Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
130     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
131     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm_setzero_pd();
161         fiy0             = _mm_setzero_pd();
162         fiz0             = _mm_setzero_pd();
163         fix1             = _mm_setzero_pd();
164         fiy1             = _mm_setzero_pd();
165         fiz1             = _mm_setzero_pd();
166         fix2             = _mm_setzero_pd();
167         fiy2             = _mm_setzero_pd();
168         fiz2             = _mm_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_pd();
172         vvdwsum          = _mm_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183
184             /* load j atom coordinates */
185             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                               &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm_sub_pd(ix0,jx0);
190             dy00             = _mm_sub_pd(iy0,jy0);
191             dz00             = _mm_sub_pd(iz0,jz0);
192             dx10             = _mm_sub_pd(ix1,jx0);
193             dy10             = _mm_sub_pd(iy1,jy0);
194             dz10             = _mm_sub_pd(iz1,jz0);
195             dx20             = _mm_sub_pd(ix2,jx0);
196             dy20             = _mm_sub_pd(iy2,jy0);
197             dz20             = _mm_sub_pd(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
201             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
202             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
203
204             rinv00           = avx128fma_invsqrt_d(rsq00);
205             rinv10           = avx128fma_invsqrt_d(rsq10);
206             rinv20           = avx128fma_invsqrt_d(rsq20);
207
208             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
209             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
210             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216
217             fjx0             = _mm_setzero_pd();
218             fjy0             = _mm_setzero_pd();
219             fjz0             = _mm_setzero_pd();
220
221             /**************************
222              * CALCULATE INTERACTIONS *
223              **************************/
224
225             r00              = _mm_mul_pd(rsq00,rinv00);
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm_mul_pd(iq0,jq0);
229             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
230                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
231
232             /* EWALD ELECTROSTATICS */
233
234             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
235             ewrt             = _mm_mul_pd(r00,ewtabscale);
236             ewitab           = _mm_cvttpd_epi32(ewrt);
237 #ifdef __XOP__
238             eweps            = _mm_frcz_pd(ewrt);
239 #else
240             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
241 #endif
242             twoeweps         = _mm_add_pd(eweps,eweps);
243             ewitab           = _mm_slli_epi32(ewitab,2);
244             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
245             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
246             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
247             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
248             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
249             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
250             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
251             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
252             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
253             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
254
255             /* LENNARD-JONES DISPERSION/REPULSION */
256
257             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
258             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
259             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
260             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
261             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm_add_pd(velecsum,velec);
265             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm_add_pd(felec,fvdw);
268
269             /* Update vectorial force */
270             fix0             = _mm_macc_pd(dx00,fscal,fix0);
271             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
272             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
273             
274             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
275             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
276             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
277
278             /**************************
279              * CALCULATE INTERACTIONS *
280              **************************/
281
282             r10              = _mm_mul_pd(rsq10,rinv10);
283
284             /* Compute parameters for interactions between i and j atoms */
285             qq10             = _mm_mul_pd(iq1,jq0);
286
287             /* EWALD ELECTROSTATICS */
288
289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
290             ewrt             = _mm_mul_pd(r10,ewtabscale);
291             ewitab           = _mm_cvttpd_epi32(ewrt);
292 #ifdef __XOP__
293             eweps            = _mm_frcz_pd(ewrt);
294 #else
295             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
296 #endif
297             twoeweps         = _mm_add_pd(eweps,eweps);
298             ewitab           = _mm_slli_epi32(ewitab,2);
299             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
300             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
301             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
302             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
303             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
304             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
305             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
306             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
307             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
308             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_pd(velecsum,velec);
312
313             fscal            = felec;
314
315             /* Update vectorial force */
316             fix1             = _mm_macc_pd(dx10,fscal,fix1);
317             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
318             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
319             
320             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
321             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
322             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r20              = _mm_mul_pd(rsq20,rinv20);
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq20             = _mm_mul_pd(iq2,jq0);
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = _mm_mul_pd(r20,ewtabscale);
337             ewitab           = _mm_cvttpd_epi32(ewrt);
338 #ifdef __XOP__
339             eweps            = _mm_frcz_pd(ewrt);
340 #else
341             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
342 #endif
343             twoeweps         = _mm_add_pd(eweps,eweps);
