Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     real             *ewtab;
102     __m128d          dummy_mask,cutoff_mask;
103     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
104     __m128d          one     = _mm_set1_pd(1.0);
105     __m128d          two     = _mm_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
131     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
132     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
159                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
160
161         fix0             = _mm_setzero_pd();
162         fiy0             = _mm_setzero_pd();
163         fiz0             = _mm_setzero_pd();
164         fix1             = _mm_setzero_pd();
165         fiy1             = _mm_setzero_pd();
166         fiz1             = _mm_setzero_pd();
167         fix2             = _mm_setzero_pd();
168         fiy2             = _mm_setzero_pd();
169         fiz2             = _mm_setzero_pd();
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_pd();
173         vvdwsum          = _mm_setzero_pd();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm_sub_pd(ix0,jx0);
191             dy00             = _mm_sub_pd(iy0,jy0);
192             dz00             = _mm_sub_pd(iz0,jz0);
193             dx10             = _mm_sub_pd(ix1,jx0);
194             dy10             = _mm_sub_pd(iy1,jy0);
195             dz10             = _mm_sub_pd(iz1,jz0);
196             dx20             = _mm_sub_pd(ix2,jx0);
197             dy20             = _mm_sub_pd(iy2,jy0);
198             dz20             = _mm_sub_pd(iz2,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
202             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
203             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
204
205             rinv00           = gmx_mm_invsqrt_pd(rsq00);
206             rinv10           = gmx_mm_invsqrt_pd(rsq10);
207             rinv20           = gmx_mm_invsqrt_pd(rsq20);
208
209             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
210             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
211             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
215             vdwjidx0A        = 2*vdwtype[jnrA+0];
216             vdwjidx0B        = 2*vdwtype[jnrB+0];
217
218             fjx0             = _mm_setzero_pd();
219             fjy0             = _mm_setzero_pd();
220             fjz0             = _mm_setzero_pd();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             r00              = _mm_mul_pd(rsq00,rinv00);
227
228             /* Compute parameters for interactions between i and j atoms */
229             qq00             = _mm_mul_pd(iq0,jq0);
230             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
231                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
232
233             /* EWALD ELECTROSTATICS */
234
235             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
236             ewrt             = _mm_mul_pd(r00,ewtabscale);
237             ewitab           = _mm_cvttpd_epi32(ewrt);
238 #ifdef __XOP__
239             eweps            = _mm_frcz_pd(ewrt);
240 #else
241             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
242 #endif
243             twoeweps         = _mm_add_pd(eweps,eweps);
244             ewitab           = _mm_slli_epi32(ewitab,2);
245             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
246             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
247             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
248             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
249             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
250             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
251             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
252             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
253             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
254             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
260             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
261             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
262             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm_add_pd(velecsum,velec);
266             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
267
268             fscal            = _mm_add_pd(felec,fvdw);
269
270             /* Update vectorial force */
271             fix0             = _mm_macc_pd(dx00,fscal,fix0);
272             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
273             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
274             
275             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
276             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
277             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r10              = _mm_mul_pd(rsq10,rinv10);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_pd(iq1,jq0);
287
288             /* EWALD ELECTROSTATICS */
289
290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
291             ewrt             = _mm_mul_pd(r10,ewtabscale);
292             ewitab           = _mm_cvttpd_epi32(ewrt);
293 #ifdef __XOP__
294             eweps            = _mm_frcz_pd(ewrt);
295 #else
296             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
297 #endif
298             twoeweps         = _mm_add_pd(eweps,eweps);
299             ewitab           = _mm_slli_epi32(ewitab,2);
300             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
301             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
302             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
303             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
304             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
305             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
306             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
307             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
308             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
309             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm_add_pd(velecsum,velec);
313
314             fscal            = felec;
315
316             /* Update vectorial force */
317             fix1             = _mm_macc_pd(dx10,fscal,fix1);
318             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
319             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
