Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128d           c6grid_00;
105     __m128d           c6grid_10;
106     __m128d           c6grid_20;
107     __m128d           c6grid_30;
108     real             *vdwgridparam;
109     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
110     __m128d           one_half  = _mm_set1_pd(0.5);
111     __m128d           minus_one = _mm_set1_pd(-1.0);
112     __m128i          ewitab;
113     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
114     real             *ewtab;
115     __m128d          dummy_mask,cutoff_mask;
116     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
117     __m128d          one     = _mm_set1_pd(1.0);
118     __m128d          two     = _mm_set1_pd(2.0);
119     x                = xx[0];
120     f                = ff[0];
121
122     nri              = nlist->nri;
123     iinr             = nlist->iinr;
124     jindex           = nlist->jindex;
125     jjnr             = nlist->jjnr;
126     shiftidx         = nlist->shift;
127     gid              = nlist->gid;
128     shiftvec         = fr->shift_vec[0];
129     fshift           = fr->fshift[0];
130     facel            = _mm_set1_pd(fr->epsfac);
131     charge           = mdatoms->chargeA;
132     nvdwtype         = fr->ntype;
133     vdwparam         = fr->nbfp;
134     vdwtype          = mdatoms->typeA;
135     vdwgridparam     = fr->ljpme_c6grid;
136     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
137     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
138     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
139
140     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
141     ewtab            = fr->ic->tabq_coul_FDV0;
142     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
143     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
144
145     /* Setup water-specific parameters */
146     inr              = nlist->iinr[0];
147     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
148     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
149     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
150     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_pd();
179         fiy0             = _mm_setzero_pd();
180         fiz0             = _mm_setzero_pd();
181         fix1             = _mm_setzero_pd();
182         fiy1             = _mm_setzero_pd();
183         fiz1             = _mm_setzero_pd();
184         fix2             = _mm_setzero_pd();
185         fiy2             = _mm_setzero_pd();
186         fiz2             = _mm_setzero_pd();
187         fix3             = _mm_setzero_pd();
188         fiy3             = _mm_setzero_pd();
189         fiz3             = _mm_setzero_pd();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_pd();
193         vvdwsum          = _mm_setzero_pd();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204
205             /* load j atom coordinates */
206             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_pd(ix0,jx0);
211             dy00             = _mm_sub_pd(iy0,jy0);
212             dz00             = _mm_sub_pd(iz0,jz0);
213             dx10             = _mm_sub_pd(ix1,jx0);
214             dy10             = _mm_sub_pd(iy1,jy0);
215             dz10             = _mm_sub_pd(iz1,jz0);
216             dx20             = _mm_sub_pd(ix2,jx0);
217             dy20             = _mm_sub_pd(iy2,jy0);
218             dz20             = _mm_sub_pd(iz2,jz0);
219             dx30             = _mm_sub_pd(ix3,jx0);
220             dy30             = _mm_sub_pd(iy3,jy0);
221             dz30             = _mm_sub_pd(iz3,jz0);
222
223             /* Calculate squared distance and things based on it */
224             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
225             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
226             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
227             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
228
229             rinv00           = gmx_mm_invsqrt_pd(rsq00);
230             rinv10           = gmx_mm_invsqrt_pd(rsq10);
231             rinv20           = gmx_mm_invsqrt_pd(rsq20);
232             rinv30           = gmx_mm_invsqrt_pd(rsq30);
233
234             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
235             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243
244             fjx0             = _mm_setzero_pd();
245             fjy0             = _mm_setzero_pd();
246             fjz0             = _mm_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
256                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
257             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
258                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
259
260             /* Analytical LJ-PME */
261             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
262             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
263             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
264             exponent         = gmx_simd_exp_d(ewcljrsq);
265             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
266             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
267             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
268             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
269             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
270             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
271             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
272             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
276
277             fscal            = fvdw;
278
279             /* Update vectorial force */
280             fix0             = _mm_macc_pd(dx00,fscal,fix0);
281             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
282             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
283             
284             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
285             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
286             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
287
288             /**************************
289              * CALCULATE INTERACTIONS *
290              **************************/
291
292             r10              = _mm_mul_pd(rsq10,rinv10);
293
294             /* Compute parameters for interactions between i and j atoms */
295             qq10             = _mm_mul_pd(iq1,jq0);
296
297             /* EWALD ELECTROSTATICS */
298
299             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
300             ewrt             = _mm_mul_pd(r10,ewtabscale);
301             ewitab           = _mm_cvttpd_epi32(ewrt);
302 #ifdef __XOP__
303             eweps            = _mm_frcz_pd(ewrt);
304 #else
