Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128i          ewitab;
96     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     real             *ewtab;
98     __m128d          dummy_mask,cutoff_mask;
99     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
100     __m128d          one     = _mm_set1_pd(1.0);
101     __m128d          two     = _mm_set1_pd(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_pd(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
148
149         fix0             = _mm_setzero_pd();
150         fiy0             = _mm_setzero_pd();
151         fiz0             = _mm_setzero_pd();
152
153         /* Load parameters for i particles */
154         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
155         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = _mm_setzero_pd();
159         vvdwsum          = _mm_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm_sub_pd(ix0,jx0);
177             dy00             = _mm_sub_pd(iy0,jy0);
178             dz00             = _mm_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm_invsqrt_pd(rsq00);
184
185             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
189             vdwjidx0A        = 2*vdwtype[jnrA+0];
190             vdwjidx0B        = 2*vdwtype[jnrB+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             r00              = _mm_mul_pd(rsq00,rinv00);
197
198             /* Compute parameters for interactions between i and j atoms */
199             qq00             = _mm_mul_pd(iq0,jq0);
200             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
201                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
202
203             /* EWALD ELECTROSTATICS */
204
205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
206             ewrt             = _mm_mul_pd(r00,ewtabscale);
207             ewitab           = _mm_cvttpd_epi32(ewrt);
208 #ifdef __XOP__
209             eweps            = _mm_frcz_pd(ewrt);
210 #else
211             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
212 #endif
213             twoeweps         = _mm_add_pd(eweps,eweps);
214             ewitab           = _mm_slli_epi32(ewitab,2);
215             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
216             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
217             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
218             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
219             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
220             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
221             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
222             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
223             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
224             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
225
226             /* LENNARD-JONES DISPERSION/REPULSION */
227
228             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
229             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
230             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
231             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
232             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             velecsum         = _mm_add_pd(velecsum,velec);
236             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
237
238             fscal            = _mm_add_pd(felec,fvdw);
239
240             /* Update vectorial force */
241             fix0             = _mm_macc_pd(dx00,fscal,fix0);
242             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
243             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
244             
245             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
246                                                    _mm_mul_pd(dx00,fscal),
247                                                    _mm_mul_pd(dy00,fscal),
248                                                    _mm_mul_pd(dz00,fscal));
249
250             /* Inner loop uses 56 flops */
251         }
252
253         if(jidx<j_index_end)
254         {
255
256             jnrA             = jjnr[jidx];
257             j_coord_offsetA  = DIM*jnrA;
258
259             /* load j atom coordinates */
260             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
261                                               &jx0,&jy0,&jz0);
262
263             /* Calculate displacement vector */
264             dx00             = _mm_sub_pd(ix0,jx0);
265             dy00             = _mm_sub_pd(iy0,jy0);
266             dz00             = _mm_sub_pd(iz0,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
270
271             rinv00           = gmx_mm_invsqrt_pd(rsq00);
272
273             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
274
275             /* Load parameters for j particles */
276             jq0              = _mm_load_sd(charge+jnrA+0);
277             vdwjidx0A        = 2*vdwtype[jnrA+0];
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r00              = _mm_mul_pd(rsq00,rinv00);
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq00             = _mm_mul_pd(iq0,jq0);
287             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
288
289             /* EWALD ELECTROSTATICS */
290
291             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
292             ewrt             = _mm_mul_pd(r00,ewtabscale);
293             ewitab           = _mm_cvttpd_epi32(ewrt);
294 #ifdef __XOP__
295             eweps            = _mm_frcz_pd(ewrt);
296 #else
297             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
298 #endif
299             twoeweps         = _mm_add_pd(eweps,eweps);
300             ewitab           = _mm_slli_epi32(ewitab,2);
301             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
302             ewtabD           = _mm_setzero_pd();
303             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
304             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
305             ewtabFn          = _mm_setzero_pd();
306             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
307             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
308             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
309             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
310             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
311
312             /* LENNARD-JONES DISPERSION/REPULSION */
313
314             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
