = _mm_slli_epi32(ewitab,2);
442             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
443             ewtabD           = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
445             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
446             ewtabFn          = _mm_setzero_pd();
447             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
448             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
449             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
450             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
451             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
452
453             /* LENNARD-JONES DISPERSION/REPULSION */
454
455             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
456             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
457             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
458             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
459             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
463             velecsum         = _mm_add_pd(velecsum,velec);
464             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
465             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
466
467             fscal            = _mm_add_pd(felec,fvdw);
468
469             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
470
471             /* Update vectorial force */
472             fix0             = _mm_macc_pd(dx00,fscal,fix0);
473             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
474             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
475             
476             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
477             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
478             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             r10              = _mm_mul_pd(rsq10,rinv10);
485
486             /* Compute parameters for interactions between i and j atoms */
487             qq10             = _mm_mul_pd(iq1,jq0);
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = _mm_mul_pd(r10,ewtabscale);
493             ewitab           = _mm_cvttpd_epi32(ewrt);
494 #ifdef __XOP__
495             eweps            = _mm_frcz_pd(ewrt);
496 #else
497             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
498 #endif
499             twoeweps         = _mm_add_pd(eweps,eweps);
500             ewitab           = _mm_slli_epi32(ewitab,2);
501             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
502             ewtabD           = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
504             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
505             ewtabFn          = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
507             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
508             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
509             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
510             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
514             velecsum         = _mm_add_pd(velecsum,velec);
515
516             fscal            = felec;
517
518             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
519
520             /* Update vectorial force */
521             fix1             = _mm_macc_pd(dx10,fscal,fix1);
522             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
523             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
524             
525             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
526             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
527             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
528
529             /**************************
530              * CALCULATE INTERACTIONS *
531              **************************/
532
533             r20              = _mm_mul_pd(rsq20,rinv20);
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq20             = _mm_mul_pd(iq2,jq0);
537
538             /* EWALD ELECTROSTATICS */
539
540             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541             ewrt             = _mm_mul_pd(r20,ewtabscale);
542             ewitab           = _mm_cvttpd_epi32(ewrt);
543 #ifdef __XOP__
544             eweps            = _mm_frcz_pd(ewrt);
545 #else
546             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
547 #endif
548             twoeweps         = _mm_add_pd(eweps,eweps);
549             ewitab           = _mm_slli_epi32(ewitab,2);
550             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
551             ewtabD           = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
553             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
554             ewtabFn          = _mm_setzero_pd();
555             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
556             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
557             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
558             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
559             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
560
561             /* Update potential sum for this i atom from the interaction with this j atom. */
562             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
568
569             /* Update vectorial force */
570             fix2             = _mm_macc_pd(dx20,fscal,fix2);
571             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
572             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
573             
574             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
575             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
576             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
577
578             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
579
580             /* Inner loop uses 147 flops */
581         }
582
583         /* End of innermost loop */
584
585         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
586                                               f+i_coord_offset,fshift+i_shift_offset);
587
588         ggid                        = gid[iidx];
589         /* Update potential energies */
590         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
591         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
592
593         /* Increment number of inner iterations */
594         inneriter                  += j_index_end - j_index_start;
595
596         /* Outer loop uses 20 flops */
597     }
598
599     /* Increment number of outer iterations */
600     outeriter        += nri;
601
602     /* Update outer/inner flops */
603
604     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
605 }
606 /*
607  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
608  * Electrostatics interaction: Ewald
609  * VdW interaction:            LennardJones
610  * Geometry:                   Water3-Particle
611  * Calculate force/pot:        Force
612  */
613 void
614 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
615                     (t_nblist                    * gmx_restrict       nlist,
616                      rvec                        * gmx_restrict          xx,
617                      rvec                        * gmx_restrict          ff,
618                      t_forcerec                  * gmx_restrict          fr,
619                      t_mdatoms                   * gmx_restrict     mdatoms,
620                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
621                      t_nrnb                      * gmx_restrict        nrnb)
622 {
623     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
624      * just 0 for non-waters.
625      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
626      * jnr indices corresponding to data put in the four positions in the SIMD register.