344             ewitab           = _mm_slli_epi32(ewitab,2);
345             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
346             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
347             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
348             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
349             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
350             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
351             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
352             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
353             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
354             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_pd(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Update vectorial force */
362             fix2             = _mm_macc_pd(dx20,fscal,fix2);
363             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
364             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
365             
366             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
367             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
368             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
369
370             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
371
372             /* Inner loop uses 147 flops */
373         }
374
375         if(jidx<j_index_end)
376         {
377
378             jnrA             = jjnr[jidx];
379             j_coord_offsetA  = DIM*jnrA;
380
381             /* load j atom coordinates */
382             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
383                                               &jx0,&jy0,&jz0);
384
385             /* Calculate displacement vector */
386             dx00             = _mm_sub_pd(ix0,jx0);
387             dy00             = _mm_sub_pd(iy0,jy0);
388             dz00             = _mm_sub_pd(iz0,jz0);
389             dx10             = _mm_sub_pd(ix1,jx0);
390             dy10             = _mm_sub_pd(iy1,jy0);
391             dz10             = _mm_sub_pd(iz1,jz0);
392             dx20             = _mm_sub_pd(ix2,jx0);
393             dy20             = _mm_sub_pd(iy2,jy0);
394             dz20             = _mm_sub_pd(iz2,jz0);
395
396             /* Calculate squared distance and things based on it */
397             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
398             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
399             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
400
401             rinv00           = avx128fma_invsqrt_d(rsq00);
402             rinv10           = avx128fma_invsqrt_d(rsq10);
403             rinv20           = avx128fma_invsqrt_d(rsq20);
404
405             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
406             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
407             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
408
409             /* Load parameters for j particles */
410             jq0              = _mm_load_sd(charge+jnrA+0);
411             vdwjidx0A        = 2*vdwtype[jnrA+0];
412
413             fjx0             = _mm_setzero_pd();
414             fjy0             = _mm_setzero_pd();
415             fjz0             = _mm_setzero_pd();
416
417             /**************************
418              * CALCULATE INTERACTIONS *
419              **************************/
420
421             r00              = _mm_mul_pd(rsq00,rinv00);
422
423             /* Compute parameters for interactions between i and j atoms */
424             qq00             = _mm_mul_pd(iq0,jq0);
425             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
426
427             /* EWALD ELECTROSTATICS */
428
429             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430             ewrt             = _mm_mul_pd(r00,ewtabscale);
431             ewitab           = _mm_cvttpd_epi32(ewrt);
432 #ifdef __XOP__
433             eweps            = _mm_frcz_pd(ewrt);
434 #else
435             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
436 #endif
437             twoeweps         = _mm_add_pd(eweps,eweps);
438             ewitab           = _mm_slli_epi32(ewitab,2);
439             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
440             ewtabD           = _mm_setzero_pd();
441             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
442             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
443             ewtabFn          = _mm_setzero_pd();
444             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
445             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
446             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
447             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
448             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
449
450             /* LENNARD-JONES DISPERSION/REPULSION */
451
452             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
453             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
454             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
455             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
456             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
457
458             /* Update potential sum for this i atom from the interaction with this j atom. */
459             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
460             velecsum         = _mm_add_pd(velecsum,velec);
461             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
462             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
463
464             fscal            = _mm_add_pd(felec,fvdw);
465
466             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
467
468             /* Update vectorial force */
469             fix0             = _mm_macc_pd(dx00,fscal,fix0);
470             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
471             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
472             
473             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
474             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
475             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r10              = _mm_mul_pd(rsq10,rinv10);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq10             = _mm_mul_pd(iq1,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm_mul_pd(r10,ewtabscale);
490             ewitab           = _mm_cvttpd_epi32(ewrt);
491 #ifdef __XOP__
492             eweps            = _mm_frcz_pd(ewrt);
493 #else
494             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
495 #endif
496             twoeweps         = _mm_add_pd(eweps,eweps);
497             ewitab           = _mm_slli_epi32(ewitab,2);
498             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
499             ewtabD           = _mm_setzero_pd();
500             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
501             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
502             ewtabFn          = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
504             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
505             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
