Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     real             *ewtab;
95     __m128d          dummy_mask,cutoff_mask;
96     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
97     __m128d          one     = _mm_set1_pd(1.0);
98     __m128d          two     = _mm_set1_pd(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_pd(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
117     ewtab            = fr->ic->tabq_coul_FDV0;
118     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
119     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm_setzero_pd();
147         fiy0             = _mm_setzero_pd();
148         fiz0             = _mm_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         velecsum         = _mm_setzero_pd();
156         vvdwsum          = _mm_setzero_pd();
157
158         /* Start inner kernel loop */
159         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
160         {
161
162             /* Get j neighbor index, and coordinate index */
163             jnrA             = jjnr[jidx];
164             jnrB             = jjnr[jidx+1];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167
168             /* load j atom coordinates */
169             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
170                                               &jx0,&jy0,&jz0);
171
172             /* Calculate displacement vector */
173             dx00             = _mm_sub_pd(ix0,jx0);
174             dy00             = _mm_sub_pd(iy0,jy0);
175             dz00             = _mm_sub_pd(iz0,jz0);
176
177             /* Calculate squared distance and things based on it */
178             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
179
180             rinv00           = avx128fma_invsqrt_d(rsq00);
181
182             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
186             vdwjidx0A        = 2*vdwtype[jnrA+0];
187             vdwjidx0B        = 2*vdwtype[jnrB+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             r00              = _mm_mul_pd(rsq00,rinv00);
194
195             /* Compute parameters for interactions between i and j atoms */
196             qq00             = _mm_mul_pd(iq0,jq0);
197             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
199
200             /* EWALD ELECTROSTATICS */
201
202             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
203             ewrt             = _mm_mul_pd(r00,ewtabscale);
204             ewitab           = _mm_cvttpd_epi32(ewrt);
205 #ifdef __XOP__
206             eweps            = _mm_frcz_pd(ewrt);
207 #else
208             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
209 #endif
210             twoeweps         = _mm_add_pd(eweps,eweps);
211             ewitab           = _mm_slli_epi32(ewitab,2);
212             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
213             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
214             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
215             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
216             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
217             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
218             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
219             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
220             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
221             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
222
223             /* LENNARD-JONES DISPERSION/REPULSION */
224
225             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
226             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
227             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
228             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
229             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
230
231             /* Update potential sum for this i atom from the interaction with this j atom. */
232             velecsum         = _mm_add_pd(velecsum,velec);
233             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm_add_pd(felec,fvdw);
236
237             /* Update vectorial force */
238             fix0             = _mm_macc_pd(dx00,fscal,fix0);
239             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
240             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
241             
242             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
243                                                    _mm_mul_pd(dx00,fscal),
244                                                    _mm_mul_pd(dy00,fscal),
245                                                    _mm_mul_pd(dz00,fscal));
246
247             /* Inner loop uses 56 flops */
248         }
249
250         if(jidx<j_index_end)
251         {
252
253             jnrA             = jjnr[jidx];
254             j_coord_offsetA  = DIM*jnrA;
255
256             /* load j atom coordinates */
257             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_pd(ix0,jx0);
262             dy00             = _mm_sub_pd(iy0,jy0);
263             dz00             = _mm_sub_pd(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
267
268             rinv00           = avx128fma_invsqrt_d(rsq00);
269
270             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
271
272             /* Load parameters for j particles */
273             jq0              = _mm_load_sd(charge+jnrA+0);
274             vdwjidx0A        = 2*vdwtype[jnrA+0];
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             r00              = _mm_mul_pd(rsq00,rinv00);
281
282             /* Compute parameters for interactions between i and j atoms */
283             qq00             = _mm_mul_pd(iq0,jq0);
284             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
285
286             /* EWALD ELECTROSTATICS */
287
288             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
289             ewrt             = _mm_mul_pd(r00,ewtabscale);
290             ewitab           = _mm_cvttpd_epi32(ewrt);
291 #ifdef __XOP__
292             eweps            = _mm_frcz_pd(ewrt);
293 #else
294             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
295 #endif
296             twoeweps         = _mm_add_pd(eweps,eweps);
297             ewitab           = _mm_slli_epi32(ewitab,2);
298             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
299             ewtabD           = _mm_setzero_pd();
300             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
301             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
