Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128d           c6grid_00;
103     __m128d           c6grid_10;
104     __m128d           c6grid_20;
105     __m128d           c6grid_30;
106     real             *vdwgridparam;
107     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108     __m128d           one_half  = _mm_set1_pd(0.5);
109     __m128d           minus_one = _mm_set1_pd(-1.0);
110     __m128i          ewitab;
111     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
112     real             *ewtab;
113     __m128d          dummy_mask,cutoff_mask;
114     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
115     __m128d          one     = _mm_set1_pd(1.0);
116     __m128d          two     = _mm_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133     vdwgridparam     = fr->ljpme_c6grid;
134     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
135     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
136     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
137
138     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
139     ewtab            = fr->ic->tabq_coul_FDV0;
140     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
141     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
142
143     /* Setup water-specific parameters */
144     inr              = nlist->iinr[0];
145     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
146     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
147     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
148     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_pd();
177         fiy0             = _mm_setzero_pd();
178         fiz0             = _mm_setzero_pd();
179         fix1             = _mm_setzero_pd();
180         fiy1             = _mm_setzero_pd();
181         fiz1             = _mm_setzero_pd();
182         fix2             = _mm_setzero_pd();
183         fiy2             = _mm_setzero_pd();
184         fiz2             = _mm_setzero_pd();
185         fix3             = _mm_setzero_pd();
186         fiy3             = _mm_setzero_pd();
187         fiz3             = _mm_setzero_pd();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_pd();
191         vvdwsum          = _mm_setzero_pd();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_pd(ix0,jx0);
209             dy00             = _mm_sub_pd(iy0,jy0);
210             dz00             = _mm_sub_pd(iz0,jz0);
211             dx10             = _mm_sub_pd(ix1,jx0);
212             dy10             = _mm_sub_pd(iy1,jy0);
213             dz10             = _mm_sub_pd(iz1,jz0);
214             dx20             = _mm_sub_pd(ix2,jx0);
215             dy20             = _mm_sub_pd(iy2,jy0);
216             dz20             = _mm_sub_pd(iz2,jz0);
217             dx30             = _mm_sub_pd(ix3,jx0);
218             dy30             = _mm_sub_pd(iy3,jy0);
219             dz30             = _mm_sub_pd(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
225             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
226
227             rinv00           = gmx_mm_invsqrt_pd(rsq00);
228             rinv10           = gmx_mm_invsqrt_pd(rsq10);
229             rinv20           = gmx_mm_invsqrt_pd(rsq20);
230             rinv30           = gmx_mm_invsqrt_pd(rsq30);
231
232             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
233             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
234             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
235             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241
242             fjx0             = _mm_setzero_pd();
243             fjy0             = _mm_setzero_pd();
244             fjz0             = _mm_setzero_pd();
245
246             /**************************
247              * CALCULATE INTERACTIONS *
248              **************************/
249
250             r00              = _mm_mul_pd(rsq00,rinv00);
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
255             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
256                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
257
258             /* Analytical LJ-PME */
259             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
260             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
261             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
262             exponent         = gmx_simd_exp_d(ewcljrsq);
263             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
264             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
265             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
266             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
267             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
269             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
270             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
274
275             fscal            = fvdw;
276
277             /* Update vectorial force */
278             fix0             = _mm_macc_pd(dx00,fscal,fix0);
279             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
280             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
281             
282             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
283             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
284             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             r10              = _mm_mul_pd(rsq10,rinv10);
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq10             = _mm_mul_pd(iq1,jq0);
294
295             /* EWALD ELECTROSTATICS */
296
297             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
298             ewrt             = _mm_mul_pd(r10,ewtabscale);
299             ewitab           = _mm_cvttpd_epi32(ewrt);
300 #ifdef __XOP__
301             eweps            = _mm_frcz_pd(ewrt);
302 #else
303             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
304 #endif
305             twoeweps         = _mm_add_pd(eweps,eweps);
306             ewitab           = _mm_slli_epi32(ewitab,2);
307             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
308             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
309             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
310             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
311             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
312             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
313             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
314             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
315             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
