Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW4W4_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Water4
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     int              vdwjidx1A,vdwjidx1B;
93     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
94     int              vdwjidx2A,vdwjidx2B;
95     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
96     int              vdwjidx3A,vdwjidx3B;
97     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
98     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
99     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
100     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
101     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
102     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
103     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
104     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
105     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
106     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
107     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
108     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
109     real             *charge;
110     int              nvdwtype;
111     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
112     int              *vdwtype;
113     real             *vdwparam;
114     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
115     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
116     __m128d           c6grid_00;
117     __m128d           c6grid_11;
118     __m128d           c6grid_12;
119     __m128d           c6grid_13;
120     __m128d           c6grid_21;
121     __m128d           c6grid_22;
122     __m128d           c6grid_23;
123     __m128d           c6grid_31;
124     __m128d           c6grid_32;
125     __m128d           c6grid_33;
126     real             *vdwgridparam;
127     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
128     __m128d           one_half  = _mm_set1_pd(0.5);
129     __m128d           minus_one = _mm_set1_pd(-1.0);
130     __m128i          ewitab;
131     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
132     real             *ewtab;
133     __m128d          dummy_mask,cutoff_mask;
134     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
135     __m128d          one     = _mm_set1_pd(1.0);
136     __m128d          two     = _mm_set1_pd(2.0);
137     x                = xx[0];
138     f                = ff[0];
139
140     nri              = nlist->nri;
141     iinr             = nlist->iinr;
142     jindex           = nlist->jindex;
143     jjnr             = nlist->jjnr;
144     shiftidx         = nlist->shift;
145     gid              = nlist->gid;
146     shiftvec         = fr->shift_vec[0];
147     fshift           = fr->fshift[0];
148     facel            = _mm_set1_pd(fr->epsfac);
149     charge           = mdatoms->chargeA;
150     nvdwtype         = fr->ntype;
151     vdwparam         = fr->nbfp;
152     vdwtype          = mdatoms->typeA;
153     vdwgridparam     = fr->ljpme_c6grid;
154     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
155     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
156     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
157
158     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
159     ewtab            = fr->ic->tabq_coul_FDV0;
160     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
161     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
162
163     /* Setup water-specific parameters */
164     inr              = nlist->iinr[0];
165     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
166     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
167     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
168     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170     jq1              = _mm_set1_pd(charge[inr+1]);
171     jq2              = _mm_set1_pd(charge[inr+2]);
172     jq3              = _mm_set1_pd(charge[inr+3]);
173     vdwjidx0A        = 2*vdwtype[inr+0];
174     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
175     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
176     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
177     qq11             = _mm_mul_pd(iq1,jq1);
178     qq12             = _mm_mul_pd(iq1,jq2);
179     qq13             = _mm_mul_pd(iq1,jq3);
180     qq21             = _mm_mul_pd(iq2,jq1);
181     qq22             = _mm_mul_pd(iq2,jq2);
182     qq23             = _mm_mul_pd(iq2,jq3);
183     qq31             = _mm_mul_pd(iq3,jq1);
184     qq32             = _mm_mul_pd(iq3,jq2);
185     qq33             = _mm_mul_pd(iq3,jq3);
186
187     /* Avoid stupid compiler warnings */
188     jnrA = jnrB = 0;
189     j_coord_offsetA = 0;
190     j_coord_offsetB = 0;
191
192     outeriter        = 0;
193     inneriter        = 0;
194
195     /* Start outer loop over neighborlists */
196     for(iidx=0; iidx<nri; iidx++)
197     {
198         /* Load shift vector for this list */
199         i_shift_offset   = DIM*shiftidx[iidx];
200
201         /* Load limits for loop over neighbors */
202         j_index_start    = jindex[iidx];
203         j_index_end      = jindex[iidx+1];
204
205         /* Get outer coordinate index */
206         inr              = iinr[iidx];
207         i_coord_offset   = DIM*inr;
208
209         /* Load i particle coords and add shift vector */
210         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
211                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
212
213         fix0             = _mm_setzero_pd();
214         fiy0             = _mm_setzero_pd();
215         fiz0             = _mm_setzero_pd();
216         fix1             = _mm_setzero_pd();
217         fiy1             = _mm_setzero_pd();
218         fiz1             = _mm_setzero_pd();
219         fix2             = _mm_setzero_pd();
220         fiy2             = _mm_setzero_pd();
221         fiz2             = _mm_setzero_pd();
222         fix3             = _mm_setzero_pd();
223         fiy3             = _mm_setzero_pd();
224         fiz3             = _mm_setzero_pd();
225
226         /* Reset potential sums */
227         velecsum         = _mm_setzero_pd();
228         vvdwsum          = _mm_setzero_pd();
229
230         /* Start inner kernel loop */
231         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
232         {
233
234             /* Get j neighbor index, and coordinate index */
235             jnrA             = jjnr[jidx];
236             jnrB             = jjnr[jidx+1];
237             j_coord_offsetA  = DIM*jnrA;
238             j_coord_offsetB  = DIM*jnrB;
239
240             /* load j atom coordinates */
241             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
242                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
243                                               &jy2,&jz2,&jx3,&jy3,&jz3);
244
245             /* Calculate displacement vector */
246             dx00             = _mm_sub_pd(ix0,jx0);
247             dy00             = _mm_sub_pd(iy0,jy0);
248             dz00             = _mm_sub_pd(iz0,jz0);
249             dx11             = _mm_sub_pd(ix1,jx1);
250             dy11             = _mm_sub_pd(iy1,jy1);
251             dz11             = _mm_sub_pd(iz1,jz1);
252             dx12             = _mm_sub_pd(ix1,jx2);
253             dy12             = _mm_sub_pd(iy1,jy2);
254             dz12             = _mm_sub_pd(iz1,jz2);
255             dx13             = _mm_sub_pd(ix1,jx3);
256             dy13             = _mm_sub_pd(iy1,jy3);
257             dz13             = _mm_sub_pd(iz1,jz3);
258             dx21             = _mm_sub_pd(ix2,jx1);
259             dy21             = _mm_sub_pd(iy2,jy1);
260             dz21             = _mm_sub_pd(iz2,jz1);
261             dx22             = _mm_sub_pd(ix2,jx2);
262             dy22             = _mm_sub_pd(iy2,jy2);
263             dz22             = _mm_sub_pd(iz2,jz2);
264             dx23             = _mm_sub_pd(ix2,jx3);
265             dy23             = _mm_sub_pd(iy2,jy3);
266             dz23             = _mm_sub_pd(iz2,jz3);
267             dx31             = _mm_sub_pd(ix3,jx1);
268             dy31             = _mm_sub_pd(iy3,jy1);
269             dz31             = _mm_sub_pd(iz3,jz1);
270             dx32             = _mm_sub_pd(ix3,jx2);
271             dy32             = _mm_sub_pd(iy3,jy2);
272             dz32             = _mm_sub_pd(iz3,jz2);
273             dx33             = _mm_sub_pd(ix3,jx3);
274             dy33             = _mm_sub_pd(iy3,jy3);
275             dz33             = _mm_sub_pd(iz3,jz3);
276
277             /* Calculate squared distance and things based on it */
278             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
279             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
280             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
281             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
282             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
283             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
284             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
285             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
286             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
287             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
288
289             rinv00           = gmx_mm_invsqrt_pd(rsq00);
290             rinv11           = gmx_mm_invsqrt_pd(rsq11);
291             rinv12           = gmx_mm_invsqrt_pd(rsq12);
292             rinv13           = gmx_mm_invsqrt_pd(rsq13);
293             rinv21           = gmx_mm_invsqrt_pd(rsq21);
294             rinv22           = gmx_mm_invsqrt_pd(rsq22);
295             rinv23           = gmx_mm_invsqrt_pd(rsq23);
296             rinv31           = gmx_mm_invsqrt_pd(rsq31);
297             rinv32           = gmx_mm_invsqrt_pd(rsq32);
298             rinv33           = gmx_mm_invsqrt_pd(rsq33);
299
300             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
301             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
302             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
303             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
304             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
305             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
306             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
307             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
308             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
309             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
310
311             fjx0             = _mm_setzero_pd();
312             fjy0             = _mm_setzero_pd();
313             fjz0             = _mm_setzero_pd();
314             fjx1             = _mm_setzero_pd();
315             fjy1             = _mm_setzero_pd();
316             fjz1             = _mm_setzero_pd();
317             fjx2             = _mm_setzero_pd();
318             fjy2             = _mm_setzero_pd();
319             fjz2             = _mm_setzero_pd();
320             fjx3             = _mm_setzero_pd();
321             fjy3             = _mm_setzero_pd();
322             fjz3             = _mm_setzero_pd();
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             r00              = _mm_mul_pd(rsq00,rinv00);
329
330             /* Analytical LJ-PME */
331             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
332             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
333             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
334             exponent         = gmx_simd_exp_d(ewcljrsq);
335             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
336             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
337             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
338             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
339             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
341             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
342             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
346
347             fscal            = fvdw;
348
349             /* Update vectorial force */
350             fix0             = _mm_macc_pd(dx00,fscal,fix0);
351             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
352             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
353             
354             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
355             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
356             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             r11              = _mm_mul_pd(rsq11,rinv11);
363
364             /* EWALD ELECTROSTATICS */
365
366             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
367             ewrt             = _mm_mul_pd(r11,ewtabscale);
368             ewitab           = _mm_cvttpd_epi32(ewrt);
369 #ifdef __XOP__
370             eweps            = _mm_frcz_pd(ewrt);
371 #else
372             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
373 #endif
374             twoeweps         = _mm_add_pd(eweps,eweps);
375             ewitab           = _mm_slli_epi32(ewitab,2);
376             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
377             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
378             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
379             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
380             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
381             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
382             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
383             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
384             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
385             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velecsum         = _mm_add_pd(velecsum,velec);
389
390             fscal            = felec;
391
392             /* Update vectorial force */
393             fix1             = _mm_macc_pd(dx11,fscal,fix1);
394             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
