Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     __m128d           c6grid_30;
105     real             *vdwgridparam;
106     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
107     __m128d           one_half  = _mm_set1_pd(0.5);
108     __m128d           minus_one = _mm_set1_pd(-1.0);
109     __m128i          ewitab;
110     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
111     real             *ewtab;
112     __m128d          dummy_mask,cutoff_mask;
113     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
114     __m128d          one     = _mm_set1_pd(1.0);
115     __m128d          two     = _mm_set1_pd(2.0);
116     x                = xx[0];
117     f                = ff[0];
118
119     nri              = nlist->nri;
120     iinr             = nlist->iinr;
121     jindex           = nlist->jindex;
122     jjnr             = nlist->jjnr;
123     shiftidx         = nlist->shift;
124     gid              = nlist->gid;
125     shiftvec         = fr->shift_vec[0];
126     fshift           = fr->fshift[0];
127     facel            = _mm_set1_pd(fr->ic->epsfac);
128     charge           = mdatoms->chargeA;
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132     vdwgridparam     = fr->ljpme_c6grid;
133     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
134     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
135     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
136
137     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
138     ewtab            = fr->ic->tabq_coul_FDV0;
139     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
140     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
141
142     /* Setup water-specific parameters */
143     inr              = nlist->iinr[0];
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
147     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149     /* Avoid stupid compiler warnings */
150     jnrA = jnrB = 0;
151     j_coord_offsetA = 0;
152     j_coord_offsetB = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm_setzero_pd();
176         fiy0             = _mm_setzero_pd();
177         fiz0             = _mm_setzero_pd();
178         fix1             = _mm_setzero_pd();
179         fiy1             = _mm_setzero_pd();
180         fiz1             = _mm_setzero_pd();
181         fix2             = _mm_setzero_pd();
182         fiy2             = _mm_setzero_pd();
183         fiz2             = _mm_setzero_pd();
184         fix3             = _mm_setzero_pd();
185         fiy3             = _mm_setzero_pd();
186         fiz3             = _mm_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_pd();
190         vvdwsum          = _mm_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_pd(ix0,jx0);
208             dy00             = _mm_sub_pd(iy0,jy0);
209             dz00             = _mm_sub_pd(iz0,jz0);
210             dx10             = _mm_sub_pd(ix1,jx0);
211             dy10             = _mm_sub_pd(iy1,jy0);
212             dz10             = _mm_sub_pd(iz1,jz0);
213             dx20             = _mm_sub_pd(ix2,jx0);
214             dy20             = _mm_sub_pd(iy2,jy0);
215             dz20             = _mm_sub_pd(iz2,jz0);
216             dx30             = _mm_sub_pd(ix3,jx0);
217             dy30             = _mm_sub_pd(iy3,jy0);
218             dz30             = _mm_sub_pd(iz3,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
222             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
223             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
224             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
225
226             rinv00           = avx128fma_invsqrt_d(rsq00);
227             rinv10           = avx128fma_invsqrt_d(rsq10);
228             rinv20           = avx128fma_invsqrt_d(rsq20);
229             rinv30           = avx128fma_invsqrt_d(rsq30);
230
231             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
232             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
233             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
234             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240
241             fjx0             = _mm_setzero_pd();
242             fjy0             = _mm_setzero_pd();
243             fjz0             = _mm_setzero_pd();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             r00              = _mm_mul_pd(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
254             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
255                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
256
257             /* Analytical LJ-PME */
258             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
260             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
261             exponent         = avx128fma_exp_d(ewcljrsq);
262             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
263             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
264             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
265             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
266             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
267             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
268             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
269             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
270
271             /* Update potential sum for this i atom from the interaction with this j atom. */
272             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
273
274             fscal            = fvdw;
275
276             /* Update vectorial force */
277             fix0             = _mm_macc_pd(dx00,fscal,fix0);
278             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
279             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
280             
281             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
282             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
283             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             r10              = _mm_mul_pd(rsq10,rinv10);
290
291             /* Compute parameters for interactions between i and j atoms */
292             qq10             = _mm_mul_pd(iq1,jq0);
293
294             /* EWALD ELECTROSTATICS */
295
296             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297             ewrt             = _mm_mul_pd(r10,ewtabscale);
298             ewitab           = _mm_cvttpd_epi32(ewrt);
299 #ifdef __XOP__
300             eweps            = _mm_frcz_pd(ewrt);
301 #else
302             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
303 #endif
304             twoeweps         = _mm_add_pd(eweps,eweps);
305             ewitab           = _mm_slli_epi32(ewitab,2);