315             vvdw6            = _mm_mul_pd(c6_00,rinvsix);
316             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
317             vvdw             = _mm_msub_pd( vvdw12,one_twelfth, _mm_mul_pd(vvdw6,one_sixth) );
318             fvdw             = _mm_mul_pd(_mm_sub_pd(vvdw12,vvdw6),rinvsq00);
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
322             velecsum         = _mm_add_pd(velecsum,velec);
323             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
324             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
325
326             fscal            = _mm_add_pd(felec,fvdw);
327
328             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
329
330             /* Update vectorial force */
331             fix0             = _mm_macc_pd(dx00,fscal,fix0);
332             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
333             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
334             
335             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
336                                                    _mm_mul_pd(dx00,fscal),
337                                                    _mm_mul_pd(dy00,fscal),
338                                                    _mm_mul_pd(dz00,fscal));
339
340             /* Inner loop uses 56 flops */
341         }
342
343         /* End of innermost loop */
344
345         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
346                                               f+i_coord_offset,fshift+i_shift_offset);
347
348         ggid                        = gid[iidx];
349         /* Update potential energies */
350         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
351         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
352
353         /* Increment number of inner iterations */
354         inneriter                  += j_index_end - j_index_start;
355
356         /* Outer loop uses 9 flops */
357     }
358
359     /* Increment number of outer iterations */
360     outeriter        += nri;
361
362     /* Update outer/inner flops */
363
364     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*56);
365 }
366 /*
367  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
368  * Electrostatics interaction: Ewald
369  * VdW interaction:            LennardJones
370  * Geometry:                   Particle-Particle
371  * Calculate force/pot:        Force
372  */
373 void
374 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_128_fma_double
375                     (t_nblist                    * gmx_restrict       nlist,
376                      rvec                        * gmx_restrict          xx,
377                      rvec                        * gmx_restrict          ff,
378                      t_forcerec                  * gmx_restrict          fr,
379                      t_mdatoms                   * gmx_restrict     mdatoms,
380                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
381                      t_nrnb                      * gmx_restrict        nrnb)
382 {
383     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
384      * just 0 for non-waters.
385      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
386      * jnr indices corresponding to data put in the four positions in the SIMD register.
387      */
388     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
389     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
390     int              jnrA,jnrB;
391     int              j_coord_offsetA,j_coord_offsetB;
392     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
393     real             rcutoff_scalar;
394     real             *shiftvec,*fshift,*x,*f;
395     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
396     int              vdwioffset0;
397     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
398     int              vdwjidx0A,vdwjidx0B;
399     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
400     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
401     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
402     real             *charge;
403     int              nvdwtype;
404     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
405     int              *vdwtype;
406     real             *vdwparam;
407     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
408     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
409     __m128i          ewitab;
410     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
411     real             *ewtab;
412     __m128d          dummy_mask,cutoff_mask;
413     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
414     __m128d          one     = _mm_set1_pd(1.0);
415     __m128d          two     = _mm_set1_pd(2.0);
416     x                = xx[0];
417     f                = ff[0];
418
419     nri              = nlist->nri;
420     iinr             = nlist->iinr;
421     jindex           = nlist->jindex;
422     jjnr             = nlist->jjnr;
423     shiftidx         = nlist->shift;
424     gid              = nlist->gid;
425     shiftvec         = fr->shift_vec[0];
426     fshift           = fr->fshift[0];
427     facel            = _mm_set1_pd(fr->epsfac);
428     charge           = mdatoms->chargeA;
429     nvdwtype         = fr->ntype;
430     vdwparam         = fr->nbfp;
431     vdwtype          = mdatoms->typeA;
432
433     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
434     ewtab            = fr->ic->tabq_coul_F;
435     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
436     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
437
438     /* Avoid stupid compiler warnings */
439     jnrA = jnrB = 0;
440     j_coord_offsetA = 0;
441     j_coord_offsetB = 0;
442
443     outeriter        = 0;
444     inneriter        = 0;
445
446     /* Start outer loop over neighborlists */
447     for(iidx=0; iidx<nri; iidx++)
448     {
449         /* Load shift vector for this list */
450         i_shift_offset   = DIM*shiftidx[iidx];
451
452         /* Load limits for loop over neighbors */
453         j_index_start    = jindex[iidx];
454         j_index_end      = jindex[iidx+1];
455
456         /* Get outer coordinate index */
457         inr              = iinr[iidx];
458         i_coord_offset   = DIM*inr;
459
460         /* Load i particle coords and add shift vector */
461         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
462
463         fix0             = _mm_setzero_pd();
464         fiy0             = _mm_setzero_pd();
465         fiz0             = _mm_setzero_pd();
466
467         /* Load parameters for i particles */