506             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
507             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
511             velecsum         = _mm_add_pd(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
516
517             /* Update vectorial force */
518             fix1             = _mm_macc_pd(dx10,fscal,fix1);
519             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
520             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
521             
522             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
523             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
524             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r20              = _mm_mul_pd(rsq20,rinv20);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq20             = _mm_mul_pd(iq2,jq0);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
538             ewrt             = _mm_mul_pd(r20,ewtabscale);
539             ewitab           = _mm_cvttpd_epi32(ewrt);
540 #ifdef __XOP__
541             eweps            = _mm_frcz_pd(ewrt);
542 #else
543             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
544 #endif
545             twoeweps         = _mm_add_pd(eweps,eweps);
546             ewitab           = _mm_slli_epi32(ewitab,2);
547             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
548             ewtabD           = _mm_setzero_pd();
549             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
550             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
551             ewtabFn          = _mm_setzero_pd();
552             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
553             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
554             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
555             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
556             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
565
566             /* Update vectorial force */
567             fix2             = _mm_macc_pd(dx20,fscal,fix2);
568             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
569             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
570             
571             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
572             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
573             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
574
575             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
576
577             /* Inner loop uses 147 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
583                                               f+i_coord_offset,fshift+i_shift_offset);
584
585         ggid                        = gid[iidx];
586         /* Update potential energies */
587         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
588         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 20 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*147);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
605  * Electrostatics interaction: Ewald
606  * VdW interaction:            LennardJones
607  * Geometry:                   Water3-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_128_fma_double
612                     (t_nblist                    * gmx_restrict       nlist,
613                      rvec                        * gmx_restrict          xx,
614                      rvec                        * gmx_restrict          ff,
615                      struct t_forcerec           * gmx_restrict          fr,
616                      t_mdatoms                   * gmx_restrict     mdatoms,
617                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
618                      t_nrnb                      * gmx_restrict        nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB;
628     int              j_coord_offsetA,j_coord_offsetB;
629     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
630     real             rcutoff_scalar;
631     real             *shiftvec,*fshift,*x,*f;
632     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
633     int              vdwioffset0;
634     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
635     int              vdwioffset1;
636     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
637     int              vdwioffset2;
638     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
639     int              vdwjidx0A,vdwjidx0B;
640     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
641     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
642     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
643     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
644     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
645     real             *charge;
646     int              nvdwtype;
647     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
648     int              *vdwtype;
649     real             *vdwparam;
650     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
651     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
652     __m128i          ewitab;
653     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
654     real             *ewtab;
655     __m128d          dummy_mask,cutoff_mask;
656     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
657     __m128d          one     = _mm_set1_pd(1.0);
658     __m128d          two     = _mm_set1_pd(2.0);
659     x                = xx[0];
660     f                = ff[0];
661
662     nri              = nlist->nri;
663     iinr             = nlist->iinr;
664     jindex           = nlist->jindex;
665     jjnr             = nlist->jjnr;
666     shiftidx         = nlist->shift;
667     gid              = nlist->gid;
668     shiftvec         = fr->shift_vec[0];
669     fshift           = fr->fshift[0];
670     facel            = _mm_set1_pd(fr->ic->epsfac);
671     charge           = mdatoms->chargeA;
672     nvdwtype         = fr->ntype;
673     vdwparam         = fr->nbfp;
674     vdwtype          = mdatoms->typeA;
675
676     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
677     ewtab            = fr->ic->tabq_coul_F;
678     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
679     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
680
681     /* Setup water-specific parameters */
682     inr              = nlist->iinr[0];
683     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
684     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
685     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
686     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
687
688     /* Avoid stupid compiler warnings */
689     jnrA = jnrB = 0;
690     j_coord_offsetA = 0;
691     j_coord_offsetB = 0;
692
693     outeriter        = 0;
694     inneriter        = 0;
695
696     /* Start outer loop over neighborlists */
697     for(iidx=0; iidx<nri; iidx++)
698     {
699         /* Load shift vector for this list */
700         i_shift_offset   = DIM*shiftidx[iidx];
701
702         /* Load limits for loop over neighbors */
703         j_index_start    = jindex[iidx];
704         j_index_end      = jindex[iidx+1];
705
706         /* Get outer coordinate index */
707         inr              = iinr[iidx];
708         i_coord_offset   = DIM*inr;
709
710         /* Load i particle coords and add shift vector */