306             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
307             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
308             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
309             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
310             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
311             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
312             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
313             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
314             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
315             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_pd(velecsum,velec);
319
320             fscal            = felec;
321
322             /* Update vectorial force */
323             fix1             = _mm_macc_pd(dx10,fscal,fix1);
324             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
325             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
326             
327             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
328             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
329             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r20              = _mm_mul_pd(rsq20,rinv20);
336
337             /* Compute parameters for interactions between i and j atoms */
338             qq20             = _mm_mul_pd(iq2,jq0);
339
340             /* EWALD ELECTROSTATICS */
341
342             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343             ewrt             = _mm_mul_pd(r20,ewtabscale);
344             ewitab           = _mm_cvttpd_epi32(ewrt);
345 #ifdef __XOP__
346             eweps            = _mm_frcz_pd(ewrt);
347 #else
348             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
349 #endif
350             twoeweps         = _mm_add_pd(eweps,eweps);
351             ewitab           = _mm_slli_epi32(ewitab,2);
352             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
353             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
354             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
355             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
356             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
357             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
358             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
359             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
360             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
361             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm_add_pd(velecsum,velec);
365
366             fscal            = felec;
367
368             /* Update vectorial force */
369             fix2             = _mm_macc_pd(dx20,fscal,fix2);
370             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
371             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
372             
373             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
374             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
375             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r30              = _mm_mul_pd(rsq30,rinv30);
382
383             /* Compute parameters for interactions between i and j atoms */
384             qq30             = _mm_mul_pd(iq3,jq0);
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = _mm_mul_pd(r30,ewtabscale);
390             ewitab           = _mm_cvttpd_epi32(ewrt);
391 #ifdef __XOP__
392             eweps            = _mm_frcz_pd(ewrt);
393 #else
394             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
395 #endif
396             twoeweps         = _mm_add_pd(eweps,eweps);
397             ewitab           = _mm_slli_epi32(ewitab,2);
398             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
399             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
400             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
401             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
402             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
403             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
404             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
405             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
406             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
407             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velecsum         = _mm_add_pd(velecsum,velec);
411
412             fscal            = felec;
413
414             /* Update vectorial force */
415             fix3             = _mm_macc_pd(dx30,fscal,fix3);
416             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
417             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
418             
419             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
420             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
421             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
422
423             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
424
425             /* Inner loop uses 185 flops */
426         }
427
428         if(jidx<j_index_end)
429         {
430
431             jnrA             = jjnr[jidx];
432             j_coord_offsetA  = DIM*jnrA;
433
434             /* load j atom coordinates */
435             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
436                                               &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm_sub_pd(ix0,jx0);
440             dy00             = _mm_sub_pd(iy0,jy0);
441             dz00             = _mm_sub_pd(iz0,jz0);
442             dx10             = _mm_sub_pd(ix1,jx0);
443             dy10             = _mm_sub_pd(iy1,jy0);
444             dz10             = _mm_sub_pd(iz1,jz0);
445             dx20             = _mm_sub_pd(ix2,jx0);
446             dy20             = _mm_sub_pd(iy2,jy0);
447             dz20             = _mm_sub_pd(iz2,jz0);
448             dx30             = _mm_sub_pd(ix3,jx0);
449             dy30             = _mm_sub_pd(iy3,jy0);
450             dz30             = _mm_sub_pd(iz3,jz0);
451
452             /* Calculate squared distance and things based on it */
453             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
454             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
455             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
456             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
457
458             rinv00           = avx128fma_invsqrt_d(rsq00);
459             rinv10           = avx128fma_invsqrt_d(rsq10);
460             rinv20           = avx128fma_invsqrt_d(rsq20);
461             rinv30           = avx128fma_invsqrt_d(rsq30);
462