395             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
396             
397             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
398             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
399             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             r12              = _mm_mul_pd(rsq12,rinv12);
406
407             /* EWALD ELECTROSTATICS */
408
409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
410             ewrt             = _mm_mul_pd(r12,ewtabscale);
411             ewitab           = _mm_cvttpd_epi32(ewrt);
412 #ifdef __XOP__
413             eweps            = _mm_frcz_pd(ewrt);
414 #else
415             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
416 #endif
417             twoeweps         = _mm_add_pd(eweps,eweps);
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
421             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
422             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
423             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
424             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
425             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
426             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
427             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
428             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velecsum         = _mm_add_pd(velecsum,velec);
432
433             fscal            = felec;
434
435             /* Update vectorial force */
436             fix1             = _mm_macc_pd(dx12,fscal,fix1);
437             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
438             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
439             
440             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
441             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
442             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             r13              = _mm_mul_pd(rsq13,rinv13);
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = _mm_mul_pd(r13,ewtabscale);
454             ewitab           = _mm_cvttpd_epi32(ewrt);
455 #ifdef __XOP__
456             eweps            = _mm_frcz_pd(ewrt);
457 #else
458             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
459 #endif
460             twoeweps         = _mm_add_pd(eweps,eweps);
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
465             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
466             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
468             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
469             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
470             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
471             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
472
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velecsum         = _mm_add_pd(velecsum,velec);
475
476             fscal            = felec;
477
478             /* Update vectorial force */
479             fix1             = _mm_macc_pd(dx13,fscal,fix1);
480             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
481             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
482             
483             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
484             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
485             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r21              = _mm_mul_pd(rsq21,rinv21);
492
493             /* EWALD ELECTROSTATICS */
494
495             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
496             ewrt             = _mm_mul_pd(r21,ewtabscale);
497             ewitab           = _mm_cvttpd_epi32(ewrt);
498 #ifdef __XOP__
499             eweps            = _mm_frcz_pd(ewrt);
500 #else
501             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
502 #endif
503             twoeweps         = _mm_add_pd(eweps,eweps);
504             ewitab           = _mm_slli_epi32(ewitab,2);
505             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
506             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
507             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
508             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
509             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
510             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
511             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
512             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
513             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
514             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
515
516             /* Update potential sum for this i atom from the interaction with this j atom. */
517             velecsum         = _mm_add_pd(velecsum,velec);
518
519             fscal            = felec;
520
521             /* Update vectorial force */
522             fix2             = _mm_macc_pd(dx21,fscal,fix2);
523             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
524             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
525             
526             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
527             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
528             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r22              = _mm_mul_pd(rsq22,rinv22);
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = _mm_mul_pd(r22,ewtabscale);
540             ewitab           = _mm_cvttpd_epi32(ewrt);
541 #ifdef __XOP__
542             eweps            = _mm_frcz_pd(ewrt);
543 #else
544             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
545 #endif
546             twoeweps         = _mm_add_pd(eweps,eweps);
547             ewitab           = _mm_slli_epi32(ewitab,2);
548             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
549             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
550             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
551             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
552             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
553             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
554             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
555             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
556             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
557             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
558
559             /* Update potential sum for this i atom from the interaction with this j atom. */
560             velecsum         = _mm_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             /* Update vectorial force */
565             fix2             = _mm_macc_pd(dx22,fscal,fix2);
566             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
567             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
568             
569             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
570             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
571             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r23              = _mm_mul_pd(rsq23,rinv23);
578
579             /* EWALD ELECTROSTATICS */
580
581             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582             ewrt             = _mm_mul_pd(r23,ewtabscale);
583             ewitab           = _mm_cvttpd_epi32(ewrt);
584 #ifdef __XOP__
585             eweps            = _mm_frcz_pd(ewrt);
586 #else
587             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
588 #endif
589             twoeweps         = _mm_add_pd(eweps,eweps);
590             ewitab           = _mm_slli_epi32(ewitab,2);
591             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
592             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
593             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
594             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
595             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
596             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
597             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
598             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
599             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
600             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             /* Update vectorial force */
608             fix2             = _mm_macc_pd(dx23,fscal,fix2);
609             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
610             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
611             
612             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
613             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
614             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             r31              = _mm_mul_pd(rsq31,rinv31);
621
622             /* EWALD ELECTROSTATICS */
623
624             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
625             ewrt             = _mm_mul_pd(r31,ewtabscale);
626             ewitab           = _mm_cvttpd_epi32(ewrt);
627 #ifdef __XOP__
628             eweps            = _mm_frcz_pd(ewrt);
629 #else
630             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
631 #endif
632             twoeweps         = _mm_add_pd(eweps,eweps);
633             ewitab           = _mm_slli_epi32(ewitab,2);
634             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
635             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
636             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
637             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
638             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
639             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
640             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
641             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
642             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
643             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
644
645             /* Update potential sum for this i atom from the interaction with this j atom. */
646             velecsum         = _mm_add_pd(velecsum,velec);
647
648             fscal            = felec;
649
650             /* Update vectorial force */
651             fix3             = _mm_macc_pd(dx31,fscal,fix3);
652             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
653             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
654             
655             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
656             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
657             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             r32              = _mm_mul_pd(rsq32,rinv32);
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = _mm_mul_pd(r32,ewtabscale);
669             ewitab           = _mm_cvttpd_epi32(ewrt);
670 #ifdef __XOP__
671             eweps            = _mm_frcz_pd(ewrt);
672 #else
673             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
674 #endif
675             twoeweps         = _mm_add_pd(eweps,eweps);
676             ewitab           = _mm_slli_epi32(ewitab,2);
677             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
678             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
679             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
680             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
681             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
682             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
683             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
684             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
685             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
686             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
687
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             velecsum         = _mm_add_pd(velecsum,velec);
690
691             fscal            = felec;
692
693             /* Update vectorial force */
694             fix3             = _mm_macc_pd(dx32,fscal,fix3);
695             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
696             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
697             
698             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
699             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
700             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
701
702             /**************************
703              * CALCULATE INTERACTIONS *
704              **************************/
705
706             r33              = _mm_mul_pd(rsq33,rinv33);
707
708             /* EWALD ELECTROSTATICS */
709
710             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
711             ewrt             = _mm_mul_pd(r33,ewtabscale);
712             ewitab           = _mm_cvttpd_epi32(ewrt);
713 #ifdef __XOP__
714             eweps            = _mm_frcz_pd(ewrt);
715 #else
716             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
717 #endif
718             twoeweps         = _mm_add_pd(eweps,eweps);
719             ewitab           = _mm_slli_epi32(ewitab,2);
720             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
721             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
722             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
723             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
724             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
725             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
726             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
727             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
728             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
729             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
730