711         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
712                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
713
714         fix0             = _mm_setzero_pd();
715         fiy0             = _mm_setzero_pd();
716         fiz0             = _mm_setzero_pd();
717         fix1             = _mm_setzero_pd();
718         fiy1             = _mm_setzero_pd();
719         fiz1             = _mm_setzero_pd();
720         fix2             = _mm_setzero_pd();
721         fiy2             = _mm_setzero_pd();
722         fiz2             = _mm_setzero_pd();
723
724         /* Start inner kernel loop */
725         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
726         {
727
728             /* Get j neighbor index, and coordinate index */
729             jnrA             = jjnr[jidx];
730             jnrB             = jjnr[jidx+1];
731             j_coord_offsetA  = DIM*jnrA;
732             j_coord_offsetB  = DIM*jnrB;
733
734             /* load j atom coordinates */
735             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
736                                               &jx0,&jy0,&jz0);
737
738             /* Calculate displacement vector */
739             dx00             = _mm_sub_pd(ix0,jx0);
740             dy00             = _mm_sub_pd(iy0,jy0);
741             dz00             = _mm_sub_pd(iz0,jz0);
742             dx10             = _mm_sub_pd(ix1,jx0);
743             dy10             = _mm_sub_pd(iy1,jy0);
744             dz10             = _mm_sub_pd(iz1,jz0);
745             dx20             = _mm_sub_pd(ix2,jx0);
746             dy20             = _mm_sub_pd(iy2,jy0);
747             dz20             = _mm_sub_pd(iz2,jz0);
748
749             /* Calculate squared distance and things based on it */
750             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
751             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
752             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
753
754             rinv00           = avx128fma_invsqrt_d(rsq00);
755             rinv10           = avx128fma_invsqrt_d(rsq10);
756             rinv20           = avx128fma_invsqrt_d(rsq20);
757
758             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
759             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
760             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
761
762             /* Load parameters for j particles */
763             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
764             vdwjidx0A        = 2*vdwtype[jnrA+0];
765             vdwjidx0B        = 2*vdwtype[jnrB+0];
766
767             fjx0             = _mm_setzero_pd();
768             fjy0             = _mm_setzero_pd();
769             fjz0             = _mm_setzero_pd();
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             r00              = _mm_mul_pd(rsq00,rinv00);
776
777             /* Compute parameters for interactions between i and j atoms */
778             qq00             = _mm_mul_pd(iq0,jq0);
779             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
780                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
781
782             /* EWALD ELECTROSTATICS */
783
784             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
785             ewrt             = _mm_mul_pd(r00,ewtabscale);
786             ewitab           = _mm_cvttpd_epi32(ewrt);
787 #ifdef __XOP__
788             eweps            = _mm_frcz_pd(ewrt);
789 #else
790             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
791 #endif
792             twoeweps         = _mm_add_pd(eweps,eweps);
793             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
794                                          &ewtabF,&ewtabFn);
795             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
796             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
797
798             /* LENNARD-JONES DISPERSION/REPULSION */
799
800             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
801             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
802
803             fscal            = _mm_add_pd(felec,fvdw);
804
805             /* Update vectorial force */
806             fix0             = _mm_macc_pd(dx00,fscal,fix0);
807             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
808             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
809             
810             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
811             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
812             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             r10              = _mm_mul_pd(rsq10,rinv10);
819
820             /* Compute parameters for interactions between i and j atoms */
821             qq10             = _mm_mul_pd(iq1,jq0);
822
823             /* EWALD ELECTROSTATICS */
824
825             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
826             ewrt             = _mm_mul_pd(r10,ewtabscale);
827             ewitab           = _mm_cvttpd_epi32(ewrt);
828 #ifdef __XOP__
829             eweps            = _mm_frcz_pd(ewrt);
830 #else
831             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
832 #endif
833             twoeweps         = _mm_add_pd(eweps,eweps);
834             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
835                                          &ewtabF,&ewtabFn);
836             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
837             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
838
839             fscal            = felec;
840
841             /* Update vectorial force */
842             fix1             = _mm_macc_pd(dx10,fscal,fix1);
843             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
844             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
845             
846             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
847             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
848             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             r20              = _mm_mul_pd(rsq20,rinv20);
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq20             = _mm_mul_pd(iq2,jq0);
858
859             /* EWALD ELECTROSTATICS */
860
861             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
862             ewrt             = _mm_mul_pd(r20,ewtabscale);
863             ewitab           = _mm_cvttpd_epi32(ewrt);
864 #ifdef __XOP__
865             eweps            = _mm_frcz_pd(ewrt);
866 #else
867             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
868 #endif
869             twoeweps         = _mm_add_pd(eweps,eweps);
870             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
871                                          &ewtabF,&ewtabFn);
872             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
873             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
874
875             fscal            = felec;
876
877             /* Update vectorial force */
878             fix2             = _mm_macc_pd(dx20,fscal,fix2);
879             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
880             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
881             
882             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