463             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
464             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
465             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
466             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
467
468             /* Load parameters for j particles */
469             jq0              = _mm_load_sd(charge+jnrA+0);
470             vdwjidx0A        = 2*vdwtype[jnrA+0];
471
472             fjx0             = _mm_setzero_pd();
473             fjy0             = _mm_setzero_pd();
474             fjz0             = _mm_setzero_pd();
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r00              = _mm_mul_pd(rsq00,rinv00);
481
482             /* Compute parameters for interactions between i and j atoms */
483             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
484             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
485
486             /* Analytical LJ-PME */
487             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
488             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
489             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
490             exponent         = avx128fma_exp_d(ewcljrsq);
491             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
492             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
493             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
494             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
495             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
496             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
497             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
498             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
499
500             /* Update potential sum for this i atom from the interaction with this j atom. */
501             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
502             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
503
504             fscal            = fvdw;
505
506             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
507
508             /* Update vectorial force */
509             fix0             = _mm_macc_pd(dx00,fscal,fix0);
510             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
511             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
512             
513             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
514             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
515             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
516
517             /**************************
518              * CALCULATE INTERACTIONS *
519              **************************/
520
521             r10              = _mm_mul_pd(rsq10,rinv10);
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq10             = _mm_mul_pd(iq1,jq0);
525
526             /* EWALD ELECTROSTATICS */
527
528             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
529             ewrt             = _mm_mul_pd(r10,ewtabscale);
530             ewitab           = _mm_cvttpd_epi32(ewrt);
531 #ifdef __XOP__
532             eweps            = _mm_frcz_pd(ewrt);
533 #else
534             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
535 #endif
536             twoeweps         = _mm_add_pd(eweps,eweps);
537             ewitab           = _mm_slli_epi32(ewitab,2);
538             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
539             ewtabD           = _mm_setzero_pd();
540             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
541             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
542             ewtabFn          = _mm_setzero_pd();
543             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
544             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
545             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
546             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
547             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
548
549             /* Update potential sum for this i atom from the interaction with this j atom. */
550             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
551             velecsum         = _mm_add_pd(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
556
557             /* Update vectorial force */
558             fix1             = _mm_macc_pd(dx10,fscal,fix1);
559             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
560             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
561             
562             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
563             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
564             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r20              = _mm_mul_pd(rsq20,rinv20);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_pd(iq2,jq0);
574
575             /* EWALD ELECTROSTATICS */
576
577             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
578             ewrt             = _mm_mul_pd(r20,ewtabscale);
579             ewitab           = _mm_cvttpd_epi32(ewrt);
580 #ifdef __XOP__
581             eweps            = _mm_frcz_pd(ewrt);
582 #else
583             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
584 #endif
585             twoeweps         = _mm_add_pd(eweps,eweps);
586             ewitab           = _mm_slli_epi32(ewitab,2);
587             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
588             ewtabD           = _mm_setzero_pd();
589             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
590             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
591             ewtabFn          = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
593             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
594             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
595             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
596             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
597
598             /* Update potential sum for this i atom from the interaction with this j atom. */
599             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
600             velecsum         = _mm_add_pd(velecsum,velec);
601
602             fscal            = felec;
603
604             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
605
606             /* Update vectorial force */
607             fix2             = _mm_macc_pd(dx20,fscal,fix2);
608             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
609             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
610             
611             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