316             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
317
318             /* Update potential sum for this i atom from the interaction with this j atom. */
319             velecsum         = _mm_add_pd(velecsum,velec);
320
321             fscal            = felec;
322
323             /* Update vectorial force */
324             fix1             = _mm_macc_pd(dx10,fscal,fix1);
325             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
326             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
327             
328             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
329             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
330             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             r20              = _mm_mul_pd(rsq20,rinv20);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_pd(iq2,jq0);
340
341             /* EWALD ELECTROSTATICS */
342
343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344             ewrt             = _mm_mul_pd(r20,ewtabscale);
345             ewitab           = _mm_cvttpd_epi32(ewrt);
346 #ifdef __XOP__
347             eweps            = _mm_frcz_pd(ewrt);
348 #else
349             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
350 #endif
351             twoeweps         = _mm_add_pd(eweps,eweps);
352             ewitab           = _mm_slli_epi32(ewitab,2);
353             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
354             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
355             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
356             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
357             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
358             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
359             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
360             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
361             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
362             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
363
364             /* Update potential sum for this i atom from the interaction with this j atom. */
365             velecsum         = _mm_add_pd(velecsum,velec);
366
367             fscal            = felec;
368
369             /* Update vectorial force */
370             fix2             = _mm_macc_pd(dx20,fscal,fix2);
371             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
372             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
373             
374             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
375             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
376             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r30              = _mm_mul_pd(rsq30,rinv30);
383
384             /* Compute parameters for interactions between i and j atoms */
385             qq30             = _mm_mul_pd(iq3,jq0);
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = _mm_mul_pd(r30,ewtabscale);
391             ewitab           = _mm_cvttpd_epi32(ewrt);
392 #ifdef __XOP__
393             eweps            = _mm_frcz_pd(ewrt);
394 #else
395             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
396 #endif
397             twoeweps         = _mm_add_pd(eweps,eweps);
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
401             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
402             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
403             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
404             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
405             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
406             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
407             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
408             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
409
410             /* Update potential sum for this i atom from the interaction with this j atom. */
411             velecsum         = _mm_add_pd(velecsum,velec);
412
413             fscal            = felec;
414
415             /* Update vectorial force */
416             fix3             = _mm_macc_pd(dx30,fscal,fix3);
417             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
418             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
419             
420             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
421             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
422             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
423
424             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
425
426             /* Inner loop uses 185 flops */
427         }
428
429         if(jidx<j_index_end)
430         {
431
432             jnrA             = jjnr[jidx];
433             j_coord_offsetA  = DIM*jnrA;
434
435             /* load j atom coordinates */
436             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
437                                               &jx0,&jy0,&jz0);
438
439             /* Calculate displacement vector */
440             dx00             = _mm_sub_pd(ix0,jx0);
441             dy00             = _mm_sub_pd(iy0,jy0);
442             dz00             = _mm_sub_pd(iz0,jz0);
443             dx10             = _mm_sub_pd(ix1,jx0);
444             dy10             = _mm_sub_pd(iy1,jy0);
445             dz10             = _mm_sub_pd(iz1,jz0);
446             dx20             = _mm_sub_pd(ix2,jx0);
447             dy20             = _mm_sub_pd(iy2,jy0);
448             dz20             = _mm_sub_pd(iz2,jz0);
449             dx30             = _mm_sub_pd(ix3,jx0);
450             dy30             = _mm_sub_pd(iy3,jy0);
451             dz30             = _mm_sub_pd(iz3,jz0);
452
453             /* Calculate squared distance and things based on it */
454             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
455             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
456             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
457             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
458
459             rinv00           = gmx_mm_invsqrt_pd(rsq00);
460             rinv10           = gmx_mm_invsqrt_pd(rsq10);
461             rinv20           = gmx_mm_invsqrt_pd(rsq20);
462             rinv30           = gmx_mm_invsqrt_pd(rsq30);
463
464             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
465             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
466             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
467             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
468
469             /* Load parameters for j particles */
470             jq0              = _mm_load_sd(charge+jnrA+0);