627      */
628     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
629     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
630     int              jnrA,jnrB;
631     int              j_coord_offsetA,j_coord_offsetB;
632     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
633     real             rcutoff_scalar;
634     real             *shiftvec,*fshift,*x,*f;
635     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset0;
637     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
638     int              vdwioffset1;
639     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
640     int              vdwioffset2;
641     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
642     int              vdwjidx0A,vdwjidx0B;
643     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
645     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
646     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
647     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     int              nvdwtype;
650     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
651     int              *vdwtype;
652     real             *vdwparam;
653     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
654     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
655     __m128i          ewitab;
656     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
657     real             *ewtab;
658     __m128d          dummy_mask,cutoff_mask;
659     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
660     __m128d          one     = _mm_set1_pd(1.0);
661     __m128d          two     = _mm_set1_pd(2.0);
662     x                = xx[0];
663     f                = ff[0];
664
665     nri              = nlist->nri;
666     iinr             = nlist->iinr;
667     jindex           = nlist->jindex;
668     jjnr             = nlist->jjnr;
669     shiftidx         = nlist->shift;
670     gid              = nlist->gid;
671     shiftvec         = fr->shift_vec[0];
672     fshift           = fr->fshift[0];
673     facel            = _mm_set1_pd(fr->epsfac);
674     charge           = mdatoms->chargeA;
675     nvdwtype         = fr->ntype;
676     vdwparam         = fr->nbfp;
677     vdwtype          = mdatoms->typeA;
678
679     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
680     ewtab            = fr->ic->tabq_coul_F;
681     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
682     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
683
684     /* Setup water-specific parameters */
685     inr              = nlist->iinr[0];
686     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
687     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
688     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
689     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
690
691     /* Avoid stupid compiler warnings */
692     jnrA = jnrB = 0;
693     j_coord_offsetA = 0;
694     j_coord_offsetB = 0;
695
696     outeriter        = 0;
697     inneriter        = 0;
698
699     /* Start outer loop over neighborlists */
700     for(iidx=0; iidx<nri; iidx++)
701     {
702         /* Load shift vector for this list */
703         i_shift_offset   = DIM*shiftidx[iidx];
704
705         /* Load limits for loop over neighbors */
706         j_index_start    = jindex[iidx];
707         j_index_end      = jindex[iidx+1];
708
709         /* Get outer coordinate index */
710         inr              = iinr[iidx];
711         i_coord_offset   = DIM*inr;
712
713         /* Load i particle coords and add shift vector */
714         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
715                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
716
717         fix0             = _mm_setzero_pd();
718         fiy0             = _mm_setzero_pd();
719         fiz0             = _mm_setzero_pd();
720         fix1             = _mm_setzero_pd();
721         fiy1             = _mm_setzero_pd();
722         fiz1             = _mm_setzero_pd();
723         fix2             = _mm_setzero_pd();
724         fiy2             = _mm_setzero_pd();
725         fiz2             = _mm_setzero_pd();
726
727         /* Start inner kernel loop */
728         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
729         {
730
731             /* Get j neighbor index, and coordinate index */
732             jnrA             = jjnr[jidx];
733             jnrB             = jjnr[jidx+1];
734             j_coord_offsetA  = DIM*jnrA;
735             j_coord_offsetB  = DIM*jnrB;
736
737             /* load j atom coordinates */
738             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
739                                               &jx0,&jy0,&jz0);
740
741             /* Calculate displacement vector */
742             dx00             = _mm_sub_pd(ix0,jx0);
743             dy00             = _mm_sub_pd(iy0,jy0);
744             dz00             = _mm_sub_pd(iz0,jz0);
745             dx10             = _mm_sub_pd(ix1,jx0);
746             dy10             = _mm_sub_pd(iy1,jy0);
747             dz10             = _mm_sub_pd(iz1,jz0);
748             dx20             = _mm_sub_pd(ix2,jx0);
749             dy20             = _mm_sub_pd(iy2,jy0);
750             dz20             = _mm_sub_pd(iz2,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
754             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
755             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
756
757             rinv00           = gmx_mm_invsqrt_pd(rsq00);
758             rinv10           = gmx_mm_invsqrt_pd(rsq10);
759             rinv20           = gmx_mm_invsqrt_pd(rsq20);
760
761             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
762             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
763             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
764
765             /* Load parameters for j particles */
766             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
767             vdwjidx0A        = 2*vdwtype[jnrA+0];
768             vdwjidx0B        = 2*vdwtype[jnrB+0];
769
770             fjx0             = _mm_setzero_pd();
771             fjy0             = _mm_setzero_pd();
772             fjz0             = _mm_setzero_pd();
773