731             /* Update potential sum for this i atom from the interaction with this j atom. */
732             velecsum         = _mm_add_pd(velecsum,velec);
733
734             fscal            = felec;
735
736             /* Update vectorial force */
737             fix3             = _mm_macc_pd(dx33,fscal,fix3);
738             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
739             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
740             
741             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
742             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
743             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
744
745             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
746
747             /* Inner loop uses 449 flops */
748         }
749
750         if(jidx<j_index_end)
751         {
752
753             jnrA             = jjnr[jidx];
754             j_coord_offsetA  = DIM*jnrA;
755
756             /* load j atom coordinates */
757             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
758                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
759                                               &jy2,&jz2,&jx3,&jy3,&jz3);
760
761             /* Calculate displacement vector */
762             dx00             = _mm_sub_pd(ix0,jx0);
763             dy00             = _mm_sub_pd(iy0,jy0);
764             dz00             = _mm_sub_pd(iz0,jz0);
765             dx11             = _mm_sub_pd(ix1,jx1);
766             dy11             = _mm_sub_pd(iy1,jy1);
767             dz11             = _mm_sub_pd(iz1,jz1);
768             dx12             = _mm_sub_pd(ix1,jx2);
769             dy12             = _mm_sub_pd(iy1,jy2);
770             dz12             = _mm_sub_pd(iz1,jz2);
771             dx13             = _mm_sub_pd(ix1,jx3);
772             dy13             = _mm_sub_pd(iy1,jy3);
773             dz13             = _mm_sub_pd(iz1,jz3);
774             dx21             = _mm_sub_pd(ix2,jx1);
775             dy21             = _mm_sub_pd(iy2,jy1);
776             dz21             = _mm_sub_pd(iz2,jz1);
777             dx22             = _mm_sub_pd(ix2,jx2);
778             dy22             = _mm_sub_pd(iy2,jy2);
779             dz22             = _mm_sub_pd(iz2,jz2);
780             dx23             = _mm_sub_pd(ix2,jx3);
781             dy23             = _mm_sub_pd(iy2,jy3);
782             dz23             = _mm_sub_pd(iz2,jz3);
783             dx31             = _mm_sub_pd(ix3,jx1);
784             dy31             = _mm_sub_pd(iy3,jy1);
785             dz31             = _mm_sub_pd(iz3,jz1);
786             dx32             = _mm_sub_pd(ix3,jx2);
787             dy32             = _mm_sub_pd(iy3,jy2);
788             dz32             = _mm_sub_pd(iz3,jz2);
789             dx33             = _mm_sub_pd(ix3,jx3);
790             dy33             = _mm_sub_pd(iy3,jy3);
791             dz33             = _mm_sub_pd(iz3,jz3);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
795             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
796             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
797             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
798             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
799             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
800             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
801             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
802             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
803             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
804
805             rinv00           = gmx_mm_invsqrt_pd(rsq00);
806             rinv11           = gmx_mm_invsqrt_pd(rsq11);
807             rinv12           = gmx_mm_invsqrt_pd(rsq12);
808             rinv13           = gmx_mm_invsqrt_pd(rsq13);
809             rinv21           = gmx_mm_invsqrt_pd(rsq21);
810             rinv22           = gmx_mm_invsqrt_pd(rsq22);
811             rinv23           = gmx_mm_invsqrt_pd(rsq23);
812             rinv31           = gmx_mm_invsqrt_pd(rsq31);
813             rinv32           = gmx_mm_invsqrt_pd(rsq32);
814             rinv33           = gmx_mm_invsqrt_pd(rsq33);
815
816             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
817             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
818             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
819             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
820             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
821             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
822             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
823             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
824             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
825             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
826
827             fjx0             = _mm_setzero_pd();
828             fjy0             = _mm_setzero_pd();
829             fjz0             = _mm_setzero_pd();
830             fjx1             = _mm_setzero_pd();
831             fjy1             = _mm_setzero_pd();
832             fjz1             = _mm_setzero_pd();
833             fjx2             = _mm_setzero_pd();
834             fjy2             = _mm_setzero_pd();
835             fjz2             = _mm_setzero_pd();
836             fjx3             = _mm_setzero_pd();
837             fjy3             = _mm_setzero_pd();
838             fjz3             = _mm_setzero_pd();
839
840             /**************************
841              * CALCULATE INTERACTIONS *
842              **************************/
843
844             r00              = _mm_mul_pd(rsq00,rinv00);
845
846             /* Analytical LJ-PME */
847             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
848             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
849             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
850             exponent         = gmx_simd_exp_d(ewcljrsq);
851             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
852             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
853             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
854             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
855             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
856             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
857             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
858             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
859
860             /* Update potential sum for this i atom from the interaction with this j atom. */
861             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
862             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
863
864             fscal            = fvdw;
865
866             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
867
868             /* Update vectorial force */
869             fix0             = _mm_macc_pd(dx00,fscal,fix0);
870             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
871             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
872             
873             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
874             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
875             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
876
877             /**************************
878              * CALCULATE INTERACTIONS *
879              **************************/
880
881             r11              = _mm_mul_pd(rsq11,rinv11);
882
883             /* EWALD ELECTROSTATICS */
884
885             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
886             ewrt             = _mm_mul_pd(r11,ewtabscale);
887             ewitab           = _mm_cvttpd_epi32(ewrt);
888 #ifdef __XOP__
889             eweps            = _mm_frcz_pd(ewrt);
890 #else
891             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
892 #endif
893             twoeweps         = _mm_add_pd(eweps,eweps);
894             ewitab           = _mm_slli_epi32(ewitab,2);
895             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
896             ewtabD           = _mm_setzero_pd();
897             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
898             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
899             ewtabFn          = _mm_setzero_pd();
900             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
901             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
902             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
903             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
904             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
905
906             /* Update potential sum for this i atom from the interaction with this j atom. */
907             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
908             velecsum         = _mm_add_pd(velecsum,velec);
909
910             fscal            = felec;
911
912             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
913
914             /* Update vectorial force */
915             fix1             = _mm_macc_pd(dx11,fscal,fix1);
916             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
917             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
918             
919             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
920             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
921             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             r12              = _mm_mul_pd(rsq12,rinv12);
928
929             /* EWALD ELECTROSTATICS */
930
931             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
932             ewrt             = _mm_mul_pd(r12,ewtabscale);
933             ewitab           = _mm_cvttpd_epi32(ewrt);
934 #ifdef __XOP__
935             eweps            = _mm_frcz_pd(ewrt);
936 #else
937             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
938 #endif
939             twoeweps         = _mm_add_pd(eweps,eweps);
940             ewitab           = _mm_slli_epi32(ewitab,2);
941             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
942             ewtabD           = _mm_setzero_pd();
943             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
944             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
945             ewtabFn          = _mm_setzero_pd();
946             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
947             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
948             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
949             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
950             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
951
952             /* Update potential sum for this i atom from the interaction with this j atom. */
953             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
954             velecsum         = _mm_add_pd(velecsum,velec);
955
956             fscal            = felec;
957
958             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
959
960             /* Update vectorial force */
961             fix1             = _mm_macc_pd(dx12,fscal,fix1);
962             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
963             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
964             
965             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
966             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
967             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             r13              = _mm_mul_pd(rsq13,rinv13);
974
975             /* EWALD ELECTROSTATICS */
976
977             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
978             ewrt             = _mm_mul_pd(r13,ewtabscale);
979             ewitab           = _mm_cvttpd_epi32(ewrt);
980 #ifdef __XOP__
981             eweps            = _mm_frcz_pd(ewrt);
982 #else
983             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
984 #endif
985             twoeweps         = _mm_add_pd(eweps,eweps);
986             ewitab           = _mm_slli_epi32(ewitab,2);
987             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
988             ewtabD           = _mm_setzero_pd();
989             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
990             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
991             ewtabFn          = _mm_setzero_pd();
992             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
993             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
994             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
995             velec            = _mm_mul_pd(qq13,_mm_sub_pd(rinv13,velec));
996             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
997
998             /* Update potential sum for this i atom from the interaction with this j atom. */
999             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1000             velecsum         = _mm_add_pd(velecsum,velec);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1005
1006             /* Update vectorial force */
1007             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1008             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1009             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1010             
1011             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1012             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1013             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             r21              = _mm_mul_pd(rsq21,rinv21);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_pd(r21,ewtabscale);
1025             ewitab           = _mm_cvttpd_epi32(ewrt);
1026 #ifdef __XOP__
1027             eweps            = _mm_frcz_pd(ewrt);
1028 #else
1029             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1030 #endif
1031             twoeweps         = _mm_add_pd(eweps,eweps);
1032             ewitab           = _mm_slli_epi32(ewitab,2);