471             vdwjidx0A        = 2*vdwtype[jnrA+0];
472
473             fjx0             = _mm_setzero_pd();
474             fjy0             = _mm_setzero_pd();
475             fjz0             = _mm_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             r00              = _mm_mul_pd(rsq00,rinv00);
482
483             /* Compute parameters for interactions between i and j atoms */
484             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
485             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
486
487             /* Analytical LJ-PME */
488             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
489             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
490             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
491             exponent         = gmx_simd_exp_d(ewcljrsq);
492             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
493             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
494             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
495             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
496             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
497             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
498             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
499             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
500
501             /* Update potential sum for this i atom from the interaction with this j atom. */
502             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
503             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
504
505             fscal            = fvdw;
506
507             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
508
509             /* Update vectorial force */
510             fix0             = _mm_macc_pd(dx00,fscal,fix0);
511             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
512             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
513             
514             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
515             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
516             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
517
518             /**************************
519              * CALCULATE INTERACTIONS *
520              **************************/
521
522             r10              = _mm_mul_pd(rsq10,rinv10);
523
524             /* Compute parameters for interactions between i and j atoms */
525             qq10             = _mm_mul_pd(iq1,jq0);
526
527             /* EWALD ELECTROSTATICS */
528
529             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
530             ewrt             = _mm_mul_pd(r10,ewtabscale);
531             ewitab           = _mm_cvttpd_epi32(ewrt);
532 #ifdef __XOP__
533             eweps            = _mm_frcz_pd(ewrt);
534 #else
535             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
536 #endif
537             twoeweps         = _mm_add_pd(eweps,eweps);
538             ewitab           = _mm_slli_epi32(ewitab,2);
539             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
540             ewtabD           = _mm_setzero_pd();
541             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
542             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
543             ewtabFn          = _mm_setzero_pd();
544             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
545             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
546             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
547             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
548             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
552             velecsum         = _mm_add_pd(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
557
558             /* Update vectorial force */
559             fix1             = _mm_macc_pd(dx10,fscal,fix1);
560             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
561             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
562             
563             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
564             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
565             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
566
567             /**************************
568              * CALCULATE INTERACTIONS *
569              **************************/
570
571             r20              = _mm_mul_pd(rsq20,rinv20);
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq20             = _mm_mul_pd(iq2,jq0);
575
576             /* EWALD ELECTROSTATICS */
577
578             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
579             ewrt             = _mm_mul_pd(r20,ewtabscale);
580             ewitab           = _mm_cvttpd_epi32(ewrt);
581 #ifdef __XOP__
582             eweps            = _mm_frcz_pd(ewrt);
583 #else
584             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
585 #endif
586             twoeweps         = _mm_add_pd(eweps,eweps);
587             ewitab           = _mm_slli_epi32(ewitab,2);
588             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
589             ewtabD           = _mm_setzero_pd();
590             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
591             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
592             ewtabFn          = _mm_setzero_pd();
593             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
594             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
595             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
596             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
597             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
598
599             /* Update potential sum for this i atom from the interaction with this j atom. */
600             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
601             velecsum         = _mm_add_pd(velecsum,velec);
602
603             fscal            = felec;
604
605             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
606
607             /* Update vectorial force */
608             fix2             = _mm_macc_pd(dx20,fscal,fix2);
609             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
610             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
611             
612             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
613             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
614             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             r30              = _mm_mul_pd(rsq30,rinv30);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq30             = _mm_mul_pd(iq3,jq0);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_pd(r30,ewtabscale);