774             /**************************
775              * CALCULATE INTERACTIONS *
776              **************************/
777
778             r00              = _mm_mul_pd(rsq00,rinv00);
779
780             /* Compute parameters for interactions between i and j atoms */
781             qq00             = _mm_mul_pd(iq0,jq0);
782             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
783                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
784
785             /* EWALD ELECTROSTATICS */
786
787             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
788             ewrt             = _mm_mul_pd(r00,ewtabscale);
789             ewitab           = _mm_cvttpd_epi32(ewrt);
790 #ifdef __XOP__
791             eweps            = _mm_frcz_pd(ewrt);
792 #else
793             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
794 #endif
795             twoeweps         = _mm_add_pd(eweps,eweps);
796             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
797                                          &ewtabF,&ewtabFn);
798             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
799             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
800
801             /* LENNARD-JONES DISPERSION/REPULSION */
802
803             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
804             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
805
806             fscal            = _mm_add_pd(felec,fvdw);
807
808             /* Update vectorial force */
809             fix0             = _mm_macc_pd(dx00,fscal,fix0);
810             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
811             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
812             
813             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
814             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
815             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
816
817             /**************************
818              * CALCULATE INTERACTIONS *
819              **************************/
820
821             r10              = _mm_mul_pd(rsq10,rinv10);
822
823             /* Compute parameters for interactions between i and j atoms */
824             qq10             = _mm_mul_pd(iq1,jq0);
825
826             /* EWALD ELECTROSTATICS */
827
828             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
829             ewrt             = _mm_mul_pd(r10,ewtabscale);
830             ewitab           = _mm_cvttpd_epi32(ewrt);
831 #ifdef __XOP__
832             eweps            = _mm_frcz_pd(ewrt);
833 #else
834             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
835 #endif
836             twoeweps         = _mm_add_pd(eweps,eweps);
837             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
838                                          &ewtabF,&ewtabFn);
839             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
840             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
841
842             fscal            = felec;
843
844             /* Update vectorial force */
845             fix1             = _mm_macc_pd(dx10,fscal,fix1);
846             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
847             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
848             
849             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
850             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
851             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             r20              = _mm_mul_pd(rsq20,rinv20);
858
859             /* Compute parameters for interactions between i and j atoms */
860             qq20             = _mm_mul_pd(iq2,jq0);
861
862             /* EWALD ELECTROSTATICS */
863
864             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
865             ewrt             = _mm_mul_pd(r20,ewtabscale);
866             ewitab           = _mm_cvttpd_epi32(ewrt);
867 #ifdef __XOP__
868             eweps            = _mm_frcz_pd(ewrt);
869 #else
870             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
871 #endif
872             twoeweps         = _mm_add_pd(eweps,eweps);
873             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
874                                          &ewtabF,&ewtabFn);
875             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
876             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
877
878             fscal            = felec;
879
880             /* Update vectorial force */
881             fix2             = _mm_macc_pd(dx20,fscal,fix2);
882             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
883             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
884             
885             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
886             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
887             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
888
889             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
890
891             /* Inner loop uses 127 flops */
892         }
893
894         if(jidx<j_index_end)
895         {
896
897             jnrA             = jjnr[jidx];
898             j_coord_offsetA  = DIM*jnrA;
899
900             /* load j atom coordinates */
901             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
902                                               &jx0,&jy0,&jz0);
903
904             /* Calculate displacement vector */
905             dx00             = _mm_sub_pd(ix0,jx0);
906             dy00             = _mm_sub_pd(iy0,jy0);
907             dz00             = _mm_sub_pd(iz0,jz0);
908             dx10             = _mm_sub_pd(ix1,jx0);
909             dy10             = _mm_sub_pd(iy1,jy0);
910             dz10             = _mm_sub_pd(iz1,jz0);
911             dx20             = _mm_sub_pd(ix2,jx0);
912             dy20             = _mm_sub_pd(iy2,jy0);
913             dz20             = _mm_sub_pd(iz2,jz0);
914
915             /* Calculate squared distance and things based on it */
916             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
917             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