302             ewtabFn          = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
304             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
305             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
306             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
307             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
308
309             /* LENNARD-JONES DISPERSION/REPULSION */
310
311             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
312             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
313             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
314             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
315             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
319             velecsum         = _mm_add_pd(velecsum,velec);
320             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
321             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
322
323             fscal            = _mm_add_pd(felec,fvdw);
324
325             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
326
327             /* Update vectorial force */
328             fix0             = _mm_macc_pd(dx00,fscal,fix0);
329             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
330             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
331             
332             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
333                                                    _mm_mul_pd(dx00,fscal),
334                                                    _mm_mul_pd(dy00,fscal),
335                                                    _mm_mul_pd(dz00,fscal));
336
337             /* Inner loop uses 56 flops */
338         }
339
340         /* End of innermost loop */
341
342         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
343                                               f+i_coord_offset,fshift+i_shift_offset);
344
345         ggid                        = gid[iidx];
346         /* Update potential energies */
347         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
348         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
349
350         /* Increment number of inner iterations */
351         inneriter                  += j_index_end - j_index_start;
352
353         /* Outer loop uses 9 flops */
354     }
355
356     /* Increment number of outer iterations */
357     outeriter        += nri;
358
359     /* Update outer/inner flops */
360
361     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
362 }
363 /*
364  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
365  * Electrostatics interaction: Ewald
366  * VdW interaction:            LennardJones
367  * Geometry:                   Particle-Particle
368  * Calculate force/pot:        Force
369  */
370 void
371 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
372                     (t_nblist                    * gmx_restrict       nlist,
373                      rvec                        * gmx_restrict          xx,
374                      rvec                        * gmx_restrict          ff,
375                      struct t_forcerec           * gmx_restrict          fr,
376                      t_mdatoms                   * gmx_restrict     mdatoms,
377                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
378                      t_nrnb                      * gmx_restrict        nrnb)
379 {
380     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
381      * just 0 for non-waters.
382      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
383      * jnr indices corresponding to data put in the four positions in the SIMD register.
384      */
385     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
386     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
387     int              jnrA,jnrB;
388     int              j_coord_offsetA,j_coord_offsetB;
389     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
390     real             rcutoff_scalar;
391     real             *shiftvec,*fshift,*x,*f;
392     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
393     int              vdwioffset0;
394     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
395     int              vdwjidx0A,vdwjidx0B;
396     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
397     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
398     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
399     real             *charge;
400     int              nvdwtype;
401     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
402     int              *vdwtype;
403     real             *vdwparam;
404     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
405     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
406     __m128i          ewitab;
407     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
408     real             *ewtab;
409     __m128d          dummy_mask,cutoff_mask;
410     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
411     __m128d          one     = _mm_set1_pd(1.0);
412     __m128d          two     = _mm_set1_pd(2.0);
413     x                = xx[0];
414     f                = ff[0];
415
416     nri              = nlist->nri;
417     iinr             = nlist->iinr;
418     jindex           = nlist->jindex;
419     jjnr             = nlist->jjnr;
420     shiftidx         = nlist->shift;
421     gid              = nlist->gid;
422     shiftvec         = fr->shift_vec[0];
423     fshift           = fr->fshift[0];
424     facel            = _mm_set1_pd(fr->ic->epsfac);
425     charge           = mdatoms->chargeA;
426     nvdwtype         = fr->ntype;
427     vdwparam         = fr->nbfp;
428     vdwtype          = mdatoms->typeA;
429
430     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
431     ewtab            = fr->ic->tabq_coul_F;
432     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
433     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
434
435     /* Avoid stupid compiler warnings */
436     jnrA = jnrB = 0;
437     j_coord_offsetA = 0;
438     j_coord_offsetB = 0;
439
440     outeriter        = 0;
441     inneriter        = 0;
442
443     /* Start outer loop over neighborlists */
444     for(iidx=0; iidx<nri; iidx++)
445     {
446         /* Load shift vector for this list */
447         i_shift_offset   = DIM*shiftidx[iidx];
448
449         /* Load limits for loop over neighbors */
450         j_index_start    = jindex[iidx];
451         j_index_end      = jindex[iidx+1];
452
453         /* Get outer coordinate index */