629             ewitab           = _mm_cvttpd_epi32(ewrt);
630 #ifdef __XOP__
631             eweps            = _mm_frcz_pd(ewrt);
632 #else
633             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
634 #endif
635             twoeweps         = _mm_add_pd(eweps,eweps);
636             ewitab           = _mm_slli_epi32(ewitab,2);
637             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
638             ewtabD           = _mm_setzero_pd();
639             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
640             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
641             ewtabFn          = _mm_setzero_pd();
642             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
643             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
644             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
645             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
646             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
650             velecsum         = _mm_add_pd(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
655
656             /* Update vectorial force */
657             fix3             = _mm_macc_pd(dx30,fscal,fix3);
658             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
659             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
660             
661             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
662             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
663             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
664
665             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
666
667             /* Inner loop uses 185 flops */
668         }
669
670         /* End of innermost loop */
671
672         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
673                                               f+i_coord_offset,fshift+i_shift_offset);
674
675         ggid                        = gid[iidx];
676         /* Update potential energies */
677         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
678         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
679
680         /* Increment number of inner iterations */
681         inneriter                  += j_index_end - j_index_start;
682
683         /* Outer loop uses 26 flops */
684     }
685
686     /* Increment number of outer iterations */
687     outeriter        += nri;
688
689     /* Update outer/inner flops */
690
691     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
692 }
693 /*
694  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
695  * Electrostatics interaction: Ewald
696  * VdW interaction:            LJEwald
697  * Geometry:                   Water4-Particle
698  * Calculate force/pot:        Force
699  */
700 void
701 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
702                     (t_nblist                    * gmx_restrict       nlist,
703                      rvec                        * gmx_restrict          xx,
704                      rvec                        * gmx_restrict          ff,
705                      t_forcerec                  * gmx_restrict          fr,
706                      t_mdatoms                   * gmx_restrict     mdatoms,
707                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
708                      t_nrnb                      * gmx_restrict        nrnb)
709 {
710     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
711      * just 0 for non-waters.
712      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
713      * jnr indices corresponding to data put in the four positions in the SIMD register.
714      */
715     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
716     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
717     int              jnrA,jnrB;
718     int              j_coord_offsetA,j_coord_offsetB;
719     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
720     real             rcutoff_scalar;
721     real             *shiftvec,*fshift,*x,*f;
722     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
723     int              vdwioffset0;
724     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
725     int              vdwioffset1;
726     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
727     int              vdwioffset2;
728     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
729     int              vdwioffset3;
730     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
731     int              vdwjidx0A,vdwjidx0B;
732     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
733     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
734     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
735     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
736     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
737     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
738     real             *charge;
739     int              nvdwtype;
740     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
741     int              *vdwtype;
742     real             *vdwparam;
743     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
744     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
745     __m128d           c6grid_00;
746     __m128d           c6grid_10;
747     __m128d           c6grid_20;
748     __m128d           c6grid_30;
749     real             *vdwgridparam;
750     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
751     __m128d           one_half  = _mm_set1_pd(0.5);
752     __m128d           minus_one = _mm_set1_pd(-1.0);
753     __m128i          ewitab;
754     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
755     real             *ewtab;
756     __m128d          dummy_mask,cutoff_mask;
757     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
758     __m128d          one     = _mm_set1_pd(1.0);
759     __m128d          two     = _mm_set1_pd(2.0);
760     x                = xx[0];
761     f                = ff[0];
762
763     nri              = nlist->nri;
764     iinr             = nlist->iinr;
765     jindex           = nlist->jindex;
766     jjnr             = nlist->jjnr;
767     shiftidx         = nlist->shift;
768     gid              = nlist->gid;
769     shiftvec         = fr->shift_vec[0];
770     fshift           = fr->fshift[0];
771     facel            = _mm_set1_pd(fr->epsfac);
772     charge           = mdatoms->chargeA;
773     nvdwtype         = fr->ntype;
774     vdwparam         = fr->nbfp;
775     vdwtype          = mdatoms->typeA;
776     vdwgridparam     = fr->ljpme_c6grid;
777     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