883             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
884             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
885
886             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
887
888             /* Inner loop uses 127 flops */
889         }
890
891         if(jidx<j_index_end)
892         {
893
894             jnrA             = jjnr[jidx];
895             j_coord_offsetA  = DIM*jnrA;
896
897             /* load j atom coordinates */
898             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
899                                               &jx0,&jy0,&jz0);
900
901             /* Calculate displacement vector */
902             dx00             = _mm_sub_pd(ix0,jx0);
903             dy00             = _mm_sub_pd(iy0,jy0);
904             dz00             = _mm_sub_pd(iz0,jz0);
905             dx10             = _mm_sub_pd(ix1,jx0);
906             dy10             = _mm_sub_pd(iy1,jy0);
907             dz10             = _mm_sub_pd(iz1,jz0);
908             dx20             = _mm_sub_pd(ix2,jx0);
909             dy20             = _mm_sub_pd(iy2,jy0);
910             dz20             = _mm_sub_pd(iz2,jz0);
911
912             /* Calculate squared distance and things based on it */
913             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
914             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
915             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
916
917             rinv00           = avx128fma_invsqrt_d(rsq00);
918             rinv10           = avx128fma_invsqrt_d(rsq10);
919             rinv20           = avx128fma_invsqrt_d(rsq20);
920
921             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
922             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
923             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
924
925             /* Load parameters for j particles */
926             jq0              = _mm_load_sd(charge+jnrA+0);
927             vdwjidx0A        = 2*vdwtype[jnrA+0];
928
929             fjx0             = _mm_setzero_pd();
930             fjy0             = _mm_setzero_pd();
931             fjz0             = _mm_setzero_pd();
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             r00              = _mm_mul_pd(rsq00,rinv00);
938
939             /* Compute parameters for interactions between i and j atoms */
940             qq00             = _mm_mul_pd(iq0,jq0);
941             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
942
943             /* EWALD ELECTROSTATICS */
944
945             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
946             ewrt             = _mm_mul_pd(r00,ewtabscale);
947             ewitab           = _mm_cvttpd_epi32(ewrt);
948 #ifdef __XOP__
949             eweps            = _mm_frcz_pd(ewrt);
950 #else
951             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
952 #endif
953             twoeweps         = _mm_add_pd(eweps,eweps);
954             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
955             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
956             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
957
958             /* LENNARD-JONES DISPERSION/REPULSION */
959
960             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
961             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
962
963             fscal            = _mm_add_pd(felec,fvdw);
964
965             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
966
967             /* Update vectorial force */
968             fix0             = _mm_macc_pd(dx00,fscal,fix0);
969             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
970             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
971             
972             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
973             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
974             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r10              = _mm_mul_pd(rsq10,rinv10);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq10             = _mm_mul_pd(iq1,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r10,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990 #ifdef __XOP__
991             eweps            = _mm_frcz_pd(ewrt);
992 #else
993             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
994 #endif
995             twoeweps         = _mm_add_pd(eweps,eweps);
996             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
997             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
998             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
999
1000             fscal            = felec;
1001
1002             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1003
1004             /* Update vectorial force */
1005             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1006             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1007             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1008             
1009             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1010             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1011             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r20              = _mm_mul_pd(rsq20,rinv20);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq20             = _mm_mul_pd(iq2,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _mm_mul_pd(r20,ewtabscale);
1026             ewitab           = _mm_cvttpd_epi32(ewrt);
1027 #ifdef __XOP__
1028             eweps            = _mm_frcz_pd(ewrt);
1029 #else
1030             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1031 #endif
1032             twoeweps         = _mm_add_pd(eweps,eweps);
1033             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1034             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1035             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1036
1037             fscal            = felec;
1038
1039             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1040
1041             /* Update vectorial force */
1042             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1043             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1044             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1045             
1046             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1047             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1048             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1049
1050             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1051
1052             /* Inner loop uses 127 flops */
1053         }
1054
1055         /* End of innermost loop */
1056
1057         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1058                                               f+i_coord_offset,fshift+i_shift_offset);
1059
1060         /* Increment number of inner iterations */
1061         inneriter                  += j_index_end - j_index_start;
1062
1063         /* Outer loop uses 18 flops */
1064     }
1065
1066     /* Increment number of outer iterations */
1067     outeriter        += nri;
1068
1069     /* Update outer/inner flops */
1070
1071     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1072 }