320             
321             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
322             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
323             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
324
325             /**************************
326              * CALCULATE INTERACTIONS *
327              **************************/
328
329             r20              = _mm_mul_pd(rsq20,rinv20);
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq20             = _mm_mul_pd(iq2,jq0);
333
334             /* EWALD ELECTROSTATICS */
335
336             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
337             ewrt             = _mm_mul_pd(r20,ewtabscale);
338             ewitab           = _mm_cvttpd_epi32(ewrt);
339 #ifdef __XOP__
340             eweps            = _mm_frcz_pd(ewrt);
341 #else
342             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
343 #endif
344             twoeweps         = _mm_add_pd(eweps,eweps);
345             ewitab           = _mm_slli_epi32(ewitab,2);
346             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
347             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
348             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
349             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
350             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
351             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
352             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
353             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
354             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
355             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
356
357             /* Update potential sum for this i atom from the interaction with this j atom. */
358             velecsum         = _mm_add_pd(velecsum,velec);
359
360             fscal            = felec;
361
362             /* Update vectorial force */
363             fix2             = _mm_macc_pd(dx20,fscal,fix2);
364             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
365             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
366             
367             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
368             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
369             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
370
371             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
372
373             /* Inner loop uses 147 flops */
374         }
375
376         if(jidx<j_index_end)
377         {
378
379             jnrA             = jjnr[jidx];
380             j_coord_offsetA  = DIM*jnrA;
381
382             /* load j atom coordinates */
383             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
384                                               &jx0,&jy0,&jz0);
385
386             /* Calculate displacement vector */
387             dx00             = _mm_sub_pd(ix0,jx0);
388             dy00             = _mm_sub_pd(iy0,jy0);
389             dz00             = _mm_sub_pd(iz0,jz0);
390             dx10             = _mm_sub_pd(ix1,jx0);
391             dy10             = _mm_sub_pd(iy1,jy0);
392             dz10             = _mm_sub_pd(iz1,jz0);
393             dx20             = _mm_sub_pd(ix2,jx0);
394             dy20             = _mm_sub_pd(iy2,jy0);
395             dz20             = _mm_sub_pd(iz2,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
399             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
400             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
401
402             rinv00           = gmx_mm_invsqrt_pd(rsq00);
403             rinv10           = gmx_mm_invsqrt_pd(rsq10);
404             rinv20           = gmx_mm_invsqrt_pd(rsq20);
405
406             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
407             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
408             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
409
410             /* Load parameters for j particles */
411             jq0              = _mm_load_sd(charge+jnrA+0);
412             vdwjidx0A        = 2*vdwtype[jnrA+0];
413
414             fjx0             = _mm_setzero_pd();
415             fjy0             = _mm_setzero_pd();
416             fjz0             = _mm_setzero_pd();
417
418             /**************************
419              * CALCULATE INTERACTIONS *
420              **************************/
421
422             r00              = _mm_mul_pd(rsq00,rinv00);
423
424             /* Compute parameters for interactions between i and j atoms */
425             qq00             = _mm_mul_pd(iq0,jq0);
426             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
427
428             /* EWALD ELECTROSTATICS */
429
430             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
431             ewrt             = _mm_mul_pd(r00,ewtabscale);
432             ewitab           = _mm_cvttpd_epi32(ewrt);
433 #ifdef __XOP__
434             eweps            = _mm_frcz_pd(ewrt);
435 #else
436             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
437 #endif
438             twoeweps         = _mm_add_pd(eweps,eweps);
439             ewitab           = _mm_slli_epi32(ewitab,2);
440             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
441             ewtabD           = _mm_setzero_pd();
442             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
443             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
444             ewtabFn          = _mm_setzero_pd();
445             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
446             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
447             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
448             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
449             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
450
451             /* LENNARD-JONES DISPERSION/REPULSION */
452
453             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
454             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
455             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
456             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
457             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
458
459             /* Update potential sum for this i atom from the interaction with this j atom. */
460             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