305             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
306 #endif
307             twoeweps         = _mm_add_pd(eweps,eweps);
308             ewitab           = _mm_slli_epi32(ewitab,2);
309             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
310             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
311             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
312             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
313             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
314             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
315             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
316             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
317             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
318             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
319
320             /* Update potential sum for this i atom from the interaction with this j atom. */
321             velecsum         = _mm_add_pd(velecsum,velec);
322
323             fscal            = felec;
324
325             /* Update vectorial force */
326             fix1             = _mm_macc_pd(dx10,fscal,fix1);
327             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
328             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
329             
330             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
331             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
332             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r20              = _mm_mul_pd(rsq20,rinv20);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq20             = _mm_mul_pd(iq2,jq0);
342
343             /* EWALD ELECTROSTATICS */
344
345             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
346             ewrt             = _mm_mul_pd(r20,ewtabscale);
347             ewitab           = _mm_cvttpd_epi32(ewrt);
348 #ifdef __XOP__
349             eweps            = _mm_frcz_pd(ewrt);
350 #else
351             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
352 #endif
353             twoeweps         = _mm_add_pd(eweps,eweps);
354             ewitab           = _mm_slli_epi32(ewitab,2);
355             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
356             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
357             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
358             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
359             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
360             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
361             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
362             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
363             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
364             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velecsum         = _mm_add_pd(velecsum,velec);
368
369             fscal            = felec;
370
371             /* Update vectorial force */
372             fix2             = _mm_macc_pd(dx20,fscal,fix2);
373             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
374             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
375             
376             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
377             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
378             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             r30              = _mm_mul_pd(rsq30,rinv30);
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq30             = _mm_mul_pd(iq3,jq0);
388
389             /* EWALD ELECTROSTATICS */
390
391             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
392             ewrt             = _mm_mul_pd(r30,ewtabscale);
393             ewitab           = _mm_cvttpd_epi32(ewrt);
394 #ifdef __XOP__
395             eweps            = _mm_frcz_pd(ewrt);
396 #else
397             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
398 #endif
399             twoeweps         = _mm_add_pd(eweps,eweps);
400             ewitab           = _mm_slli_epi32(ewitab,2);
401             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
402             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
403             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
404             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
405             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
406             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
407             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
408             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
409             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
410             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
411
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velecsum         = _mm_add_pd(velecsum,velec);
414
415             fscal            = felec;
416
417             /* Update vectorial force */
418             fix3             = _mm_macc_pd(dx30,fscal,fix3);
419             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
420             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
421             
422             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
423             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
424             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
425
426             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
427
428             /* Inner loop uses 185 flops */
429         }
430
431         if(jidx<j_index_end)
432         {
433
434             jnrA             = jjnr[jidx];
435             j_coord_offsetA  = DIM*jnrA;
436
437             /* load j atom coordinates */
438             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
439                                               &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm_sub_pd(ix0,jx0);
443             dy00             = _mm_sub_pd(iy0,jy0);
444             dz00             = _mm_sub_pd(iz0,jz0);
445             dx10             = _mm_sub_pd(ix1,jx0);
446             dy10             = _mm_sub_pd(iy1,jy0);
447             dz10             = _mm_sub_pd(iz1,jz0);
448             dx20             = _mm_sub_pd(ix2,jx0);
449             dy20             = _mm_sub_pd(iy2,jy0);
450             dz20             = _mm_sub_pd(iz2,jz0);
451             dx30             = _mm_sub_pd(ix3,jx0);
452             dy30             = _mm_sub_pd(iy3,jy0);
453             dz30             = _mm_sub_pd(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
457             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
458             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