612             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
613             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             r30              = _mm_mul_pd(rsq30,rinv30);
620
621             /* Compute parameters for interactions between i and j atoms */
622             qq30             = _mm_mul_pd(iq3,jq0);
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = _mm_mul_pd(r30,ewtabscale);
628             ewitab           = _mm_cvttpd_epi32(ewrt);
629 #ifdef __XOP__
630             eweps            = _mm_frcz_pd(ewrt);
631 #else
632             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
633 #endif
634             twoeweps         = _mm_add_pd(eweps,eweps);
635             ewitab           = _mm_slli_epi32(ewitab,2);
636             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
637             ewtabD           = _mm_setzero_pd();
638             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
639             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
640             ewtabFn          = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
642             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
643             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
644             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
645             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
646
647             /* Update potential sum for this i atom from the interaction with this j atom. */
648             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
649             velecsum         = _mm_add_pd(velecsum,velec);
650
651             fscal            = felec;
652
653             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
654
655             /* Update vectorial force */
656             fix3             = _mm_macc_pd(dx30,fscal,fix3);
657             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
658             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
659             
660             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
661             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
662             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
663
664             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
665
666             /* Inner loop uses 185 flops */
667         }
668
669         /* End of innermost loop */
670
671         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
672                                               f+i_coord_offset,fshift+i_shift_offset);
673
674         ggid                        = gid[iidx];
675         /* Update potential energies */
676         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
677         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
678
679         /* Increment number of inner iterations */
680         inneriter                  += j_index_end - j_index_start;
681
682         /* Outer loop uses 26 flops */
683     }
684
685     /* Increment number of outer iterations */
686     outeriter        += nri;
687
688     /* Update outer/inner flops */
689
690     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
691 }
692 /*
693  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
694  * Electrostatics interaction: Ewald
695  * VdW interaction:            LJEwald
696  * Geometry:                   Water4-Particle
697  * Calculate force/pot:        Force
698  */
699 void
700 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
701                     (t_nblist                    * gmx_restrict       nlist,
702                      rvec                        * gmx_restrict          xx,
703                      rvec                        * gmx_restrict          ff,
704                      struct t_forcerec           * gmx_restrict          fr,
705                      t_mdatoms                   * gmx_restrict     mdatoms,
706                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
707                      t_nrnb                      * gmx_restrict        nrnb)
708 {
709     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
710      * just 0 for non-waters.
711      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
712      * jnr indices corresponding to data put in the four positions in the SIMD register.
713      */
714     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
715     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
716     int              jnrA,jnrB;
717     int              j_coord_offsetA,j_coord_offsetB;
718     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
719     real             rcutoff_scalar;
720     real             *shiftvec,*fshift,*x,*f;
721     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
722     int              vdwioffset0;
723     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
724     int              vdwioffset1;
725     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
726     int              vdwioffset2;
727     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
728     int              vdwioffset3;
729     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
730     int              vdwjidx0A,vdwjidx0B;
731     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
732     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
733     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
734     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
735     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
736     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
737     real             *charge;
738     int              nvdwtype;
739     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
740     int              *vdwtype;
741     real             *vdwparam;
742     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
743     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
744     __m128d           c6grid_00;
745     __m128d           c6grid_10;
746     __m128d           c6grid_20;
747     __m128d           c6grid_30;
748     real             *vdwgridparam;
749     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
750     __m128d           one_half  = _mm_set1_pd(0.5);
751     __m128d           minus_one = _mm_set1_pd(-1.0);
752     __m128i          ewitab;
753     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
754     real             *ewtab;
755     __m128d          dummy_mask,cutoff_mask;
756     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
757     __m128d          one     = _mm_set1_pd(1.0);
758     __m128d          two     = _mm_set1_pd(2.0);
759     x                = xx[0];
760     f                = ff[0];
761
762     nri              = nlist->nri;
763     iinr             = nlist->iinr;
764     jindex           = nlist->jindex;
765     jjnr             = nlist->jjnr;
766     shiftidx         = nlist->shift;
