90bf2b901ef8d951a51b87244dcb2c01cb226569
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128i          ewitab;
94     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
95     real             *ewtab;
96     __m128d          dummy_mask,cutoff_mask;
97     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
98     __m128d          one     = _mm_set1_pd(1.0);
99     __m128d          two     = _mm_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm_set1_pd(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm_setzero_pd();
148         fiy0             = _mm_setzero_pd();
149         fiz0             = _mm_setzero_pd();
150
151         /* Load parameters for i particles */
152         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm_setzero_pd();
157         vvdwsum          = _mm_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               &jx0,&jy0,&jz0);
172
173             /* Calculate displacement vector */
174             dx00             = _mm_sub_pd(ix0,jx0);
175             dy00             = _mm_sub_pd(iy0,jy0);
176             dz00             = _mm_sub_pd(iz0,jz0);
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
180
181             rinv00           = gmx_mm_invsqrt_pd(rsq00);
182
183             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             r00              = _mm_mul_pd(rsq00,rinv00);
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _mm_mul_pd(iq0,jq0);
198             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
199                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
200
201             /* EWALD ELECTROSTATICS */
202
203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
204             ewrt             = _mm_mul_pd(r00,ewtabscale);
205             ewitab           = _mm_cvttpd_epi32(ewrt);
206 #ifdef __XOP__
207             eweps            = _mm_frcz_pd(ewrt);
208 #else
209             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
210 #endif
211             twoeweps         = _mm_add_pd(eweps,eweps);
212             ewitab           = _mm_slli_epi32(ewitab,2);
213             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
214             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
215             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
216             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
217             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
218             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
219             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
220             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
221             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
222             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
223
224             /* LENNARD-JONES DISPERSION/REPULSION */
225
226             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
227             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
228             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
229             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
230             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm_add_pd(velecsum,velec);
234             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
235
236             fscal            = _mm_add_pd(felec,fvdw);
237
238             /* Update vectorial force */
239             fix0             = _mm_macc_pd(dx00,fscal,fix0);
240             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
241             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
242             
243             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
244                                                    _mm_mul_pd(dx00,fscal),
245                                                    _mm_mul_pd(dy00,fscal),
246                                                    _mm_mul_pd(dz00,fscal));
247
248             /* Inner loop uses 56 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             jnrA             = jjnr[jidx];
255             j_coord_offsetA  = DIM*jnrA;
256
257             /* load j atom coordinates */
258             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
259                                               &jx0,&jy0,&jz0);
260
261             /* Calculate displacement vector */
262             dx00             = _mm_sub_pd(ix0,jx0);
263             dy00             = _mm_sub_pd(iy0,jy0);
264             dz00             = _mm_sub_pd(iz0,jz0);
265
266             /* Calculate squared distance and things based on it */
267             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
268
269             rinv00           = gmx_mm_invsqrt_pd(rsq00);
270
271             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
272
273             /* Load parameters for j particles */
274             jq0              = _mm_load_sd(charge+jnrA+0);
275             vdwjidx0A        = 2*vdwtype[jnrA+0];
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r00              = _mm_mul_pd(rsq00,rinv00);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq00             = _mm_mul_pd(iq0,jq0);
285             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
286
287             /* EWALD ELECTROSTATICS */
288
289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
290             ewrt             = _mm_mul_pd(r00,ewtabscale);
291             ewitab           = _mm_cvttpd_epi32(ewrt);
292 #ifdef __XOP__
293             eweps            = _mm_frcz_pd(ewrt);
294 #else
295             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
296 #endif
297             twoeweps         = _mm_add_pd(eweps,eweps);
298             ewitab           = _mm_slli_epi32(ewitab,2);
299             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
300             ewtabD           = _mm_setzero_pd();
301             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
302             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
303             ewtabFn          = _mm_setzero_pd();
304             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
305             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
306             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
307             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
308             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
309
310             /* LENNARD-JONES DISPERSION/REPULSION */
311
312             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
313             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