778     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
779     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
780
781     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
782     ewtab            = fr->ic->tabq_coul_F;
783     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
784     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
785
786     /* Setup water-specific parameters */
787     inr              = nlist->iinr[0];
788     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
789     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
790     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
791     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
792
793     /* Avoid stupid compiler warnings */
794     jnrA = jnrB = 0;
795     j_coord_offsetA = 0;
796     j_coord_offsetB = 0;
797
798     outeriter        = 0;
799     inneriter        = 0;
800
801     /* Start outer loop over neighborlists */
802     for(iidx=0; iidx<nri; iidx++)
803     {
804         /* Load shift vector for this list */
805         i_shift_offset   = DIM*shiftidx[iidx];
806
807         /* Load limits for loop over neighbors */
808         j_index_start    = jindex[iidx];
809         j_index_end      = jindex[iidx+1];
810
811         /* Get outer coordinate index */
812         inr              = iinr[iidx];
813         i_coord_offset   = DIM*inr;
814
815         /* Load i particle coords and add shift vector */
816         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
817                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
818
819         fix0             = _mm_setzero_pd();
820         fiy0             = _mm_setzero_pd();
821         fiz0             = _mm_setzero_pd();
822         fix1             = _mm_setzero_pd();
823         fiy1             = _mm_setzero_pd();
824         fiz1             = _mm_setzero_pd();
825         fix2             = _mm_setzero_pd();
826         fiy2             = _mm_setzero_pd();
827         fiz2             = _mm_setzero_pd();
828         fix3             = _mm_setzero_pd();
829         fiy3             = _mm_setzero_pd();
830         fiz3             = _mm_setzero_pd();
831
832         /* Start inner kernel loop */
833         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrA             = jjnr[jidx];
838             jnrB             = jjnr[jidx+1];
839             j_coord_offsetA  = DIM*jnrA;
840             j_coord_offsetB  = DIM*jnrB;
841
842             /* load j atom coordinates */
843             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
844                                               &jx0,&jy0,&jz0);
845
846             /* Calculate displacement vector */
847             dx00             = _mm_sub_pd(ix0,jx0);
848             dy00             = _mm_sub_pd(iy0,jy0);
849             dz00             = _mm_sub_pd(iz0,jz0);
850             dx10             = _mm_sub_pd(ix1,jx0);
851             dy10             = _mm_sub_pd(iy1,jy0);
852             dz10             = _mm_sub_pd(iz1,jz0);
853             dx20             = _mm_sub_pd(ix2,jx0);
854             dy20             = _mm_sub_pd(iy2,jy0);
855             dz20             = _mm_sub_pd(iz2,jz0);
856             dx30             = _mm_sub_pd(ix3,jx0);
857             dy30             = _mm_sub_pd(iy3,jy0);
858             dz30             = _mm_sub_pd(iz3,jz0);
859
860             /* Calculate squared distance and things based on it */
861             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
862             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
863             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
864             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
865
866             rinv00           = gmx_mm_invsqrt_pd(rsq00);
867             rinv10           = gmx_mm_invsqrt_pd(rsq10);
868             rinv20           = gmx_mm_invsqrt_pd(rsq20);
869             rinv30           = gmx_mm_invsqrt_pd(rsq30);
870
871             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
872             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
873             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
874             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
875
876             /* Load parameters for j particles */
877             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
878             vdwjidx0A        = 2*vdwtype[jnrA+0];
879             vdwjidx0B        = 2*vdwtype[jnrB+0];
880
881             fjx0             = _mm_setzero_pd();
882             fjy0             = _mm_setzero_pd();
883             fjz0             = _mm_setzero_pd();
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r00              = _mm_mul_pd(rsq00,rinv00);
890
891             /* Compute parameters for interactions between i and j atoms */
892             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
893                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
894             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
895                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
896
897             /* Analytical LJ-PME */
898             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
899             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
900             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
901             exponent         = gmx_simd_exp_d(ewcljrsq);
902             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
903             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
904             /* f6A = 6 * C6grid * (1 - poly) */
905             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
906             /* f6B = C6grid * exponent * beta^6 */
907             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
908             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
909             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
910
911             fscal            = fvdw;
912
913             /* Update vectorial force */
914             fix0             = _mm_macc_pd(dx00,fscal,fix0);
915             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
916             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
917             
918             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
919             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
920             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             r10              = _mm_mul_pd(rsq10,rinv10);
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq10             = _mm_mul_pd(iq1,jq0);
930
931             /* EWALD ELECTROSTATICS */
932
933             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