468         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
469         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
470
471         /* Start inner kernel loop */
472         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
473         {
474
475             /* Get j neighbor index, and coordinate index */
476             jnrA             = jjnr[jidx];
477             jnrB             = jjnr[jidx+1];
478             j_coord_offsetA  = DIM*jnrA;
479             j_coord_offsetB  = DIM*jnrB;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               &jx0,&jy0,&jz0);
484
485             /* Calculate displacement vector */
486             dx00             = _mm_sub_pd(ix0,jx0);
487             dy00             = _mm_sub_pd(iy0,jy0);
488             dz00             = _mm_sub_pd(iz0,jz0);
489
490             /* Calculate squared distance and things based on it */
491             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
492
493             rinv00           = gmx_mm_invsqrt_pd(rsq00);
494
495             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
496
497             /* Load parameters for j particles */
498             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
499             vdwjidx0A        = 2*vdwtype[jnrA+0];
500             vdwjidx0B        = 2*vdwtype[jnrB+0];
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r00              = _mm_mul_pd(rsq00,rinv00);
507
508             /* Compute parameters for interactions between i and j atoms */
509             qq00             = _mm_mul_pd(iq0,jq0);
510             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
511                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
512
513             /* EWALD ELECTROSTATICS */
514
515             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
516             ewrt             = _mm_mul_pd(r00,ewtabscale);
517             ewitab           = _mm_cvttpd_epi32(ewrt);
518 #ifdef __XOP__
519             eweps            = _mm_frcz_pd(ewrt);
520 #else
521             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
522 #endif
523             twoeweps         = _mm_add_pd(eweps,eweps);
524             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
525                                          &ewtabF,&ewtabFn);
526             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
527             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
528
529             /* LENNARD-JONES DISPERSION/REPULSION */
530
531             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
532             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
533
534             fscal            = _mm_add_pd(felec,fvdw);
535
536             /* Update vectorial force */
537             fix0             = _mm_macc_pd(dx00,fscal,fix0);
538             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
539             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
540             
541             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
542                                                    _mm_mul_pd(dx00,fscal),
543                                                    _mm_mul_pd(dy00,fscal),
544                                                    _mm_mul_pd(dz00,fscal));
545
546             /* Inner loop uses 46 flops */
547         }
548
549         if(jidx<j_index_end)
550         {
551
552             jnrA             = jjnr[jidx];
553             j_coord_offsetA  = DIM*jnrA;
554
555             /* load j atom coordinates */
556             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
557                                               &jx0,&jy0,&jz0);
558
559             /* Calculate displacement vector */
560             dx00             = _mm_sub_pd(ix0,jx0);
561             dy00             = _mm_sub_pd(iy0,jy0);
562             dz00             = _mm_sub_pd(iz0,jz0);
563
564             /* Calculate squared distance and things based on it */
565             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
566
567             rinv00           = gmx_mm_invsqrt_pd(rsq00);
568
569             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
570
571             /* Load parameters for j particles */
572             jq0              = _mm_load_sd(charge+jnrA+0);
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r00              = _mm_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm_mul_pd(iq0,jq0);
583             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = _mm_mul_pd(r00,ewtabscale);
589             ewitab           = _mm_cvttpd_epi32(ewrt);
590 #ifdef __XOP__
591             eweps            = _mm_frcz_pd(ewrt);
592 #else
593             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
594 #endif
595             twoeweps         = _mm_add_pd(eweps,eweps);
596             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
597             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
598             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
599
600             /* LENNARD-JONES DISPERSION/REPULSION */
601
602             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
603             fvdw             = _mm_mul_pd(_mm_msub_pd(c12_00,rinvsix,c6_00),_mm_mul_pd(rinvsix,rinvsq00));
604
605             fscal            = _mm_add_pd(felec,fvdw);
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Update vectorial force */
610             fix0             = _mm_macc_pd(dx00,fscal,fix0);
611             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
612             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
613             
614             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
615                                                    _mm_mul_pd(dx00,fscal),
616                                                    _mm_mul_pd(dy00,fscal),
617                                                    _mm_mul_pd(dz00,fscal));
618
619             /* Inner loop uses 46 flops */
620         }
621
622         /* End of innermost loop */
623
624         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
625                                               f+i_coord_offset,fshift+i_shift_offset);
626
627         /* Increment number of inner iterations */
628         inneriter                  += j_index_end - j_index_start;
629
630         /* Outer loop uses 7 flops */
631     }
632
633     /* Increment number of outer iterations */
634     outeriter        += nri;
635
636     /* Update outer/inner flops */
637
638     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*46);
639 }