459             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
460
461             rinv00           = gmx_mm_invsqrt_pd(rsq00);
462             rinv10           = gmx_mm_invsqrt_pd(rsq10);
463             rinv20           = gmx_mm_invsqrt_pd(rsq20);
464             rinv30           = gmx_mm_invsqrt_pd(rsq30);
465
466             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
467             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
468             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
469             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
470
471             /* Load parameters for j particles */
472             jq0              = _mm_load_sd(charge+jnrA+0);
473             vdwjidx0A        = 2*vdwtype[jnrA+0];
474
475             fjx0             = _mm_setzero_pd();
476             fjy0             = _mm_setzero_pd();
477             fjz0             = _mm_setzero_pd();
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             r00              = _mm_mul_pd(rsq00,rinv00);
484
485             /* Compute parameters for interactions between i and j atoms */
486             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
487             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
488
489             /* Analytical LJ-PME */
490             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
491             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
492             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
493             exponent         = gmx_simd_exp_d(ewcljrsq);
494             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
495             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
496             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
497             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
498             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
499             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
500             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
501             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
505             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
506
507             fscal            = fvdw;
508
509             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
510
511             /* Update vectorial force */
512             fix0             = _mm_macc_pd(dx00,fscal,fix0);
513             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
514             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
515             
516             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
517             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
518             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             r10              = _mm_mul_pd(rsq10,rinv10);
525
526             /* Compute parameters for interactions between i and j atoms */
527             qq10             = _mm_mul_pd(iq1,jq0);
528
529             /* EWALD ELECTROSTATICS */
530
531             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
532             ewrt             = _mm_mul_pd(r10,ewtabscale);
533             ewitab           = _mm_cvttpd_epi32(ewrt);
534 #ifdef __XOP__
535             eweps            = _mm_frcz_pd(ewrt);
536 #else
537             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
538 #endif
539             twoeweps         = _mm_add_pd(eweps,eweps);
540             ewitab           = _mm_slli_epi32(ewitab,2);
541             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
542             ewtabD           = _mm_setzero_pd();
543             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
544             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
545             ewtabFn          = _mm_setzero_pd();
546             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
547             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
548             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
549             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
550             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
554             velecsum         = _mm_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
559
560             /* Update vectorial force */
561             fix1             = _mm_macc_pd(dx10,fscal,fix1);
562             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
563             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
564             
565             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
566             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
567             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
568
569             /**************************
570              * CALCULATE INTERACTIONS *
571              **************************/
572
573             r20              = _mm_mul_pd(rsq20,rinv20);
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq20             = _mm_mul_pd(iq2,jq0);
577
578             /* EWALD ELECTROSTATICS */
579
580             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
581             ewrt             = _mm_mul_pd(r20,ewtabscale);
582             ewitab           = _mm_cvttpd_epi32(ewrt);
583 #ifdef __XOP__
584             eweps            = _mm_frcz_pd(ewrt);
585 #else
586             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
587 #endif
588             twoeweps         = _mm_add_pd(eweps,eweps);
589             ewitab           = _mm_slli_epi32(ewitab,2);
590             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
591             ewtabD           = _mm_setzero_pd();
592             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
593             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
594             ewtabFn          = _mm_setzero_pd();
595             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
596             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
597             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
598             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
599             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
600
601             /* Update potential sum for this i atom from the interaction with this j atom. */
602             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
603             velecsum         = _mm_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
608
609             /* Update vectorial force */
610             fix2             = _mm_macc_pd(dx20,fscal,fix2);
611             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
612             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
613             
614             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