767     gid              = nlist->gid;
768     shiftvec         = fr->shift_vec[0];
769     fshift           = fr->fshift[0];
770     facel            = _mm_set1_pd(fr->ic->epsfac);
771     charge           = mdatoms->chargeA;
772     nvdwtype         = fr->ntype;
773     vdwparam         = fr->nbfp;
774     vdwtype          = mdatoms->typeA;
775     vdwgridparam     = fr->ljpme_c6grid;
776     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
777     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
778     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
779
780     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
781     ewtab            = fr->ic->tabq_coul_F;
782     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
783     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
784
785     /* Setup water-specific parameters */
786     inr              = nlist->iinr[0];
787     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
788     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
789     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
790     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
791
792     /* Avoid stupid compiler warnings */
793     jnrA = jnrB = 0;
794     j_coord_offsetA = 0;
795     j_coord_offsetB = 0;
796
797     outeriter        = 0;
798     inneriter        = 0;
799
800     /* Start outer loop over neighborlists */
801     for(iidx=0; iidx<nri; iidx++)
802     {
803         /* Load shift vector for this list */
804         i_shift_offset   = DIM*shiftidx[iidx];
805
806         /* Load limits for loop over neighbors */
807         j_index_start    = jindex[iidx];
808         j_index_end      = jindex[iidx+1];
809
810         /* Get outer coordinate index */
811         inr              = iinr[iidx];
812         i_coord_offset   = DIM*inr;
813
814         /* Load i particle coords and add shift vector */
815         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
816                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
817
818         fix0             = _mm_setzero_pd();
819         fiy0             = _mm_setzero_pd();
820         fiz0             = _mm_setzero_pd();
821         fix1             = _mm_setzero_pd();
822         fiy1             = _mm_setzero_pd();
823         fiz1             = _mm_setzero_pd();
824         fix2             = _mm_setzero_pd();
825         fiy2             = _mm_setzero_pd();
826         fiz2             = _mm_setzero_pd();
827         fix3             = _mm_setzero_pd();
828         fiy3             = _mm_setzero_pd();
829         fiz3             = _mm_setzero_pd();
830
831         /* Start inner kernel loop */
832         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
833         {
834
835             /* Get j neighbor index, and coordinate index */
836             jnrA             = jjnr[jidx];
837             jnrB             = jjnr[jidx+1];
838             j_coord_offsetA  = DIM*jnrA;
839             j_coord_offsetB  = DIM*jnrB;
840
841             /* load j atom coordinates */
842             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
843                                               &jx0,&jy0,&jz0);
844
845             /* Calculate displacement vector */
846             dx00             = _mm_sub_pd(ix0,jx0);
847             dy00             = _mm_sub_pd(iy0,jy0);
848             dz00             = _mm_sub_pd(iz0,jz0);
849             dx10             = _mm_sub_pd(ix1,jx0);
850             dy10             = _mm_sub_pd(iy1,jy0);
851             dz10             = _mm_sub_pd(iz1,jz0);
852             dx20             = _mm_sub_pd(ix2,jx0);
853             dy20             = _mm_sub_pd(iy2,jy0);
854             dz20             = _mm_sub_pd(iz2,jz0);
855             dx30             = _mm_sub_pd(ix3,jx0);
856             dy30             = _mm_sub_pd(iy3,jy0);
857             dz30             = _mm_sub_pd(iz3,jz0);
858
859             /* Calculate squared distance and things based on it */
860             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
861             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
862             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
863             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
864
865             rinv00           = avx128fma_invsqrt_d(rsq00);
866             rinv10           = avx128fma_invsqrt_d(rsq10);
867             rinv20           = avx128fma_invsqrt_d(rsq20);
868             rinv30           = avx128fma_invsqrt_d(rsq30);
869
870             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
871             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
872             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
873             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
874
875             /* Load parameters for j particles */
876             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
877             vdwjidx0A        = 2*vdwtype[jnrA+0];
878             vdwjidx0B        = 2*vdwtype[jnrB+0];
879
880             fjx0             = _mm_setzero_pd();
881             fjy0             = _mm_setzero_pd();
882             fjz0             = _mm_setzero_pd();
883
884             /**************************
885              * CALCULATE INTERACTIONS *
886              **************************/
887
888             r00              = _mm_mul_pd(rsq00,rinv00);
889
890             /* Compute parameters for interactions between i and j atoms */
891             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
892                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
893             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
894                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
895
896             /* Analytical LJ-PME */
897             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
898             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
899             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
900             exponent         = avx128fma_exp_d(ewcljrsq);
901             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
902             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
903             /* f6A = 6 * C6grid * (1 - poly) */
904             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
905             /* f6B = C6grid * exponent * beta^6 */
906             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
907             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
908             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
909
910             fscal            = fvdw;
911
912             /* Update vectorial force */
913             fix0             = _mm_macc_pd(dx00,fscal,fix0);
914             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