461             velecsum         = _mm_add_pd(velecsum,velec);
462             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
463             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
464
465             fscal            = _mm_add_pd(felec,fvdw);
466
467             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
468
469             /* Update vectorial force */
470             fix0             = _mm_macc_pd(dx00,fscal,fix0);
471             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
472             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
473             
474             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
475             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
476             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
477
478             /**************************
479              * CALCULATE INTERACTIONS *
480              **************************/
481
482             r10              = _mm_mul_pd(rsq10,rinv10);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq10             = _mm_mul_pd(iq1,jq0);
486
487             /* EWALD ELECTROSTATICS */
488
489             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
490             ewrt             = _mm_mul_pd(r10,ewtabscale);
491             ewitab           = _mm_cvttpd_epi32(ewrt);
492 #ifdef __XOP__
493             eweps            = _mm_frcz_pd(ewrt);
494 #else
495             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
496 #endif
497             twoeweps         = _mm_add_pd(eweps,eweps);
498             ewitab           = _mm_slli_epi32(ewitab,2);
499             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
500             ewtabD           = _mm_setzero_pd();
501             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
502             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
503             ewtabFn          = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
505             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
506             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
507             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
508             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
512             velecsum         = _mm_add_pd(velecsum,velec);
513
514             fscal            = felec;
515
516             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
517
518             /* Update vectorial force */
519             fix1             = _mm_macc_pd(dx10,fscal,fix1);
520             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
521             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
522             
523             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
524             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
525             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r20              = _mm_mul_pd(rsq20,rinv20);
532
533             /* Compute parameters for interactions between i and j atoms */
534             qq20             = _mm_mul_pd(iq2,jq0);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _mm_mul_pd(r20,ewtabscale);
540             ewitab           = _mm_cvttpd_epi32(ewrt);
541 #ifdef __XOP__
542             eweps            = _mm_frcz_pd(ewrt);
543 #else
544             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
545 #endif
546             twoeweps         = _mm_add_pd(eweps,eweps);
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_setzero_pd();
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_setzero_pd();
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
555             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
556             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
561             velecsum         = _mm_add_pd(velecsum,velec);
562
563             fscal            = felec;
564
565             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
566
567             /* Update vectorial force */
568             fix2             = _mm_macc_pd(dx20,fscal,fix2);
569             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
570             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
571             
572             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
573             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
574             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
575
576             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
577
578             /* Inner loop uses 147 flops */
579         }
580
581         /* End of innermost loop */
582
583         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
584                                               f+i_coord_offset,fshift+i_shift_offset);
585
586         ggid                        = gid[iidx];
587         /* Update potential energies */
588         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
589         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
590
591         /* Increment number of inner iterations */
592         inneriter                  += j_index_end - j_index_start;
593
594         /* Outer loop uses 20 flops */
595     }
596
597     /* Increment number of outer iterations */
598     outeriter        += nri;
599
600     /* Update outer/inner flops */
601
602     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
603 }
604 /*
605  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
606  * Electrostatics interaction: Ewald
607  * VdW interaction:            LennardJones
608  * Geometry:                   Water3-Particle
609  * Calculate force/pot:        Force
610  */
611 void
612 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
613                     (t_nblist                    * gmx_restrict       nlist,
614                      rvec                        * gmx_restrict          xx,
615                      rvec                        * gmx_restrict          ff,
616                      t_forcerec                  * gmx_restrict          fr,
617                      t_mdatoms                   * gmx_restrict     mdatoms,
618                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
619                      t_nrnb                      * gmx_restrict        nrnb)
620 {
621     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
622      * just 0 for non-waters.
623      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
624      * jnr indices corresponding to data put in the four positions in the SIMD register.