615             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
616             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
617
618             /**************************
619              * CALCULATE INTERACTIONS *
620              **************************/
621
622             r30              = _mm_mul_pd(rsq30,rinv30);
623
624             /* Compute parameters for interactions between i and j atoms */
625             qq30             = _mm_mul_pd(iq3,jq0);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r30,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632 #ifdef __XOP__
633             eweps            = _mm_frcz_pd(ewrt);
634 #else
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636 #endif
637             twoeweps         = _mm_add_pd(eweps,eweps);
638             ewitab           = _mm_slli_epi32(ewitab,2);
639             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
640             ewtabD           = _mm_setzero_pd();
641             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
642             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
643             ewtabFn          = _mm_setzero_pd();
644             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
645             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
646             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
647             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
648             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
649
650             /* Update potential sum for this i atom from the interaction with this j atom. */
651             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
652             velecsum         = _mm_add_pd(velecsum,velec);
653
654             fscal            = felec;
655
656             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
657
658             /* Update vectorial force */
659             fix3             = _mm_macc_pd(dx30,fscal,fix3);
660             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
661             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
662             
663             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
664             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
665             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
666
667             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
668
669             /* Inner loop uses 185 flops */
670         }
671
672         /* End of innermost loop */
673
674         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
675                                               f+i_coord_offset,fshift+i_shift_offset);
676
677         ggid                        = gid[iidx];
678         /* Update potential energies */
679         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
680         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 26 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
694 }
695 /*
696  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
697  * Electrostatics interaction: Ewald
698  * VdW interaction:            LJEwald
699  * Geometry:                   Water4-Particle
700  * Calculate force/pot:        Force
701  */
702 void
703 nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_avx_128_fma_double
704                     (t_nblist                    * gmx_restrict       nlist,
705                      rvec                        * gmx_restrict          xx,
706                      rvec                        * gmx_restrict          ff,
707                      t_forcerec                  * gmx_restrict          fr,
708                      t_mdatoms                   * gmx_restrict     mdatoms,
709                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
710                      t_nrnb                      * gmx_restrict        nrnb)
711 {
712     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
713      * just 0 for non-waters.
714      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
715      * jnr indices corresponding to data put in the four positions in the SIMD register.
716      */
717     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
718     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
719     int              jnrA,jnrB;
720     int              j_coord_offsetA,j_coord_offsetB;
721     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
722     real             rcutoff_scalar;
723     real             *shiftvec,*fshift,*x,*f;
724     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
725     int              vdwioffset0;
726     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
727     int              vdwioffset1;
728     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
729     int              vdwioffset2;
730     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
731     int              vdwioffset3;
732     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
733     int              vdwjidx0A,vdwjidx0B;
734     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
735     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
736     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
737     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
738     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
739     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
740     real             *charge;
741     int              nvdwtype;
742     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
743     int              *vdwtype;
744     real             *vdwparam;
745     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
746     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
747     __m128d           c6grid_00;
748     __m128d           c6grid_10;
749     __m128d           c6grid_20;
750     __m128d           c6grid_30;
751     real             *vdwgridparam;
752     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
753     __m128d           one_half  = _mm_set1_pd(0.5);
754     __m128d           minus_one = _mm_set1_pd(-1.0);
755     __m128i          ewitab;
756     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
757     real             *ewtab;
758     __m128d          dummy_mask,cutoff_mask;
759     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
760     __m128d          one     = _mm_set1_pd(1.0);
761     __m128d          two     = _mm_set1_pd(2.0);
762     x                = xx[0];
763     f                = ff[0];
764
765     nri              = nlist->nri;
766     iinr             = nlist->iinr;
767     jindex           = nlist->jindex;
768     jjnr             = nlist->jjnr;
769     shiftidx         = nlist->shift;
770     gid              = nlist->gid;
771     shiftvec         = fr->shift_vec[0];
772     fshift           = fr->fshift[0];
773     facel            = _mm_set1_pd(fr->epsfac);