1033             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1034             ewtabD           = _mm_setzero_pd();
1035             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1036             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1037             ewtabFn          = _mm_setzero_pd();
1038             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1039             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1040             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1041             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1042             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1043
1044             /* Update potential sum for this i atom from the interaction with this j atom. */
1045             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1046             velecsum         = _mm_add_pd(velecsum,velec);
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1051
1052             /* Update vectorial force */
1053             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1054             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1055             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1056             
1057             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1058             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1059             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             r22              = _mm_mul_pd(rsq22,rinv22);
1066
1067             /* EWALD ELECTROSTATICS */
1068
1069             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1070             ewrt             = _mm_mul_pd(r22,ewtabscale);
1071             ewitab           = _mm_cvttpd_epi32(ewrt);
1072 #ifdef __XOP__
1073             eweps            = _mm_frcz_pd(ewrt);
1074 #else
1075             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1076 #endif
1077             twoeweps         = _mm_add_pd(eweps,eweps);
1078             ewitab           = _mm_slli_epi32(ewitab,2);
1079             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1080             ewtabD           = _mm_setzero_pd();
1081             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1082             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1083             ewtabFn          = _mm_setzero_pd();
1084             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1085             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1086             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1087             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1088             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1089
1090             /* Update potential sum for this i atom from the interaction with this j atom. */
1091             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1092             velecsum         = _mm_add_pd(velecsum,velec);
1093
1094             fscal            = felec;
1095
1096             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1097
1098             /* Update vectorial force */
1099             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1100             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1101             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1102             
1103             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1104             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1105             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1106
1107             /**************************
1108              * CALCULATE INTERACTIONS *
1109              **************************/
1110
1111             r23              = _mm_mul_pd(rsq23,rinv23);
1112
1113             /* EWALD ELECTROSTATICS */
1114
1115             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116             ewrt             = _mm_mul_pd(r23,ewtabscale);
1117             ewitab           = _mm_cvttpd_epi32(ewrt);
1118 #ifdef __XOP__
1119             eweps            = _mm_frcz_pd(ewrt);
1120 #else
1121             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1122 #endif
1123             twoeweps         = _mm_add_pd(eweps,eweps);
1124             ewitab           = _mm_slli_epi32(ewitab,2);
1125             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1126             ewtabD           = _mm_setzero_pd();
1127             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1128             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1129             ewtabFn          = _mm_setzero_pd();
1130             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1131             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1132             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1133             velec            = _mm_mul_pd(qq23,_mm_sub_pd(rinv23,velec));
1134             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1135
1136             /* Update potential sum for this i atom from the interaction with this j atom. */
1137             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1138             velecsum         = _mm_add_pd(velecsum,velec);
1139
1140             fscal            = felec;
1141
1142             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1143
1144             /* Update vectorial force */
1145             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1146             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1147             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1148             
1149             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1150             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1151             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1152
1153             /**************************
1154              * CALCULATE INTERACTIONS *
1155              **************************/
1156
1157             r31              = _mm_mul_pd(rsq31,rinv31);
1158
1159             /* EWALD ELECTROSTATICS */
1160
1161             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1162             ewrt             = _mm_mul_pd(r31,ewtabscale);
1163             ewitab           = _mm_cvttpd_epi32(ewrt);
1164 #ifdef __XOP__
1165             eweps            = _mm_frcz_pd(ewrt);
1166 #else
1167             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1168 #endif
1169             twoeweps         = _mm_add_pd(eweps,eweps);
1170             ewitab           = _mm_slli_epi32(ewitab,2);
1171             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1172             ewtabD           = _mm_setzero_pd();
1173             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1174             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1175             ewtabFn          = _mm_setzero_pd();
1176             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1177             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1178             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1179             velec            = _mm_mul_pd(qq31,_mm_sub_pd(rinv31,velec));
1180             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1181
1182             /* Update potential sum for this i atom from the interaction with this j atom. */
1183             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1184             velecsum         = _mm_add_pd(velecsum,velec);
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1189
1190             /* Update vectorial force */
1191             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1192             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1193             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1194             
1195             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1196             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1197             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             r32              = _mm_mul_pd(rsq32,rinv32);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208             ewrt             = _mm_mul_pd(r32,ewtabscale);
1209             ewitab           = _mm_cvttpd_epi32(ewrt);
1210 #ifdef __XOP__
1211             eweps            = _mm_frcz_pd(ewrt);
1212 #else
1213             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1214 #endif
1215             twoeweps         = _mm_add_pd(eweps,eweps);
1216             ewitab           = _mm_slli_epi32(ewitab,2);
1217             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1218             ewtabD           = _mm_setzero_pd();
1219             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1220             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1221             ewtabFn          = _mm_setzero_pd();
1222             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1223             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1224             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1225             velec            = _mm_mul_pd(qq32,_mm_sub_pd(rinv32,velec));
1226             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1227
1228             /* Update potential sum for this i atom from the interaction with this j atom. */
1229             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1230             velecsum         = _mm_add_pd(velecsum,velec);
1231
1232             fscal            = felec;
1233
1234             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1235
1236             /* Update vectorial force */
1237             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1238             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1239             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1240             
1241             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1242             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1243             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1244
1245             /**************************
1246              * CALCULATE INTERACTIONS *
1247              **************************/
1248
1249             r33              = _mm_mul_pd(rsq33,rinv33);
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = _mm_mul_pd(r33,ewtabscale);
1255             ewitab           = _mm_cvttpd_epi32(ewrt);
1256 #ifdef __XOP__
1257             eweps            = _mm_frcz_pd(ewrt);
1258 #else
1259             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1260 #endif
1261             twoeweps         = _mm_add_pd(eweps,eweps);
1262             ewitab           = _mm_slli_epi32(ewitab,2);
1263             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1264             ewtabD           = _mm_setzero_pd();
1265             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1266             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1267             ewtabFn          = _mm_setzero_pd();
1268             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1269             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1270             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1271             velec            = _mm_mul_pd(qq33,_mm_sub_pd(rinv33,velec));
1272             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1273
1274             /* Update potential sum for this i atom from the interaction with this j atom. */
1275             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1276             velecsum         = _mm_add_pd(velecsum,velec);
1277
1278             fscal            = felec;
1279
1280             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1281
1282             /* Update vectorial force */
1283             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1284             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1285             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1286             
1287             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1288             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1289             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1290
1291             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1292
1293             /* Inner loop uses 449 flops */
1294         }
1295
1296         /* End of innermost loop */
1297
1298         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1299                                               f+i_coord_offset,fshift+i_shift_offset);
1300
1301         ggid                        = gid[iidx];
1302         /* Update potential energies */
1303         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1304         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1305
1306         /* Increment number of inner iterations */
1307         inneriter                  += j_index_end - j_index_start;
1308
1309         /* Outer loop uses 26 flops */
1310     }
1311
1312     /* Increment number of outer iterations */
1313     outeriter        += nri;
1314
1315     /* Update outer/inner flops */
1316
1317     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*26 + inneriter*449);
1318 }
1319 /*
1320  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_avx_128_fma_double
1321  * Electrostatics interaction: Ewald
1322  * VdW interaction:            LJEwald
1323  * Geometry:                   Water4-Water4
1324  * Calculate force/pot:        Force
1325  */
1326 void
1327 nb_kernel_ElecEw_VdwLJEw_GeomW4W4_F_avx_128_fma_double
1328                     (t_nblist                    * gmx_restrict       nlist,
1329                      rvec                        * gmx_restrict          xx,
1330                      rvec                        * gmx_restrict          ff,
1331                      t_forcerec                  * gmx_restrict          fr,
1332                      t_mdatoms                   * gmx_restrict     mdatoms,
1333                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1334                      t_nrnb                      * gmx_restrict        nrnb)
1335 {
1336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1337      * just 0 for non-waters.
1338      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1339      * jnr indices corresponding to data put in the four positions in the SIMD register.