314             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
315             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
316             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
320             velecsum         = _mm_add_pd(velecsum,velec);
321             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
322             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
323
324             fscal            = _mm_add_pd(felec,fvdw);
325
326             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
327
328             /* Update vectorial force */
329             fix0             = _mm_macc_pd(dx00,fscal,fix0);
330             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
331             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
332             
333             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
334                                                    _mm_mul_pd(dx00,fscal),
335                                                    _mm_mul_pd(dy00,fscal),
336                                                    _mm_mul_pd(dz00,fscal));
337
338             /* Inner loop uses 56 flops */
339         }
340
341         /* End of innermost loop */
342
343         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
344                                               f+i_coord_offset,fshift+i_shift_offset);
345
346         ggid                        = gid[iidx];
347         /* Update potential energies */
348         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
349         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
350
351         /* Increment number of inner iterations */
352         inneriter                  += j_index_end - j_index_start;
353
354         /* Outer loop uses 9 flops */
355     }
356
357     /* Increment number of outer iterations */
358     outeriter        += nri;
359
360     /* Update outer/inner flops */
361
362     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
363 }
364 /*
365  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
366  * Electrostatics interaction: Ewald
367  * VdW interaction:            LennardJones
368  * Geometry:                   Particle-Particle
369  * Calculate force/pot:        Force
370  */
371 void
372 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
373                     (t_nblist                    * gmx_restrict       nlist,
374                      rvec                        * gmx_restrict          xx,
375                      rvec                        * gmx_restrict          ff,
376                      t_forcerec                  * gmx_restrict          fr,
377                      t_mdatoms                   * gmx_restrict     mdatoms,
378                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
379                      t_nrnb                      * gmx_restrict        nrnb)
380 {
381     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
382      * just 0 for non-waters.
383      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
384      * jnr indices corresponding to data put in the four positions in the SIMD register.
385      */
386     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
387     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
388     int              jnrA,jnrB;
389     int              j_coord_offsetA,j_coord_offsetB;
390     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
391     real             rcutoff_scalar;
392     real             *shiftvec,*fshift,*x,*f;
393     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
394     int              vdwioffset0;
395     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396     int              vdwjidx0A,vdwjidx0B;
397     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
399     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
400     real             *charge;
401     int              nvdwtype;
402     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
403     int              *vdwtype;
404     real             *vdwparam;
405     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
406     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
407     __m128i          ewitab;
408     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
409     real             *ewtab;
410     __m128d          dummy_mask,cutoff_mask;
411     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
412     __m128d          one     = _mm_set1_pd(1.0);
413     __m128d          two     = _mm_set1_pd(2.0);
414     x                = xx[0];
415     f                = ff[0];
416
417     nri              = nlist->nri;
418     iinr             = nlist->iinr;
419     jindex           = nlist->jindex;
420     jjnr             = nlist->jjnr;
421     shiftidx         = nlist->shift;
422     gid              = nlist->gid;
423     shiftvec         = fr->shift_vec[0];
424     fshift           = fr->fshift[0];
425     facel            = _mm_set1_pd(fr->epsfac);
426     charge           = mdatoms->chargeA;
427     nvdwtype         = fr->ntype;
428     vdwparam         = fr->nbfp;
429     vdwtype          = mdatoms->typeA;
430
431     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
432     ewtab            = fr->ic->tabq_coul_F;
433     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
434     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
435
436     /* Avoid stupid compiler warnings */
437     jnrA = jnrB = 0;
438     j_coord_offsetA = 0;
439     j_coord_offsetB = 0;
440
441     outeriter        = 0;
442     inneriter        = 0;
443
444     /* Start outer loop over neighborlists */
445     for(iidx=0; iidx<nri; iidx++)
446     {
447         /* Load shift vector for this list */
448         i_shift_offset   = DIM*shiftidx[iidx];
449
450         /* Load limits for loop over neighbors */
451         j_index_start    = jindex[iidx];
452         j_index_end      = jindex[iidx+1];
453
454         /* Get outer coordinate index */
455         inr              = iinr[iidx];
456         i_coord_offset   = DIM*inr;
457
458         /* Load i particle coords and add shift vector */
459         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
460
461         fix0             = _mm_setzero_pd();
462         fiy0             = _mm_setzero_pd();
463         fiz0             = _mm_setzero_pd();
464
465         /* Load parameters for i particles */
466         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
467         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
468
469         /* Start inner kernel loop */