774     charge           = mdatoms->chargeA;
775     nvdwtype         = fr->ntype;
776     vdwparam         = fr->nbfp;
777     vdwtype          = mdatoms->typeA;
778     vdwgridparam     = fr->ljpme_c6grid;
779     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
780     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
781     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
782
783     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
784     ewtab            = fr->ic->tabq_coul_F;
785     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
786     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
787
788     /* Setup water-specific parameters */
789     inr              = nlist->iinr[0];
790     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
791     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
792     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
793     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
794
795     /* Avoid stupid compiler warnings */
796     jnrA = jnrB = 0;
797     j_coord_offsetA = 0;
798     j_coord_offsetB = 0;
799
800     outeriter        = 0;
801     inneriter        = 0;
802
803     /* Start outer loop over neighborlists */
804     for(iidx=0; iidx<nri; iidx++)
805     {
806         /* Load shift vector for this list */
807         i_shift_offset   = DIM*shiftidx[iidx];
808
809         /* Load limits for loop over neighbors */
810         j_index_start    = jindex[iidx];
811         j_index_end      = jindex[iidx+1];
812
813         /* Get outer coordinate index */
814         inr              = iinr[iidx];
815         i_coord_offset   = DIM*inr;
816
817         /* Load i particle coords and add shift vector */
818         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
819                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
820
821         fix0             = _mm_setzero_pd();
822         fiy0             = _mm_setzero_pd();
823         fiz0             = _mm_setzero_pd();
824         fix1             = _mm_setzero_pd();
825         fiy1             = _mm_setzero_pd();
826         fiz1             = _mm_setzero_pd();
827         fix2             = _mm_setzero_pd();
828         fiy2             = _mm_setzero_pd();
829         fiz2             = _mm_setzero_pd();
830         fix3             = _mm_setzero_pd();
831         fiy3             = _mm_setzero_pd();
832         fiz3             = _mm_setzero_pd();
833
834         /* Start inner kernel loop */
835         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
836         {
837
838             /* Get j neighbor index, and coordinate index */
839             jnrA             = jjnr[jidx];
840             jnrB             = jjnr[jidx+1];
841             j_coord_offsetA  = DIM*jnrA;
842             j_coord_offsetB  = DIM*jnrB;
843
844             /* load j atom coordinates */
845             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
846                                               &jx0,&jy0,&jz0);
847
848             /* Calculate displacement vector */
849             dx00             = _mm_sub_pd(ix0,jx0);
850             dy00             = _mm_sub_pd(iy0,jy0);
851             dz00             = _mm_sub_pd(iz0,jz0);
852             dx10             = _mm_sub_pd(ix1,jx0);
853             dy10             = _mm_sub_pd(iy1,jy0);
854             dz10             = _mm_sub_pd(iz1,jz0);
855             dx20             = _mm_sub_pd(ix2,jx0);
856             dy20             = _mm_sub_pd(iy2,jy0);
857             dz20             = _mm_sub_pd(iz2,jz0);
858             dx30             = _mm_sub_pd(ix3,jx0);
859             dy30             = _mm_sub_pd(iy3,jy0);
860             dz30             = _mm_sub_pd(iz3,jz0);
861
862             /* Calculate squared distance and things based on it */
863             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
864             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
865             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
866             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
867
868             rinv00           = gmx_mm_invsqrt_pd(rsq00);
869             rinv10           = gmx_mm_invsqrt_pd(rsq10);
870             rinv20           = gmx_mm_invsqrt_pd(rsq20);
871             rinv30           = gmx_mm_invsqrt_pd(rsq30);
872
873             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
874             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
875             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
876             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
877
878             /* Load parameters for j particles */
879             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
880             vdwjidx0A        = 2*vdwtype[jnrA+0];
881             vdwjidx0B        = 2*vdwtype[jnrB+0];
882
883             fjx0             = _mm_setzero_pd();
884             fjy0             = _mm_setzero_pd();
885             fjz0             = _mm_setzero_pd();
886
887             /**************************
888              * CALCULATE INTERACTIONS *
889              **************************/
890
891             r00              = _mm_mul_pd(rsq00,rinv00);
892
893             /* Compute parameters for interactions between i and j atoms */
894             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
895                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
896             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
897                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
898
899             /* Analytical LJ-PME */
900             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
901             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
902             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
903             exponent         = gmx_simd_exp_d(ewcljrsq);
904             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
905             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
906             /* f6A = 6 * C6grid * (1 - poly) */
907             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
908             /* f6B = C6grid * exponent * beta^6 */
909             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
910             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
911             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
912
913             fscal            = fvdw;
914
915             /* Update vectorial force */
916             fix0             = _mm_macc_pd(dx00,fscal,fix0);
917             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
918             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
919             
920             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
921             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