1340      */
1341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1343     int              jnrA,jnrB;
1344     int              j_coord_offsetA,j_coord_offsetB;
1345     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1346     real             rcutoff_scalar;
1347     real             *shiftvec,*fshift,*x,*f;
1348     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1349     int              vdwioffset0;
1350     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1351     int              vdwioffset1;
1352     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1353     int              vdwioffset2;
1354     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1355     int              vdwioffset3;
1356     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
1357     int              vdwjidx0A,vdwjidx0B;
1358     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1359     int              vdwjidx1A,vdwjidx1B;
1360     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1361     int              vdwjidx2A,vdwjidx2B;
1362     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1363     int              vdwjidx3A,vdwjidx3B;
1364     __m128d          jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
1365     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1366     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1367     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1368     __m128d          dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13;
1369     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1370     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1371     __m128d          dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23;
1372     __m128d          dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31;
1373     __m128d          dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32;
1374     __m128d          dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33;
1375     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1376     real             *charge;
1377     int              nvdwtype;
1378     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1379     int              *vdwtype;
1380     real             *vdwparam;
1381     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1382     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1383     __m128d           c6grid_00;
1384     __m128d           c6grid_11;
1385     __m128d           c6grid_12;
1386     __m128d           c6grid_13;
1387     __m128d           c6grid_21;
1388     __m128d           c6grid_22;
1389     __m128d           c6grid_23;
1390     __m128d           c6grid_31;
1391     __m128d           c6grid_32;
1392     __m128d           c6grid_33;
1393     real             *vdwgridparam;
1394     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1395     __m128d           one_half  = _mm_set1_pd(0.5);
1396     __m128d           minus_one = _mm_set1_pd(-1.0);
1397     __m128i          ewitab;
1398     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1399     real             *ewtab;
1400     __m128d          dummy_mask,cutoff_mask;
1401     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1402     __m128d          one     = _mm_set1_pd(1.0);
1403     __m128d          two     = _mm_set1_pd(2.0);
1404     x                = xx[0];
1405     f                = ff[0];
1406
1407     nri              = nlist->nri;
1408     iinr             = nlist->iinr;
1409     jindex           = nlist->jindex;
1410     jjnr             = nlist->jjnr;
1411     shiftidx         = nlist->shift;
1412     gid              = nlist->gid;
1413     shiftvec         = fr->shift_vec[0];
1414     fshift           = fr->fshift[0];
1415     facel            = _mm_set1_pd(fr->epsfac);
1416     charge           = mdatoms->chargeA;
1417     nvdwtype         = fr->ntype;
1418     vdwparam         = fr->nbfp;
1419     vdwtype          = mdatoms->typeA;
1420     vdwgridparam     = fr->ljpme_c6grid;
1421     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1422     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1423     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1424
1425     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1426     ewtab            = fr->ic->tabq_coul_F;
1427     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1428     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1429
1430     /* Setup water-specific parameters */
1431     inr              = nlist->iinr[0];
1432     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1433     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1434     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
1435     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1436
1437     jq1              = _mm_set1_pd(charge[inr+1]);
1438     jq2              = _mm_set1_pd(charge[inr+2]);
1439     jq3              = _mm_set1_pd(charge[inr+3]);
1440     vdwjidx0A        = 2*vdwtype[inr+0];
1441     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1442     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1443     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1444     qq11             = _mm_mul_pd(iq1,jq1);
1445     qq12             = _mm_mul_pd(iq1,jq2);
1446     qq13             = _mm_mul_pd(iq1,jq3);
1447     qq21             = _mm_mul_pd(iq2,jq1);
1448     qq22             = _mm_mul_pd(iq2,jq2);
1449     qq23             = _mm_mul_pd(iq2,jq3);
1450     qq31             = _mm_mul_pd(iq3,jq1);
1451     qq32             = _mm_mul_pd(iq3,jq2);
1452     qq33             = _mm_mul_pd(iq3,jq3);
1453
1454     /* Avoid stupid compiler warnings */
1455     jnrA = jnrB = 0;
1456     j_coord_offsetA = 0;
1457     j_coord_offsetB = 0;
1458
1459     outeriter        = 0;
1460     inneriter        = 0;
1461
1462     /* Start outer loop over neighborlists */
1463     for(iidx=0; iidx<nri; iidx++)
1464     {
1465         /* Load shift vector for this list */
1466         i_shift_offset   = DIM*shiftidx[iidx];
1467
1468         /* Load limits for loop over neighbors */
1469         j_index_start    = jindex[iidx];
1470         j_index_end      = jindex[iidx+1];
1471
1472         /* Get outer coordinate index */
1473         inr              = iinr[iidx];
1474         i_coord_offset   = DIM*inr;
1475
1476         /* Load i particle coords and add shift vector */
1477         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1478                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
1479
1480         fix0             = _mm_setzero_pd();
1481         fiy0             = _mm_setzero_pd();
1482         fiz0             = _mm_setzero_pd();
1483         fix1             = _mm_setzero_pd();
1484         fiy1             = _mm_setzero_pd();
1485         fiz1             = _mm_setzero_pd();
1486         fix2             = _mm_setzero_pd();
1487         fiy2             = _mm_setzero_pd();
1488         fiz2             = _mm_setzero_pd();
1489         fix3             = _mm_setzero_pd();
1490         fiy3             = _mm_setzero_pd();
1491         fiz3             = _mm_setzero_pd();
1492
1493         /* Start inner kernel loop */
1494         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1495         {
1496
1497             /* Get j neighbor index, and coordinate index */
1498             jnrA             = jjnr[jidx];
1499             jnrB             = jjnr[jidx+1];
1500             j_coord_offsetA  = DIM*jnrA;
1501             j_coord_offsetB  = DIM*jnrB;
1502
1503             /* load j atom coordinates */
1504             gmx_mm_load_4rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1505                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1506                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1507
1508             /* Calculate displacement vector */
1509             dx00             = _mm_sub_pd(ix0,jx0);
1510             dy00             = _mm_sub_pd(iy0,jy0);
1511             dz00             = _mm_sub_pd(iz0,jz0);
1512             dx11             = _mm_sub_pd(ix1,jx1);
1513             dy11             = _mm_sub_pd(iy1,jy1);
1514             dz11             = _mm_sub_pd(iz1,jz1);
1515             dx12             = _mm_sub_pd(ix1,jx2);
1516             dy12             = _mm_sub_pd(iy1,jy2);
1517             dz12             = _mm_sub_pd(iz1,jz2);
1518             dx13             = _mm_sub_pd(ix1,jx3);
1519             dy13             = _mm_sub_pd(iy1,jy3);
1520             dz13             = _mm_sub_pd(iz1,jz3);
1521             dx21             = _mm_sub_pd(ix2,jx1);
1522             dy21             = _mm_sub_pd(iy2,jy1);
1523             dz21             = _mm_sub_pd(iz2,jz1);
1524             dx22             = _mm_sub_pd(ix2,jx2);
1525             dy22             = _mm_sub_pd(iy2,jy2);
1526             dz22             = _mm_sub_pd(iz2,jz2);
1527             dx23             = _mm_sub_pd(ix2,jx3);
1528             dy23             = _mm_sub_pd(iy2,jy3);
1529             dz23             = _mm_sub_pd(iz2,jz3);
1530             dx31             = _mm_sub_pd(ix3,jx1);
1531             dy31             = _mm_sub_pd(iy3,jy1);
1532             dz31             = _mm_sub_pd(iz3,jz1);
1533             dx32             = _mm_sub_pd(ix3,jx2);
1534             dy32             = _mm_sub_pd(iy3,jy2);
1535             dz32             = _mm_sub_pd(iz3,jz2);
1536             dx33             = _mm_sub_pd(ix3,jx3);
1537             dy33             = _mm_sub_pd(iy3,jy3);
1538             dz33             = _mm_sub_pd(iz3,jz3);
1539
1540             /* Calculate squared distance and things based on it */
1541             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1542             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1543             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1544             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1545             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1546             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1547             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1548             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1549             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1550             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1551
1552             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1553             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1554             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1555             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1556             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1557             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1558             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1559             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1560             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1561             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1562
1563             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1564             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1565             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1566             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1567             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1568             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1569             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1570             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1571             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1572             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1573
1574             fjx0             = _mm_setzero_pd();
1575             fjy0             = _mm_setzero_pd();
1576             fjz0             = _mm_setzero_pd();
1577             fjx1             = _mm_setzero_pd();
1578             fjy1             = _mm_setzero_pd();
1579             fjz1             = _mm_setzero_pd();
1580             fjx2             = _mm_setzero_pd();