934             ewrt             = _mm_mul_pd(r10,ewtabscale);
935             ewitab           = _mm_cvttpd_epi32(ewrt);
936 #ifdef __XOP__
937             eweps            = _mm_frcz_pd(ewrt);
938 #else
939             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
940 #endif
941             twoeweps         = _mm_add_pd(eweps,eweps);
942             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
943                                          &ewtabF,&ewtabFn);
944             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
945             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
946
947             fscal            = felec;
948
949             /* Update vectorial force */
950             fix1             = _mm_macc_pd(dx10,fscal,fix1);
951             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
952             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
953             
954             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
955             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
956             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             r20              = _mm_mul_pd(rsq20,rinv20);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm_mul_pd(iq2,jq0);
966
967             /* EWALD ELECTROSTATICS */
968
969             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
970             ewrt             = _mm_mul_pd(r20,ewtabscale);
971             ewitab           = _mm_cvttpd_epi32(ewrt);
972 #ifdef __XOP__
973             eweps            = _mm_frcz_pd(ewrt);
974 #else
975             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
976 #endif
977             twoeweps         = _mm_add_pd(eweps,eweps);
978             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
979                                          &ewtabF,&ewtabFn);
980             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
981             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
982
983             fscal            = felec;
984
985             /* Update vectorial force */
986             fix2             = _mm_macc_pd(dx20,fscal,fix2);
987             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
988             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
989             
990             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
991             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
992             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
993
994             /**************************
995              * CALCULATE INTERACTIONS *
996              **************************/
997
998             r30              = _mm_mul_pd(rsq30,rinv30);
999
1000             /* Compute parameters for interactions between i and j atoms */
1001             qq30             = _mm_mul_pd(iq3,jq0);
1002
1003             /* EWALD ELECTROSTATICS */
1004
1005             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1006             ewrt             = _mm_mul_pd(r30,ewtabscale);
1007             ewitab           = _mm_cvttpd_epi32(ewrt);
1008 #ifdef __XOP__
1009             eweps            = _mm_frcz_pd(ewrt);
1010 #else
1011             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1012 #endif
1013             twoeweps         = _mm_add_pd(eweps,eweps);
1014             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1015                                          &ewtabF,&ewtabFn);
1016             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1017             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1018
1019             fscal            = felec;
1020
1021             /* Update vectorial force */
1022             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1023             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1024             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1025             
1026             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1027             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1028             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1029
1030             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1031
1032             /* Inner loop uses 167 flops */
1033         }
1034
1035         if(jidx<j_index_end)
1036         {
1037
1038             jnrA             = jjnr[jidx];
1039             j_coord_offsetA  = DIM*jnrA;
1040
1041             /* load j atom coordinates */
1042             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1043                                               &jx0,&jy0,&jz0);
1044
1045             /* Calculate displacement vector */
1046             dx00             = _mm_sub_pd(ix0,jx0);
1047             dy00             = _mm_sub_pd(iy0,jy0);
1048             dz00             = _mm_sub_pd(iz0,jz0);
1049             dx10             = _mm_sub_pd(ix1,jx0);
1050             dy10             = _mm_sub_pd(iy1,jy0);
1051             dz10             = _mm_sub_pd(iz1,jz0);
1052             dx20             = _mm_sub_pd(ix2,jx0);
1053             dy20             = _mm_sub_pd(iy2,jy0);
1054             dz20             = _mm_sub_pd(iz2,jz0);
1055             dx30             = _mm_sub_pd(ix3,jx0);
1056             dy30             = _mm_sub_pd(iy3,jy0);
1057             dz30             = _mm_sub_pd(iz3,jz0);
1058
1059             /* Calculate squared distance and things based on it */
1060             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1061             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1062             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1063             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1064
1065             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1066             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1067             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1068             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1069
1070             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1071             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1072             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1073             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1074
1075             /* Load parameters for j particles */
1076             jq0              = _mm_load_sd(charge+jnrA+0);
1077             vdwjidx0A        = 2*vdwtype[jnrA+0];
1078
1079             fjx0             = _mm_setzero_pd();
1080             fjy0             = _mm_setzero_pd();
1081             fjz0             = _mm_setzero_pd();
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             r00              = _mm_mul_pd(rsq00,rinv00);