470         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
471         {
472
473             /* Get j neighbor index, and coordinate index */
474             jnrA             = jjnr[jidx];
475             jnrB             = jjnr[jidx+1];
476             j_coord_offsetA  = DIM*jnrA;
477             j_coord_offsetB  = DIM*jnrB;
478
479             /* load j atom coordinates */
480             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
481                                               &jx0,&jy0,&jz0);
482
483             /* Calculate displacement vector */
484             dx00             = _mm_sub_pd(ix0,jx0);
485             dy00             = _mm_sub_pd(iy0,jy0);
486             dz00             = _mm_sub_pd(iz0,jz0);
487
488             /* Calculate squared distance and things based on it */
489             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
490
491             rinv00           = gmx_mm_invsqrt_pd(rsq00);
492
493             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
494
495             /* Load parameters for j particles */
496             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
497             vdwjidx0A        = 2*vdwtype[jnrA+0];
498             vdwjidx0B        = 2*vdwtype[jnrB+0];
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             r00              = _mm_mul_pd(rsq00,rinv00);
505
506             /* Compute parameters for interactions between i and j atoms */
507             qq00             = _mm_mul_pd(iq0,jq0);
508             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
509                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
510
511             /* EWALD ELECTROSTATICS */
512
513             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
514             ewrt             = _mm_mul_pd(r00,ewtabscale);
515             ewitab           = _mm_cvttpd_epi32(ewrt);
516 #ifdef __XOP__
517             eweps            = _mm_frcz_pd(ewrt);
518 #else
519             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
520 #endif
521             twoeweps         = _mm_add_pd(eweps,eweps);
522             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
523                                          &ewtabF,&ewtabFn);
524             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
525             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
526
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
530             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
531
532             fscal            = _mm_add_pd(felec,fvdw);
533
534             /* Update vectorial force */
535             fix0             = _mm_macc_pd(dx00,fscal,fix0);
536             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
537             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
538             
539             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
540                                                    _mm_mul_pd(dx00,fscal),
541                                                    _mm_mul_pd(dy00,fscal),
542                                                    _mm_mul_pd(dz00,fscal));
543
544             /* Inner loop uses 46 flops */
545         }
546
547         if(jidx<j_index_end)
548         {
549
550             jnrA             = jjnr[jidx];
551             j_coord_offsetA  = DIM*jnrA;
552
553             /* load j atom coordinates */
554             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
555                                               &jx0,&jy0,&jz0);
556
557             /* Calculate displacement vector */
558             dx00             = _mm_sub_pd(ix0,jx0);
559             dy00             = _mm_sub_pd(iy0,jy0);
560             dz00             = _mm_sub_pd(iz0,jz0);
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
564
565             rinv00           = gmx_mm_invsqrt_pd(rsq00);
566
567             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
568
569             /* Load parameters for j particles */
570             jq0              = _mm_load_sd(charge+jnrA+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r00              = _mm_mul_pd(rsq00,rinv00);
578
579             /* Compute parameters for interactions between i and j atoms */
580             qq00             = _mm_mul_pd(iq0,jq0);
581             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
582
583             /* EWALD ELECTROSTATICS */
584
585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
586             ewrt             = _mm_mul_pd(r00,ewtabscale);
587             ewitab           = _mm_cvttpd_epi32(ewrt);
588 #ifdef __XOP__
589             eweps            = _mm_frcz_pd(ewrt);
590 #else
591             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
592 #endif
593             twoeweps         = _mm_add_pd(eweps,eweps);
594             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
595             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
596             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
597
598             /* LENNARD-JONES DISPERSION/REPULSION */
599
600             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
601             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
602
603             fscal            = _mm_add_pd(felec,fvdw);
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Update vectorial force */
608             fix0             = _mm_macc_pd(dx00,fscal,fix0);
609             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
610             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
611             
612             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
613                                                    _mm_mul_pd(dx00,fscal),
614                                                    _mm_mul_pd(dy00,fscal),
615                                                    _mm_mul_pd(dz00,fscal));
616
617             /* Inner loop uses 46 flops */
618         }
619
620         /* End of innermost loop */
621
622         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
623                                               f+i_coord_offset,fshift+i_shift_offset);
624
625         /* Increment number of inner iterations */
626         inneriter                  += j_index_end - j_index_start;
627
628         /* Outer loop uses 7 flops */
629     }
630
631     /* Increment number of outer iterations */
632     outeriter        += nri;
633
634     /* Update outer/inner flops */
635
636     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
637 }