1581             fjy2             = _mm_setzero_pd();
1582             fjz2             = _mm_setzero_pd();
1583             fjx3             = _mm_setzero_pd();
1584             fjy3             = _mm_setzero_pd();
1585             fjz3             = _mm_setzero_pd();
1586
1587             /**************************
1588              * CALCULATE INTERACTIONS *
1589              **************************/
1590
1591             r00              = _mm_mul_pd(rsq00,rinv00);
1592
1593             /* Analytical LJ-PME */
1594             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1595             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1596             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1597             exponent         = gmx_simd_exp_d(ewcljrsq);
1598             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1599             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1600             /* f6A = 6 * C6grid * (1 - poly) */
1601             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1602             /* f6B = C6grid * exponent * beta^6 */
1603             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1604             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1605             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1606
1607             fscal            = fvdw;
1608
1609             /* Update vectorial force */
1610             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1611             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1612             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1613             
1614             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1615             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1616             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1617
1618             /**************************
1619              * CALCULATE INTERACTIONS *
1620              **************************/
1621
1622             r11              = _mm_mul_pd(rsq11,rinv11);
1623
1624             /* EWALD ELECTROSTATICS */
1625
1626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1627             ewrt             = _mm_mul_pd(r11,ewtabscale);
1628             ewitab           = _mm_cvttpd_epi32(ewrt);
1629 #ifdef __XOP__
1630             eweps            = _mm_frcz_pd(ewrt);
1631 #else
1632             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1633 #endif
1634             twoeweps         = _mm_add_pd(eweps,eweps);
1635             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1636                                          &ewtabF,&ewtabFn);
1637             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1638             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1639
1640             fscal            = felec;
1641
1642             /* Update vectorial force */
1643             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1644             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1645             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1646             
1647             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1648             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1649             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1650
1651             /**************************
1652              * CALCULATE INTERACTIONS *
1653              **************************/
1654
1655             r12              = _mm_mul_pd(rsq12,rinv12);
1656
1657             /* EWALD ELECTROSTATICS */
1658
1659             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1660             ewrt             = _mm_mul_pd(r12,ewtabscale);
1661             ewitab           = _mm_cvttpd_epi32(ewrt);
1662 #ifdef __XOP__
1663             eweps            = _mm_frcz_pd(ewrt);
1664 #else
1665             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1666 #endif
1667             twoeweps         = _mm_add_pd(eweps,eweps);
1668             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1669                                          &ewtabF,&ewtabFn);
1670             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1671             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1672
1673             fscal            = felec;
1674
1675             /* Update vectorial force */
1676             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1677             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1678             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1679             
1680             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1681             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1682             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1683
1684             /**************************
1685              * CALCULATE INTERACTIONS *
1686              **************************/
1687
1688             r13              = _mm_mul_pd(rsq13,rinv13);
1689
1690             /* EWALD ELECTROSTATICS */
1691
1692             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1693             ewrt             = _mm_mul_pd(r13,ewtabscale);
1694             ewitab           = _mm_cvttpd_epi32(ewrt);
1695 #ifdef __XOP__
1696             eweps            = _mm_frcz_pd(ewrt);
1697 #else
1698             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1699 #endif
1700             twoeweps         = _mm_add_pd(eweps,eweps);
1701             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1702                                          &ewtabF,&ewtabFn);
1703             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1704             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
1705
1706             fscal            = felec;
1707
1708             /* Update vectorial force */
1709             fix1             = _mm_macc_pd(dx13,fscal,fix1);
1710             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
1711             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
1712             
1713             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
1714             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
1715             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
1716
1717             /**************************
1718              * CALCULATE INTERACTIONS *
1719              **************************/
1720
1721             r21              = _mm_mul_pd(rsq21,rinv21);
1722
1723             /* EWALD ELECTROSTATICS */
1724
1725             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1726             ewrt             = _mm_mul_pd(r21,ewtabscale);
1727             ewitab           = _mm_cvttpd_epi32(ewrt);
1728 #ifdef __XOP__
1729             eweps            = _mm_frcz_pd(ewrt);
1730 #else
1731             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1732 #endif
1733             twoeweps         = _mm_add_pd(eweps,eweps);
1734             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1735                                          &ewtabF,&ewtabFn);
1736             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1737             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1738
1739             fscal            = felec;
1740
1741             /* Update vectorial force */
1742             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1743             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1744             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1745             
1746             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1747             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1748             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1749
1750             /**************************
1751              * CALCULATE INTERACTIONS *
1752              **************************/
1753
1754             r22              = _mm_mul_pd(rsq22,rinv22);
1755
1756             /* EWALD ELECTROSTATICS */
1757
1758             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1759             ewrt             = _mm_mul_pd(r22,ewtabscale);
1760             ewitab           = _mm_cvttpd_epi32(ewrt);
1761 #ifdef __XOP__
1762             eweps            = _mm_frcz_pd(ewrt);
1763 #else
1764             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1765 #endif
1766             twoeweps         = _mm_add_pd(eweps,eweps);
1767             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1768                                          &ewtabF,&ewtabFn);
1769             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1770             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1771
1772             fscal            = felec;
1773
1774             /* Update vectorial force */
1775             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1776             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1777             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1778             
1779             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1780             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1781             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1782
1783             /**************************
1784              * CALCULATE INTERACTIONS *
1785              **************************/
1786
1787             r23              = _mm_mul_pd(rsq23,rinv23);
1788
1789             /* EWALD ELECTROSTATICS */
1790
1791             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1792             ewrt             = _mm_mul_pd(r23,ewtabscale);
1793             ewitab           = _mm_cvttpd_epi32(ewrt);
1794 #ifdef __XOP__
1795             eweps            = _mm_frcz_pd(ewrt);
1796 #else
1797             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1798 #endif
1799             twoeweps         = _mm_add_pd(eweps,eweps);
1800             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1801                                          &ewtabF,&ewtabFn);
1802             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1803             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
1804
1805             fscal            = felec;
1806
1807             /* Update vectorial force */
1808             fix2             = _mm_macc_pd(dx23,fscal,fix2);
1809             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
1810             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
1811             
1812             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
1813             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
1814             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
1815
1816             /**************************
1817              * CALCULATE INTERACTIONS *
1818              **************************/
1819
1820             r31              = _mm_mul_pd(rsq31,rinv31);
1821
1822             /* EWALD ELECTROSTATICS */
1823
1824             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1825             ewrt             = _mm_mul_pd(r31,ewtabscale);
1826             ewitab           = _mm_cvttpd_epi32(ewrt);
1827 #ifdef __XOP__
1828             eweps            = _mm_frcz_pd(ewrt);
1829 #else
1830             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1831 #endif
1832             twoeweps         = _mm_add_pd(eweps,eweps);
1833             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1834                                          &ewtabF,&ewtabFn);
1835             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1836             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
1837
1838             fscal            = felec;
1839
1840             /* Update vectorial force */
1841             fix3             = _mm_macc_pd(dx31,fscal,fix3);
1842             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
1843             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
1844             