625      */
626     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
627     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
628     int              jnrA,jnrB;
629     int              j_coord_offsetA,j_coord_offsetB;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwjidx0A,vdwjidx0B;
641     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
646     real             *charge;
647     int              nvdwtype;
648     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649     int              *vdwtype;
650     real             *vdwparam;
651     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
652     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
653     __m128i          ewitab;
654     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
655     real             *ewtab;
656     __m128d          dummy_mask,cutoff_mask;
657     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
658     __m128d          one     = _mm_set1_pd(1.0);
659     __m128d          two     = _mm_set1_pd(2.0);
660     x                = xx[0];
661     f                = ff[0];
662
663     nri              = nlist->nri;
664     iinr             = nlist->iinr;
665     jindex           = nlist->jindex;
666     jjnr             = nlist->jjnr;
667     shiftidx         = nlist->shift;
668     gid              = nlist->gid;
669     shiftvec         = fr->shift_vec[0];
670     fshift           = fr->fshift[0];
671     facel            = _mm_set1_pd(fr->epsfac);
672     charge           = mdatoms->chargeA;
673     nvdwtype         = fr->ntype;
674     vdwparam         = fr->nbfp;
675     vdwtype          = mdatoms->typeA;
676
677     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
678     ewtab            = fr->ic->tabq_coul_F;
679     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
680     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
681
682     /* Setup water-specific parameters */
683     inr              = nlist->iinr[0];
684     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
685     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
686     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
687     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
688
689     /* Avoid stupid compiler warnings */
690     jnrA = jnrB = 0;
691     j_coord_offsetA = 0;
692     j_coord_offsetB = 0;
693
694     outeriter        = 0;
695     inneriter        = 0;
696
697     /* Start outer loop over neighborlists */
698     for(iidx=0; iidx<nri; iidx++)
699     {
700         /* Load shift vector for this list */
701         i_shift_offset   = DIM*shiftidx[iidx];
702
703         /* Load limits for loop over neighbors */
704         j_index_start    = jindex[iidx];
705         j_index_end      = jindex[iidx+1];
706
707         /* Get outer coordinate index */
708         inr              = iinr[iidx];
709         i_coord_offset   = DIM*inr;
710
711         /* Load i particle coords and add shift vector */
712         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
713                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
714
715         fix0             = _mm_setzero_pd();
716         fiy0             = _mm_setzero_pd();
717         fiz0             = _mm_setzero_pd();
718         fix1             = _mm_setzero_pd();
719         fiy1             = _mm_setzero_pd();
720         fiz1             = _mm_setzero_pd();
721         fix2             = _mm_setzero_pd();
722         fiy2             = _mm_setzero_pd();
723         fiz2             = _mm_setzero_pd();
724
725         /* Start inner kernel loop */
726         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
727         {
728
729             /* Get j neighbor index, and coordinate index */
730             jnrA             = jjnr[jidx];
731             jnrB             = jjnr[jidx+1];
732             j_coord_offsetA  = DIM*jnrA;
733             j_coord_offsetB  = DIM*jnrB;
734
735             /* load j atom coordinates */
736             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
737                                               &jx0,&jy0,&jz0);
738
739             /* Calculate displacement vector */
740             dx00             = _mm_sub_pd(ix0,jx0);
741             dy00             = _mm_sub_pd(iy0,jy0);
742             dz00             = _mm_sub_pd(iz0,jz0);
743             dx10             = _mm_sub_pd(ix1,jx0);
744             dy10             = _mm_sub_pd(iy1,jy0);
745             dz10             = _mm_sub_pd(iz1,jz0);
746             dx20             = _mm_sub_pd(ix2,jx0);
747             dy20             = _mm_sub_pd(iy2,jy0);
748             dz20             = _mm_sub_pd(iz2,jz0);
749
750             /* Calculate squared distance and things based on it */
751             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
752             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
753             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
754
755             rinv00           = gmx_mm_invsqrt_pd(rsq00);
756             rinv10           = gmx_mm_invsqrt_pd(rsq10);
757             rinv20           = gmx_mm_invsqrt_pd(rsq20);
758
759             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
760             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
761             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
765             vdwjidx0A        = 2*vdwtype[jnrA+0];
766             vdwjidx0B        = 2*vdwtype[jnrB+0];
767
768             fjx0             = _mm_setzero_pd();
769             fjy0             = _mm_setzero_pd();
770             fjz0             = _mm_setzero_pd();
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             r00              = _mm_mul_pd(rsq00,rinv00);
777
778             /* Compute parameters for interactions between i and j atoms */
779             qq00             = _mm_mul_pd(iq0,jq0);
780             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
781                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