918             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
919
920             rinv00           = gmx_mm_invsqrt_pd(rsq00);
921             rinv10           = gmx_mm_invsqrt_pd(rsq10);
922             rinv20           = gmx_mm_invsqrt_pd(rsq20);
923
924             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
925             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
926             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
927
928             /* Load parameters for j particles */
929             jq0              = _mm_load_sd(charge+jnrA+0);
930             vdwjidx0A        = 2*vdwtype[jnrA+0];
931
932             fjx0             = _mm_setzero_pd();
933             fjy0             = _mm_setzero_pd();
934             fjz0             = _mm_setzero_pd();
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r00              = _mm_mul_pd(rsq00,rinv00);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq00             = _mm_mul_pd(iq0,jq0);
944             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
945
946             /* EWALD ELECTROSTATICS */
947
948             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
949             ewrt             = _mm_mul_pd(r00,ewtabscale);
950             ewitab           = _mm_cvttpd_epi32(ewrt);
951 #ifdef __XOP__
952             eweps            = _mm_frcz_pd(ewrt);
953 #else
954             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
955 #endif
956             twoeweps         = _mm_add_pd(eweps,eweps);
957             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
958             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
959             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
960
961             /* LENNARD-JONES DISPERSION/REPULSION */
962
963             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
964             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
965
966             fscal            = _mm_add_pd(felec,fvdw);
967
968             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
969
970             /* Update vectorial force */
971             fix0             = _mm_macc_pd(dx00,fscal,fix0);
972             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
973             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
974             
975             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
976             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
977             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r10              = _mm_mul_pd(rsq10,rinv10);
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq10             = _mm_mul_pd(iq1,jq0);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_pd(r10,ewtabscale);
992             ewitab           = _mm_cvttpd_epi32(ewrt);
993 #ifdef __XOP__
994             eweps            = _mm_frcz_pd(ewrt);
995 #else
996             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
997 #endif
998             twoeweps         = _mm_add_pd(eweps,eweps);
999             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1000             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1001             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1002
1003             fscal            = felec;
1004
1005             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1006
1007             /* Update vectorial force */
1008             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1009             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1010             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1011             
1012             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1013             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1014             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1015
1016             /**************************
1017              * CALCULATE INTERACTIONS *
1018              **************************/
1019
1020             r20              = _mm_mul_pd(rsq20,rinv20);
1021
1022             /* Compute parameters for interactions between i and j atoms */
1023             qq20             = _mm_mul_pd(iq2,jq0);
1024
1025             /* EWALD ELECTROSTATICS */
1026
1027             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028             ewrt             = _mm_mul_pd(r20,ewtabscale);
1029             ewitab           = _mm_cvttpd_epi32(ewrt);
1030 #ifdef __XOP__
1031             eweps            = _mm_frcz_pd(ewrt);
1032 #else
1033             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1034 #endif
1035             twoeweps         = _mm_add_pd(eweps,eweps);
1036             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1037             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1038             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1039
1040             fscal            = felec;
1041
1042             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1043
1044             /* Update vectorial force */
1045             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1046             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1047             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1048             
1049             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1050             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1051             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1052
1053             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1054
1055             /* Inner loop uses 127 flops */
1056         }
1057
1058         /* End of innermost loop */
1059
1060         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1061                                               f+i_coord_offset,fshift+i_shift_offset);
1062
1063         /* Increment number of inner iterations */
1064         inneriter                  += j_index_end - j_index_start;
1065
1066         /* Outer loop uses 18 flops */
1067     }
1068
1069     /* Increment number of outer iterations */
1070     outeriter        += nri;
1071
1072     /* Update outer/inner flops */
1073
1074     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1075 }