1845             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
1846             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
1847             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
1848
1849             /**************************
1850              * CALCULATE INTERACTIONS *
1851              **************************/
1852
1853             r32              = _mm_mul_pd(rsq32,rinv32);
1854
1855             /* EWALD ELECTROSTATICS */
1856
1857             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1858             ewrt             = _mm_mul_pd(r32,ewtabscale);
1859             ewitab           = _mm_cvttpd_epi32(ewrt);
1860 #ifdef __XOP__
1861             eweps            = _mm_frcz_pd(ewrt);
1862 #else
1863             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1864 #endif
1865             twoeweps         = _mm_add_pd(eweps,eweps);
1866             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1867                                          &ewtabF,&ewtabFn);
1868             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1869             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
1870
1871             fscal            = felec;
1872
1873             /* Update vectorial force */
1874             fix3             = _mm_macc_pd(dx32,fscal,fix3);
1875             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
1876             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
1877             
1878             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
1879             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
1880             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
1881
1882             /**************************
1883              * CALCULATE INTERACTIONS *
1884              **************************/
1885
1886             r33              = _mm_mul_pd(rsq33,rinv33);
1887
1888             /* EWALD ELECTROSTATICS */
1889
1890             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1891             ewrt             = _mm_mul_pd(r33,ewtabscale);
1892             ewitab           = _mm_cvttpd_epi32(ewrt);
1893 #ifdef __XOP__
1894             eweps            = _mm_frcz_pd(ewrt);
1895 #else
1896             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1897 #endif
1898             twoeweps         = _mm_add_pd(eweps,eweps);
1899             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1900                                          &ewtabF,&ewtabFn);
1901             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1902             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
1903
1904             fscal            = felec;
1905
1906             /* Update vectorial force */
1907             fix3             = _mm_macc_pd(dx33,fscal,fix3);
1908             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
1909             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
1910             
1911             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
1912             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
1913             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
1914
1915             gmx_mm_decrement_4rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1916
1917             /* Inner loop uses 401 flops */
1918         }
1919
1920         if(jidx<j_index_end)
1921         {
1922
1923             jnrA             = jjnr[jidx];
1924             j_coord_offsetA  = DIM*jnrA;
1925
1926             /* load j atom coordinates */
1927             gmx_mm_load_4rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1928                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
1929                                               &jy2,&jz2,&jx3,&jy3,&jz3);
1930
1931             /* Calculate displacement vector */
1932             dx00             = _mm_sub_pd(ix0,jx0);
1933             dy00             = _mm_sub_pd(iy0,jy0);
1934             dz00             = _mm_sub_pd(iz0,jz0);
1935             dx11             = _mm_sub_pd(ix1,jx1);
1936             dy11             = _mm_sub_pd(iy1,jy1);
1937             dz11             = _mm_sub_pd(iz1,jz1);
1938             dx12             = _mm_sub_pd(ix1,jx2);
1939             dy12             = _mm_sub_pd(iy1,jy2);
1940             dz12             = _mm_sub_pd(iz1,jz2);
1941             dx13             = _mm_sub_pd(ix1,jx3);
1942             dy13             = _mm_sub_pd(iy1,jy3);
1943             dz13             = _mm_sub_pd(iz1,jz3);
1944             dx21             = _mm_sub_pd(ix2,jx1);
1945             dy21             = _mm_sub_pd(iy2,jy1);
1946             dz21             = _mm_sub_pd(iz2,jz1);
1947             dx22             = _mm_sub_pd(ix2,jx2);
1948             dy22             = _mm_sub_pd(iy2,jy2);
1949             dz22             = _mm_sub_pd(iz2,jz2);
1950             dx23             = _mm_sub_pd(ix2,jx3);
1951             dy23             = _mm_sub_pd(iy2,jy3);
1952             dz23             = _mm_sub_pd(iz2,jz3);
1953             dx31             = _mm_sub_pd(ix3,jx1);
1954             dy31             = _mm_sub_pd(iy3,jy1);
1955             dz31             = _mm_sub_pd(iz3,jz1);
1956             dx32             = _mm_sub_pd(ix3,jx2);
1957             dy32             = _mm_sub_pd(iy3,jy2);
1958             dz32             = _mm_sub_pd(iz3,jz2);
1959             dx33             = _mm_sub_pd(ix3,jx3);
1960             dy33             = _mm_sub_pd(iy3,jy3);
1961             dz33             = _mm_sub_pd(iz3,jz3);
1962
1963             /* Calculate squared distance and things based on it */
1964             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1965             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1966             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1967             rsq13            = gmx_mm_calc_rsq_pd(dx13,dy13,dz13);
1968             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1969             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1970             rsq23            = gmx_mm_calc_rsq_pd(dx23,dy23,dz23);
1971             rsq31            = gmx_mm_calc_rsq_pd(dx31,dy31,dz31);
1972             rsq32            = gmx_mm_calc_rsq_pd(dx32,dy32,dz32);
1973             rsq33            = gmx_mm_calc_rsq_pd(dx33,dy33,dz33);
1974
1975             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1976             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1977             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1978             rinv13           = gmx_mm_invsqrt_pd(rsq13);
1979             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1980             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1981             rinv23           = gmx_mm_invsqrt_pd(rsq23);
1982             rinv31           = gmx_mm_invsqrt_pd(rsq31);
1983             rinv32           = gmx_mm_invsqrt_pd(rsq32);
1984             rinv33           = gmx_mm_invsqrt_pd(rsq33);
1985
1986             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1987             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1988             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1989             rinvsq13         = _mm_mul_pd(rinv13,rinv13);
1990             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1991             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1992             rinvsq23         = _mm_mul_pd(rinv23,rinv23);
1993             rinvsq31         = _mm_mul_pd(rinv31,rinv31);
1994             rinvsq32         = _mm_mul_pd(rinv32,rinv32);
1995             rinvsq33         = _mm_mul_pd(rinv33,rinv33);
1996
1997             fjx0             = _mm_setzero_pd();
1998             fjy0             = _mm_setzero_pd();
1999             fjz0             = _mm_setzero_pd();
2000             fjx1             = _mm_setzero_pd();
2001             fjy1             = _mm_setzero_pd();
2002             fjz1             = _mm_setzero_pd();
2003             fjx2             = _mm_setzero_pd();
2004             fjy2             = _mm_setzero_pd();
2005             fjz2             = _mm_setzero_pd();
2006             fjx3             = _mm_setzero_pd();
2007             fjy3             = _mm_setzero_pd();
2008             fjz3             = _mm_setzero_pd();
2009
2010             /**************************
2011              * CALCULATE INTERACTIONS *
2012              **************************/
2013
2014             r00              = _mm_mul_pd(rsq00,rinv00);
2015
2016             /* Analytical LJ-PME */
2017             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
2018             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
2019             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
2020             exponent         = gmx_simd_exp_d(ewcljrsq);
2021             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
2022             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
2023             /* f6A = 6 * C6grid * (1 - poly) */
2024             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
2025             /* f6B = C6grid * exponent * beta^6 */
2026             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
2027             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
2028             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
2029
2030             fscal            = fvdw;
2031
2032             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2033
2034             /* Update vectorial force */
2035             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2036             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2037             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2038             
2039             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2040             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2041             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2042
2043             /**************************
2044              * CALCULATE INTERACTIONS *
2045              **************************/
2046
2047             r11              = _mm_mul_pd(rsq11,rinv11);
2048
2049             /* EWALD ELECTROSTATICS */
2050
2051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2052             ewrt             = _mm_mul_pd(r11,ewtabscale);
2053             ewitab           = _mm_cvttpd_epi32(ewrt);
2054 #ifdef __XOP__
2055             eweps            = _mm_frcz_pd(ewrt);
2056 #else
2057             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2058 #endif
2059             twoeweps         = _mm_add_pd(eweps,eweps);
2060             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2061             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2062             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2063
2064             fscal            = felec;
2065
2066             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2067
2068             /* Update vectorial force */
2069             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2070             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2071             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2072             
2073             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2074             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2075             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2076
2077             /**************************
2078              * CALCULATE INTERACTIONS *
2079              **************************/
2080
2081             r12              = _mm_mul_pd(rsq12,rinv12);
2082
2083             /* EWALD ELECTROSTATICS */
2084
2085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2086             ewrt             = _mm_mul_pd(r12,ewtabscale);
2087             ewitab           = _mm_cvttpd_epi32(ewrt);
2088 #ifdef __XOP__
2089             eweps            = _mm_frcz_pd(ewrt);
2090 #else
2091             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2092 #endif