922             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             r10              = _mm_mul_pd(rsq10,rinv10);
929
930             /* Compute parameters for interactions between i and j atoms */
931             qq10             = _mm_mul_pd(iq1,jq0);
932
933             /* EWALD ELECTROSTATICS */
934
935             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936             ewrt             = _mm_mul_pd(r10,ewtabscale);
937             ewitab           = _mm_cvttpd_epi32(ewrt);
938 #ifdef __XOP__
939             eweps            = _mm_frcz_pd(ewrt);
940 #else
941             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
942 #endif
943             twoeweps         = _mm_add_pd(eweps,eweps);
944             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
945                                          &ewtabF,&ewtabFn);
946             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
947             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
948
949             fscal            = felec;
950
951             /* Update vectorial force */
952             fix1             = _mm_macc_pd(dx10,fscal,fix1);
953             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
954             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
955             
956             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
957             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
958             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r20              = _mm_mul_pd(rsq20,rinv20);
965
966             /* Compute parameters for interactions between i and j atoms */
967             qq20             = _mm_mul_pd(iq2,jq0);
968
969             /* EWALD ELECTROSTATICS */
970
971             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
972             ewrt             = _mm_mul_pd(r20,ewtabscale);
973             ewitab           = _mm_cvttpd_epi32(ewrt);
974 #ifdef __XOP__
975             eweps            = _mm_frcz_pd(ewrt);
976 #else
977             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
978 #endif
979             twoeweps         = _mm_add_pd(eweps,eweps);
980             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
981                                          &ewtabF,&ewtabFn);
982             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
983             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
984
985             fscal            = felec;
986
987             /* Update vectorial force */
988             fix2             = _mm_macc_pd(dx20,fscal,fix2);
989             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
990             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
991             
992             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
993             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
994             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             r30              = _mm_mul_pd(rsq30,rinv30);
1001
1002             /* Compute parameters for interactions between i and j atoms */
1003             qq30             = _mm_mul_pd(iq3,jq0);
1004
1005             /* EWALD ELECTROSTATICS */
1006
1007             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1008             ewrt             = _mm_mul_pd(r30,ewtabscale);
1009             ewitab           = _mm_cvttpd_epi32(ewrt);
1010 #ifdef __XOP__
1011             eweps            = _mm_frcz_pd(ewrt);
1012 #else
1013             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1014 #endif
1015             twoeweps         = _mm_add_pd(eweps,eweps);
1016             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1017                                          &ewtabF,&ewtabFn);
1018             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1019             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1020
1021             fscal            = felec;
1022
1023             /* Update vectorial force */
1024             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1025             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1026             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1027             
1028             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1029             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1030             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1031
1032             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1033
1034             /* Inner loop uses 167 flops */
1035         }
1036
1037         if(jidx<j_index_end)
1038         {
1039
1040             jnrA             = jjnr[jidx];
1041             j_coord_offsetA  = DIM*jnrA;
1042
1043             /* load j atom coordinates */
1044             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1045                                               &jx0,&jy0,&jz0);
1046
1047             /* Calculate displacement vector */
1048             dx00             = _mm_sub_pd(ix0,jx0);
1049             dy00             = _mm_sub_pd(iy0,jy0);
1050             dz00             = _mm_sub_pd(iz0,jz0);
1051             dx10             = _mm_sub_pd(ix1,jx0);
1052             dy10             = _mm_sub_pd(iy1,jy0);
1053             dz10             = _mm_sub_pd(iz1,jz0);
1054             dx20             = _mm_sub_pd(ix2,jx0);
1055             dy20             = _mm_sub_pd(iy2,jy0);
1056             dz20             = _mm_sub_pd(iz2,jz0);
1057             dx30             = _mm_sub_pd(ix3,jx0);
1058             dy30             = _mm_sub_pd(iy3,jy0);
1059             dz30             = _mm_sub_pd(iz3,jz0);
1060
1061             /* Calculate squared distance and things based on it */
1062             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1063             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1064             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1065             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1066
1067             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1068             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1069             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1070             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1071
1072             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1073             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1074             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1075             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1076
1077             /* Load parameters for j particles */
1078             jq0              = _mm_load_sd(charge+jnrA+0);
1079             vdwjidx0A        = 2*vdwtype[jnrA+0];
1080
1081             fjx0             = _mm_setzero_pd();