915             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
916             
917             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
918             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
919             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r10              = _mm_mul_pd(rsq10,rinv10);
926
927             /* Compute parameters for interactions between i and j atoms */
928             qq10             = _mm_mul_pd(iq1,jq0);
929
930             /* EWALD ELECTROSTATICS */
931
932             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
933             ewrt             = _mm_mul_pd(r10,ewtabscale);
934             ewitab           = _mm_cvttpd_epi32(ewrt);
935 #ifdef __XOP__
936             eweps            = _mm_frcz_pd(ewrt);
937 #else
938             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
939 #endif
940             twoeweps         = _mm_add_pd(eweps,eweps);
941             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
942                                          &ewtabF,&ewtabFn);
943             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
944             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
945
946             fscal            = felec;
947
948             /* Update vectorial force */
949             fix1             = _mm_macc_pd(dx10,fscal,fix1);
950             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
951             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
952             
953             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
954             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
955             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             r20              = _mm_mul_pd(rsq20,rinv20);
962
963             /* Compute parameters for interactions between i and j atoms */
964             qq20             = _mm_mul_pd(iq2,jq0);
965
966             /* EWALD ELECTROSTATICS */
967
968             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
969             ewrt             = _mm_mul_pd(r20,ewtabscale);
970             ewitab           = _mm_cvttpd_epi32(ewrt);
971 #ifdef __XOP__
972             eweps            = _mm_frcz_pd(ewrt);
973 #else
974             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
975 #endif
976             twoeweps         = _mm_add_pd(eweps,eweps);
977             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
978                                          &ewtabF,&ewtabFn);
979             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
980             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
981
982             fscal            = felec;
983
984             /* Update vectorial force */
985             fix2             = _mm_macc_pd(dx20,fscal,fix2);
986             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
987             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
988             
989             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
990             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
991             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             r30              = _mm_mul_pd(rsq30,rinv30);
998
999             /* Compute parameters for interactions between i and j atoms */
1000             qq30             = _mm_mul_pd(iq3,jq0);
1001
1002             /* EWALD ELECTROSTATICS */
1003
1004             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1005             ewrt             = _mm_mul_pd(r30,ewtabscale);
1006             ewitab           = _mm_cvttpd_epi32(ewrt);
1007 #ifdef __XOP__
1008             eweps            = _mm_frcz_pd(ewrt);
1009 #else
1010             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1011 #endif
1012             twoeweps         = _mm_add_pd(eweps,eweps);
1013             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1014                                          &ewtabF,&ewtabFn);
1015             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1016             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1017
1018             fscal            = felec;
1019
1020             /* Update vectorial force */
1021             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1022             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1023             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1024             
1025             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1026             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1027             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1028
1029             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1030
1031             /* Inner loop uses 167 flops */
1032         }
1033
1034         if(jidx<j_index_end)
1035         {
1036
1037             jnrA             = jjnr[jidx];
1038             j_coord_offsetA  = DIM*jnrA;
1039
1040             /* load j atom coordinates */
1041             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1042                                               &jx0,&jy0,&jz0);
1043
1044             /* Calculate displacement vector */
1045             dx00             = _mm_sub_pd(ix0,jx0);
1046             dy00             = _mm_sub_pd(iy0,jy0);
1047             dz00             = _mm_sub_pd(iz0,jz0);
1048             dx10             = _mm_sub_pd(ix1,jx0);
1049             dy10             = _mm_sub_pd(iy1,jy0);
1050             dz10             = _mm_sub_pd(iz1,jz0);
1051             dx20             = _mm_sub_pd(ix2,jx0);
1052             dy20             = _mm_sub_pd(iy2,jy0);
1053             dz20             = _mm_sub_pd(iz2,jz0);
1054             dx30             = _mm_sub_pd(ix3,jx0);
1055             dy30             = _mm_sub_pd(iy3,jy0);
1056             dz30             = _mm_sub_pd(iz3,jz0);
1057
1058             /* Calculate squared distance and things based on it */
1059             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1060             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1061             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1062             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1063
1064             rinv00           = avx128fma_invsqrt_d(rsq00);
1065             rinv10           = avx128fma_invsqrt_d(rsq10);
1066             rinv20           = avx128fma_invsqrt_d(rsq20);
1067             rinv30           = avx128fma_invsqrt_d(rsq30);
1068
1069             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1070             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1071             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1072             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1073