2093             twoeweps         = _mm_add_pd(eweps,eweps);
2094             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2095             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2096             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2097
2098             fscal            = felec;
2099
2100             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2101
2102             /* Update vectorial force */
2103             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2104             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2105             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2106             
2107             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2108             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2109             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2110
2111             /**************************
2112              * CALCULATE INTERACTIONS *
2113              **************************/
2114
2115             r13              = _mm_mul_pd(rsq13,rinv13);
2116
2117             /* EWALD ELECTROSTATICS */
2118
2119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2120             ewrt             = _mm_mul_pd(r13,ewtabscale);
2121             ewitab           = _mm_cvttpd_epi32(ewrt);
2122 #ifdef __XOP__
2123             eweps            = _mm_frcz_pd(ewrt);
2124 #else
2125             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2126 #endif
2127             twoeweps         = _mm_add_pd(eweps,eweps);
2128             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2129             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2130             felec            = _mm_mul_pd(_mm_mul_pd(qq13,rinv13),_mm_sub_pd(rinvsq13,felec));
2131
2132             fscal            = felec;
2133
2134             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2135
2136             /* Update vectorial force */
2137             fix1             = _mm_macc_pd(dx13,fscal,fix1);
2138             fiy1             = _mm_macc_pd(dy13,fscal,fiy1);
2139             fiz1             = _mm_macc_pd(dz13,fscal,fiz1);
2140             
2141             fjx3             = _mm_macc_pd(dx13,fscal,fjx3);
2142             fjy3             = _mm_macc_pd(dy13,fscal,fjy3);
2143             fjz3             = _mm_macc_pd(dz13,fscal,fjz3);
2144
2145             /**************************
2146              * CALCULATE INTERACTIONS *
2147              **************************/
2148
2149             r21              = _mm_mul_pd(rsq21,rinv21);
2150
2151             /* EWALD ELECTROSTATICS */
2152
2153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2154             ewrt             = _mm_mul_pd(r21,ewtabscale);
2155             ewitab           = _mm_cvttpd_epi32(ewrt);
2156 #ifdef __XOP__
2157             eweps            = _mm_frcz_pd(ewrt);
2158 #else
2159             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2160 #endif
2161             twoeweps         = _mm_add_pd(eweps,eweps);
2162             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2163             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2164             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2165
2166             fscal            = felec;
2167
2168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2169
2170             /* Update vectorial force */
2171             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2172             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2173             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2174             
2175             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2176             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2177             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2178
2179             /**************************
2180              * CALCULATE INTERACTIONS *
2181              **************************/
2182
2183             r22              = _mm_mul_pd(rsq22,rinv22);
2184
2185             /* EWALD ELECTROSTATICS */
2186
2187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2188             ewrt             = _mm_mul_pd(r22,ewtabscale);
2189             ewitab           = _mm_cvttpd_epi32(ewrt);
2190 #ifdef __XOP__
2191             eweps            = _mm_frcz_pd(ewrt);
2192 #else
2193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2194 #endif
2195             twoeweps         = _mm_add_pd(eweps,eweps);
2196             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2197             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2198             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2199
2200             fscal            = felec;
2201
2202             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2203
2204             /* Update vectorial force */
2205             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2206             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2207             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2208             
2209             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2210             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2211             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2212
2213             /**************************
2214              * CALCULATE INTERACTIONS *
2215              **************************/
2216
2217             r23              = _mm_mul_pd(rsq23,rinv23);
2218
2219             /* EWALD ELECTROSTATICS */
2220
2221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2222             ewrt             = _mm_mul_pd(r23,ewtabscale);
2223             ewitab           = _mm_cvttpd_epi32(ewrt);
2224 #ifdef __XOP__
2225             eweps            = _mm_frcz_pd(ewrt);
2226 #else
2227             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2228 #endif
2229             twoeweps         = _mm_add_pd(eweps,eweps);
2230             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2231             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2232             felec            = _mm_mul_pd(_mm_mul_pd(qq23,rinv23),_mm_sub_pd(rinvsq23,felec));
2233
2234             fscal            = felec;
2235
2236             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2237
2238             /* Update vectorial force */
2239             fix2             = _mm_macc_pd(dx23,fscal,fix2);
2240             fiy2             = _mm_macc_pd(dy23,fscal,fiy2);
2241             fiz2             = _mm_macc_pd(dz23,fscal,fiz2);
2242             
2243             fjx3             = _mm_macc_pd(dx23,fscal,fjx3);
2244             fjy3             = _mm_macc_pd(dy23,fscal,fjy3);
2245             fjz3             = _mm_macc_pd(dz23,fscal,fjz3);
2246
2247             /**************************
2248              * CALCULATE INTERACTIONS *
2249              **************************/
2250
2251             r31              = _mm_mul_pd(rsq31,rinv31);
2252
2253             /* EWALD ELECTROSTATICS */
2254
2255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2256             ewrt             = _mm_mul_pd(r31,ewtabscale);
2257             ewitab           = _mm_cvttpd_epi32(ewrt);
2258 #ifdef __XOP__
2259             eweps            = _mm_frcz_pd(ewrt);
2260 #else
2261             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2262 #endif
2263             twoeweps         = _mm_add_pd(eweps,eweps);
2264             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2265             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2266             felec            = _mm_mul_pd(_mm_mul_pd(qq31,rinv31),_mm_sub_pd(rinvsq31,felec));
2267
2268             fscal            = felec;
2269
2270             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2271
2272             /* Update vectorial force */
2273             fix3             = _mm_macc_pd(dx31,fscal,fix3);
2274             fiy3             = _mm_macc_pd(dy31,fscal,fiy3);
2275             fiz3             = _mm_macc_pd(dz31,fscal,fiz3);
2276             
2277             fjx1             = _mm_macc_pd(dx31,fscal,fjx1);
2278             fjy1             = _mm_macc_pd(dy31,fscal,fjy1);
2279             fjz1             = _mm_macc_pd(dz31,fscal,fjz1);
2280
2281             /**************************
2282              * CALCULATE INTERACTIONS *
2283              **************************/
2284
2285             r32              = _mm_mul_pd(rsq32,rinv32);
2286
2287             /* EWALD ELECTROSTATICS */
2288
2289             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2290             ewrt             = _mm_mul_pd(r32,ewtabscale);
2291             ewitab           = _mm_cvttpd_epi32(ewrt);
2292 #ifdef __XOP__
2293             eweps            = _mm_frcz_pd(ewrt);
2294 #else
2295             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2296 #endif
2297             twoeweps         = _mm_add_pd(eweps,eweps);
2298             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2299             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2300             felec            = _mm_mul_pd(_mm_mul_pd(qq32,rinv32),_mm_sub_pd(rinvsq32,felec));
2301
2302             fscal            = felec;
2303
2304             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2305
2306             /* Update vectorial force */
2307             fix3             = _mm_macc_pd(dx32,fscal,fix3);
2308             fiy3             = _mm_macc_pd(dy32,fscal,fiy3);
2309             fiz3             = _mm_macc_pd(dz32,fscal,fiz3);
2310             
2311             fjx2             = _mm_macc_pd(dx32,fscal,fjx2);
2312             fjy2             = _mm_macc_pd(dy32,fscal,fjy2);
2313             fjz2             = _mm_macc_pd(dz32,fscal,fjz2);
2314
2315             /**************************
2316              * CALCULATE INTERACTIONS *
2317              **************************/
2318
2319             r33              = _mm_mul_pd(rsq33,rinv33);
2320
2321             /* EWALD ELECTROSTATICS */
2322
2323             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2324             ewrt             = _mm_mul_pd(r33,ewtabscale);
2325             ewitab           = _mm_cvttpd_epi32(ewrt);
2326 #ifdef __XOP__
2327             eweps            = _mm_frcz_pd(ewrt);
2328 #else
2329             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2330 #endif
2331             twoeweps         = _mm_add_pd(eweps,eweps);
2332             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2333             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2334             felec            = _mm_mul_pd(_mm_mul_pd(qq33,rinv33),_mm_sub_pd(rinvsq33,felec));
2335
2336             fscal            = felec;
2337
2338             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2339
2340             /* Update vectorial force */
2341             fix3             = _mm_macc_pd(dx33,fscal,fix3);
2342             fiy3             = _mm_macc_pd(dy33,fscal,fiy3);
2343             fiz3             = _mm_macc_pd(dz33,fscal,fiz3);
2344             
2345             fjx3             = _mm_macc_pd(dx33,fscal,fjx3);
2346             fjy3             = _mm_macc_pd(dy33,fscal,fjy3);
2347             fjz3             = _mm_macc_pd(dz33,fscal,fjz3);
2348
2349             gmx_mm_decrement_4rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
2350
2351             /* Inner loop uses 401 flops */
2352         }
2353
2354         /* End of innermost loop */
2355
2356         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
2357                                               f+i_coord_offset,fshift+i_shift_offset);
2358
2359         /* Increment number of inner iterations */
2360         inneriter                  += j_index_end - j_index_start;
2361
2362         /* Outer loop uses 24 flops */
2363     }
2364
2365     /* Increment number of outer iterations */
2366     outeriter        += nri;
2367
2368     /* Update outer/inner flops */
2369
2370     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*24 + inneriter*401);
2371 }