782
783             /* EWALD ELECTROSTATICS */
784
785             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
786             ewrt             = _mm_mul_pd(r00,ewtabscale);
787             ewitab           = _mm_cvttpd_epi32(ewrt);
788 #ifdef __XOP__
789             eweps            = _mm_frcz_pd(ewrt);
790 #else
791             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
792 #endif
793             twoeweps         = _mm_add_pd(eweps,eweps);
794             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
795                                          &ewtabF,&ewtabFn);
796             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
797             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
798
799             /* LENNARD-JONES DISPERSION/REPULSION */
800
801             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
802             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
803
804             fscal            = _mm_add_pd(felec,fvdw);
805
806             /* Update vectorial force */
807             fix0             = _mm_macc_pd(dx00,fscal,fix0);
808             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
809             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
810             
811             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
812             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
813             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
814
815             /**************************
816              * CALCULATE INTERACTIONS *
817              **************************/
818
819             r10              = _mm_mul_pd(rsq10,rinv10);
820
821             /* Compute parameters for interactions between i and j atoms */
822             qq10             = _mm_mul_pd(iq1,jq0);
823
824             /* EWALD ELECTROSTATICS */
825
826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
827             ewrt             = _mm_mul_pd(r10,ewtabscale);
828             ewitab           = _mm_cvttpd_epi32(ewrt);
829 #ifdef __XOP__
830             eweps            = _mm_frcz_pd(ewrt);
831 #else
832             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
833 #endif
834             twoeweps         = _mm_add_pd(eweps,eweps);
835             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
836                                          &ewtabF,&ewtabFn);
837             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
838             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
839
840             fscal            = felec;
841
842             /* Update vectorial force */
843             fix1             = _mm_macc_pd(dx10,fscal,fix1);
844             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
845             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
846             
847             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
848             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
849             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
850
851             /**************************
852              * CALCULATE INTERACTIONS *
853              **************************/
854
855             r20              = _mm_mul_pd(rsq20,rinv20);
856
857             /* Compute parameters for interactions between i and j atoms */
858             qq20             = _mm_mul_pd(iq2,jq0);
859
860             /* EWALD ELECTROSTATICS */
861
862             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
863             ewrt             = _mm_mul_pd(r20,ewtabscale);
864             ewitab           = _mm_cvttpd_epi32(ewrt);
865 #ifdef __XOP__
866             eweps            = _mm_frcz_pd(ewrt);
867 #else
868             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
869 #endif
870             twoeweps         = _mm_add_pd(eweps,eweps);
871             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
872                                          &ewtabF,&ewtabFn);
873             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
874             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
875
876             fscal            = felec;
877
878             /* Update vectorial force */
879             fix2             = _mm_macc_pd(dx20,fscal,fix2);
880             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
881             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
882             
883             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
884             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
885             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
886
887             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
888
889             /* Inner loop uses 127 flops */
890         }
891
892         if(jidx<j_index_end)
893         {
894
895             jnrA             = jjnr[jidx];
896             j_coord_offsetA  = DIM*jnrA;
897
898             /* load j atom coordinates */
899             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
900                                               &jx0,&jy0,&jz0);
901
902             /* Calculate displacement vector */
903             dx00             = _mm_sub_pd(ix0,jx0);
904             dy00             = _mm_sub_pd(iy0,jy0);
905             dz00             = _mm_sub_pd(iz0,jz0);
906             dx10             = _mm_sub_pd(ix1,jx0);
907             dy10             = _mm_sub_pd(iy1,jy0);
908             dz10             = _mm_sub_pd(iz1,jz0);
909             dx20             = _mm_sub_pd(ix2,jx0);
910             dy20             = _mm_sub_pd(iy2,jy0);
911             dz20             = _mm_sub_pd(iz2,jz0);
912
913             /* Calculate squared distance and things based on it */
914             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
915             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
916             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