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1091             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1092
1093             /* Analytical LJ-PME */
1094             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1095             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1096             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1097             exponent         = gmx_simd_exp_d(ewcljrsq);
1098             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1099             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1100             /* f6A = 6 * C6grid * (1 - poly) */
1101             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1102             /* f6B = C6grid * exponent * beta^6 */
1103             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1104             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1105             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1106
1107             fscal            = fvdw;
1108
1109             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1110
1111             /* Update vectorial force */
1112             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1113             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1114             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1115             
1116             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1117             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1118             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1119
1120             /**************************
1121              * CALCULATE INTERACTIONS *
1122              **************************/
1123
1124             r10              = _mm_mul_pd(rsq10,rinv10);
1125
1126             /* Compute parameters for interactions between i and j atoms */
1127             qq10             = _mm_mul_pd(iq1,jq0);
1128
1129             /* EWALD ELECTROSTATICS */
1130
1131             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1132             ewrt             = _mm_mul_pd(r10,ewtabscale);
1133             ewitab           = _mm_cvttpd_epi32(ewrt);
1134 #ifdef __XOP__
1135             eweps            = _mm_frcz_pd(ewrt);
1136 #else
1137             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1138 #endif
1139             twoeweps         = _mm_add_pd(eweps,eweps);
1140             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1141             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1142             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1143
1144             fscal            = felec;
1145
1146             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1147
1148             /* Update vectorial force */
1149             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1150             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1151             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1152             
1153             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1154             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1155             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             r20              = _mm_mul_pd(rsq20,rinv20);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq20             = _mm_mul_pd(iq2,jq0);
1165
1166             /* EWALD ELECTROSTATICS */
1167
1168             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169             ewrt             = _mm_mul_pd(r20,ewtabscale);
1170             ewitab           = _mm_cvttpd_epi32(ewrt);
1171 #ifdef __XOP__
1172             eweps            = _mm_frcz_pd(ewrt);
1173 #else
1174             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1175 #endif
1176             twoeweps         = _mm_add_pd(eweps,eweps);
1177             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1178             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1179             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1184
1185             /* Update vectorial force */
1186             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1187             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1188             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1189             
1190             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1191             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1192             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1193
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             r30              = _mm_mul_pd(rsq30,rinv30);
1199
1200             /* Compute parameters for interactions between i and j atoms */
1201             qq30             = _mm_mul_pd(iq3,jq0);
1202
1203             /* EWALD ELECTROSTATICS */
1204
1205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1206             ewrt             = _mm_mul_pd(r30,ewtabscale);
1207             ewitab           = _mm_cvttpd_epi32(ewrt);
1208 #ifdef __XOP__
1209             eweps            = _mm_frcz_pd(ewrt);
1210 #else
1211             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1212 #endif
1213             twoeweps         = _mm_add_pd(eweps,eweps);
1214             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1215             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1216             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1217
1218             fscal            = felec;
1219
1220             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1221
1222             /* Update vectorial force */
1223             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1224             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1225             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1226             
1227             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1228             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1229             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1230
1231             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1232
1233             /* Inner loop uses 167 flops */
1234         }
1235
1236         /* End of innermost loop */
1237
1238         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1239                                               f+i_coord_offset,fshift+i_shift_offset);
1240
1241         /* Increment number of inner iterations */
1242         inneriter                  += j_index_end - j_index_start;
1243
1244         /* Outer loop uses 24 flops */
1245     }
1246
1247     /* Increment number of outer iterations */
1248     outeriter        += nri;
1249
1250     /* Update outer/inner flops */
1251
1252     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*167);
1253 }