1082             fjy0             = _mm_setzero_pd();
1083             fjz0             = _mm_setzero_pd();
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             r00              = _mm_mul_pd(rsq00,rinv00);
1090
1091             /* Compute parameters for interactions between i and j atoms */
1092             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1093             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
1094
1095             /* Analytical LJ-PME */
1096             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1097             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1098             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1099             exponent         = gmx_simd_exp_d(ewcljrsq);
1100             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1101             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1102             /* f6A = 6 * C6grid * (1 - poly) */
1103             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1104             /* f6B = C6grid * exponent * beta^6 */
1105             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1106             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1107             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1108
1109             fscal            = fvdw;
1110
1111             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1112
1113             /* Update vectorial force */
1114             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1115             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1116             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1117             
1118             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1119             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1120             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             r10              = _mm_mul_pd(rsq10,rinv10);
1127
1128             /* Compute parameters for interactions between i and j atoms */
1129             qq10             = _mm_mul_pd(iq1,jq0);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r10,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136 #ifdef __XOP__
1137             eweps            = _mm_frcz_pd(ewrt);
1138 #else
1139             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1140 #endif
1141             twoeweps         = _mm_add_pd(eweps,eweps);
1142             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1143             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1144             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1145
1146             fscal            = felec;
1147
1148             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1149
1150             /* Update vectorial force */
1151             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1152             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1153             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1154             
1155             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1156             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1157             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1158
1159             /**************************
1160              * CALCULATE INTERACTIONS *
1161              **************************/
1162
1163             r20              = _mm_mul_pd(rsq20,rinv20);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq20             = _mm_mul_pd(iq2,jq0);
1167
1168             /* EWALD ELECTROSTATICS */
1169
1170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171             ewrt             = _mm_mul_pd(r20,ewtabscale);
1172             ewitab           = _mm_cvttpd_epi32(ewrt);
1173 #ifdef __XOP__
1174             eweps            = _mm_frcz_pd(ewrt);
1175 #else
1176             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1177 #endif
1178             twoeweps         = _mm_add_pd(eweps,eweps);
1179             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1180             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1181             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1182
1183             fscal            = felec;
1184
1185             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1186
1187             /* Update vectorial force */
1188             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1189             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1190             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1191             
1192             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1193             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1194             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             r30              = _mm_mul_pd(rsq30,rinv30);
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq30             = _mm_mul_pd(iq3,jq0);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208             ewrt             = _mm_mul_pd(r30,ewtabscale);
1209             ewitab           = _mm_cvttpd_epi32(ewrt);
1210 #ifdef __XOP__
1211             eweps            = _mm_frcz_pd(ewrt);
1212 #else
1213             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1214 #endif
1215             twoeweps         = _mm_add_pd(eweps,eweps);
1216             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1217             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1218             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1223
1224             /* Update vectorial force */
1225             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1226             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1227             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1228             
1229             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1230             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1231             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1232
1233             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1234
1235             /* Inner loop uses 167 flops */
1236         }
1237
1238         /* End of innermost loop */
1239
1240         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1241                                               f+i_coord_offset,fshift+i_shift_offset);
1242
1243         /* Increment number of inner iterations */
1244         inneriter                  += j_index_end - j_index_start;
1245
1246         /* Outer loop uses 24 flops */
1247     }
1248
1249     /* Increment number of outer iterations */
1250     outeriter        += nri;
1251
1252     /* Update outer/inner flops */
1253
1254     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*167);
1255 }