917
918             rinv00           = gmx_mm_invsqrt_pd(rsq00);
919             rinv10           = gmx_mm_invsqrt_pd(rsq10);
920             rinv20           = gmx_mm_invsqrt_pd(rsq20);
921
922             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
923             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
924             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
925
926             /* Load parameters for j particles */
927             jq0              = _mm_load_sd(charge+jnrA+0);
928             vdwjidx0A        = 2*vdwtype[jnrA+0];
929
930             fjx0             = _mm_setzero_pd();
931             fjy0             = _mm_setzero_pd();
932             fjz0             = _mm_setzero_pd();
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             r00              = _mm_mul_pd(rsq00,rinv00);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq00             = _mm_mul_pd(iq0,jq0);
942             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
943
944             /* EWALD ELECTROSTATICS */
945
946             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
947             ewrt             = _mm_mul_pd(r00,ewtabscale);
948             ewitab           = _mm_cvttpd_epi32(ewrt);
949 #ifdef __XOP__
950             eweps            = _mm_frcz_pd(ewrt);
951 #else
952             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
953 #endif
954             twoeweps         = _mm_add_pd(eweps,eweps);
955             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
956             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
957             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
958
959             /* LENNARD-JONES DISPERSION/REPULSION */
960
961             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
962             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
963
964             fscal            = _mm_add_pd(felec,fvdw);
965
966             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
967
968             /* Update vectorial force */
969             fix0             = _mm_macc_pd(dx00,fscal,fix0);
970             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
971             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
972             
973             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
974             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
975             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r10              = _mm_mul_pd(rsq10,rinv10);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq10             = _mm_mul_pd(iq1,jq0);
985
986             /* EWALD ELECTROSTATICS */
987
988             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
989             ewrt             = _mm_mul_pd(r10,ewtabscale);
990             ewitab           = _mm_cvttpd_epi32(ewrt);
991 #ifdef __XOP__
992             eweps            = _mm_frcz_pd(ewrt);
993 #else
994             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
995 #endif
996             twoeweps         = _mm_add_pd(eweps,eweps);
997             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
998             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
999             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1000
1001             fscal            = felec;
1002
1003             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1004
1005             /* Update vectorial force */
1006             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1007             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1008             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1009             
1010             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1011             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1012             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r20              = _mm_mul_pd(rsq20,rinv20);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq20             = _mm_mul_pd(iq2,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024
1025             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026             ewrt             = _mm_mul_pd(r20,ewtabscale);
1027             ewitab           = _mm_cvttpd_epi32(ewrt);
1028 #ifdef __XOP__
1029             eweps            = _mm_frcz_pd(ewrt);
1030 #else
1031             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1032 #endif
1033             twoeweps         = _mm_add_pd(eweps,eweps);
1034             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1035             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1036             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1041
1042             /* Update vectorial force */
1043             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1044             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1045             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1046             
1047             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1048             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1049             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1050
1051             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1052
1053             /* Inner loop uses 127 flops */
1054         }
1055
1056         /* End of innermost loop */
1057
1058         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1059                                               f+i_coord_offset,fshift+i_shift_offset);
1060
1061         /* Increment number of inner iterations */
1062         inneriter                  += j_index_end - j_index_start;
1063
1064         /* Outer loop uses 18 flops */
1065     }
1066
1067     /* Increment number of outer iterations */
1068     outeriter        += nri;
1069
1070     /* Update outer/inner flops */
1071
1072     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1073 }