454         inr              = iinr[iidx];
455         i_coord_offset   = DIM*inr;
456
457         /* Load i particle coords and add shift vector */
458         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
459
460         fix0             = _mm_setzero_pd();
461         fiy0             = _mm_setzero_pd();
462         fiz0             = _mm_setzero_pd();
463
464         /* Load parameters for i particles */
465         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
466         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
467
468         /* Start inner kernel loop */
469         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
470         {
471
472             /* Get j neighbor index, and coordinate index */
473             jnrA             = jjnr[jidx];
474             jnrB             = jjnr[jidx+1];
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477
478             /* load j atom coordinates */
479             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
480                                               &jx0,&jy0,&jz0);
481
482             /* Calculate displacement vector */
483             dx00             = _mm_sub_pd(ix0,jx0);
484             dy00             = _mm_sub_pd(iy0,jy0);
485             dz00             = _mm_sub_pd(iz0,jz0);
486
487             /* Calculate squared distance and things based on it */
488             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
489
490             rinv00           = avx128fma_invsqrt_d(rsq00);
491
492             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
496             vdwjidx0A        = 2*vdwtype[jnrA+0];
497             vdwjidx0B        = 2*vdwtype[jnrB+0];
498
499             /**************************
500              * CALCULATE INTERACTIONS *
501              **************************/
502
503             r00              = _mm_mul_pd(rsq00,rinv00);
504
505             /* Compute parameters for interactions between i and j atoms */
506             qq00             = _mm_mul_pd(iq0,jq0);
507             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
508                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = _mm_mul_pd(r00,ewtabscale);
514             ewitab           = _mm_cvttpd_epi32(ewrt);
515 #ifdef __XOP__
516             eweps            = _mm_frcz_pd(ewrt);
517 #else
518             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
519 #endif
520             twoeweps         = _mm_add_pd(eweps,eweps);
521             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
522                                          &ewtabF,&ewtabFn);
523             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
524             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
525
526             /* LENNARD-JONES DISPERSION/REPULSION */
527
528             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
529             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
530
531             fscal            = _mm_add_pd(felec,fvdw);
532
533             /* Update vectorial force */
534             fix0             = _mm_macc_pd(dx00,fscal,fix0);
535             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
536             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
537             
538             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
539                                                    _mm_mul_pd(dx00,fscal),
540                                                    _mm_mul_pd(dy00,fscal),
541                                                    _mm_mul_pd(dz00,fscal));
542
543             /* Inner loop uses 46 flops */
544         }
545
546         if(jidx<j_index_end)
547         {
548
549             jnrA             = jjnr[jidx];
550             j_coord_offsetA  = DIM*jnrA;
551
552             /* load j atom coordinates */
553             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
554                                               &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm_sub_pd(ix0,jx0);
558             dy00             = _mm_sub_pd(iy0,jy0);
559             dz00             = _mm_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = avx128fma_invsqrt_d(rsq00);
565
566             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             jq0              = _mm_load_sd(charge+jnrA+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571
572             /**************************
573              * CALCULATE INTERACTIONS *
574              **************************/
575
576             r00              = _mm_mul_pd(rsq00,rinv00);
577
578             /* Compute parameters for interactions between i and j atoms */
579             qq00             = _mm_mul_pd(iq0,jq0);
580             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _mm_mul_pd(r00,ewtabscale);
586             ewitab           = _mm_cvttpd_epi32(ewrt);
587 #ifdef __XOP__
588             eweps            = _mm_frcz_pd(ewrt);
589 #else
590             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
591 #endif
592             twoeweps         = _mm_add_pd(eweps,eweps);
593             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
594             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
595             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
596
597             /* LENNARD-JONES DISPERSION/REPULSION */
598
599             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
600             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
601
602             fscal            = _mm_add_pd(felec,fvdw);
603
604             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
605
606             /* Update vectorial force */
607             fix0             = _mm_macc_pd(dx00,fscal,fix0);
608             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
609             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
610             
611             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
612                                                    _mm_mul_pd(dx00,fscal),
613                                                    _mm_mul_pd(dy00,fscal),
614                                                    _mm_mul_pd(dz00,fscal));
615
616             /* Inner loop uses 46 flops */
617         }
618
619         /* End of innermost loop */
620
621         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
622                                               f+i_coord_offset,fshift+i_shift_offset);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 7 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
636 }