1074             /* Load parameters for j particles */
1075             jq0              = _mm_load_sd(charge+jnrA+0);
1076             vdwjidx0A        = 2*vdwtype[jnrA+0];
1077
1078             fjx0             = _mm_setzero_pd();
1079             fjy0             = _mm_setzero_pd();
1080             fjz0             = _mm_setzero_pd();
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             r00              = _mm_mul_pd(rsq00,rinv00);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1090             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1091
1092             /* Analytical LJ-PME */
1093             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1094             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1095             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1096             exponent         = avx128fma_exp_d(ewcljrsq);
1097             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1098             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1099             /* f6A = 6 * C6grid * (1 - poly) */
1100             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1101             /* f6B = C6grid * exponent * beta^6 */
1102             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1103             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1104             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1105
1106             fscal            = fvdw;
1107
1108             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1109
1110             /* Update vectorial force */
1111             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1112             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1113             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1114             
1115             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1116             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1117             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             r10              = _mm_mul_pd(rsq10,rinv10);
1124
1125             /* Compute parameters for interactions between i and j atoms */
1126             qq10             = _mm_mul_pd(iq1,jq0);
1127
1128             /* EWALD ELECTROSTATICS */
1129
1130             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1131             ewrt             = _mm_mul_pd(r10,ewtabscale);
1132             ewitab           = _mm_cvttpd_epi32(ewrt);
1133 #ifdef __XOP__
1134             eweps            = _mm_frcz_pd(ewrt);
1135 #else
1136             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1137 #endif
1138             twoeweps         = _mm_add_pd(eweps,eweps);
1139             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1140             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1141             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1142
1143             fscal            = felec;
1144
1145             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1146
1147             /* Update vectorial force */
1148             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1149             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1150             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1151             
1152             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1153             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1154             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             r20              = _mm_mul_pd(rsq20,rinv20);
1161
1162             /* Compute parameters for interactions between i and j atoms */
1163             qq20             = _mm_mul_pd(iq2,jq0);
1164
1165             /* EWALD ELECTROSTATICS */
1166
1167             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168             ewrt             = _mm_mul_pd(r20,ewtabscale);
1169             ewitab           = _mm_cvttpd_epi32(ewrt);
1170 #ifdef __XOP__
1171             eweps            = _mm_frcz_pd(ewrt);
1172 #else
1173             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1174 #endif
1175             twoeweps         = _mm_add_pd(eweps,eweps);
1176             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1177             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1178             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1183
1184             /* Update vectorial force */
1185             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1186             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1187             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1188             
1189             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1190             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1191             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             r30              = _mm_mul_pd(rsq30,rinv30);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq30             = _mm_mul_pd(iq3,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_pd(r30,ewtabscale);
1206             ewitab           = _mm_cvttpd_epi32(ewrt);
1207 #ifdef __XOP__
1208             eweps            = _mm_frcz_pd(ewrt);
1209 #else
1210             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1211 #endif
1212             twoeweps         = _mm_add_pd(eweps,eweps);
1213             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1214             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1215             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1220
1221             /* Update vectorial force */
1222             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1223             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1224             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1225             
1226             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1227             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1228             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1229
1230             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1231
1232             /* Inner loop uses 167 flops */
1233         }
1234
1235         /* End of innermost loop */
1236
1237         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1238                                               f+i_coord_offset,fshift+i_shift_offset);
1239
1240         /* Increment number of inner iterations */
1241         inneriter                  += j_index_end - j_index_start;
1242
1243         /* Outer loop uses 24 flops */
1244     }
1245
1246     /* Increment number of outer iterations */
1247     outeriter        += nri;
1248
1249     /* Update outer/inner flops */
1250
1251     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*167);
1252 }