Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW3W3_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Water3
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     int              vdwjidx1A,vdwjidx1B;
89     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
90     int              vdwjidx2A,vdwjidx2B;
91     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
94     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
95     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
97     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
98     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
100     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
101     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
102     real             *charge;
103     int              nvdwtype;
104     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
105     int              *vdwtype;
106     real             *vdwparam;
107     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
108     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
109     __m128d           c6grid_00;
110     __m128d           c6grid_01;
111     __m128d           c6grid_02;
112     __m128d           c6grid_10;
113     __m128d           c6grid_11;
114     __m128d           c6grid_12;
115     __m128d           c6grid_20;
116     __m128d           c6grid_21;
117     __m128d           c6grid_22;
118     real             *vdwgridparam;
119     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
120     __m128d           one_half  = _mm_set1_pd(0.5);
121     __m128d           minus_one = _mm_set1_pd(-1.0);
122     __m128i          ewitab;
123     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
124     real             *ewtab;
125     __m128d          dummy_mask,cutoff_mask;
126     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
127     __m128d          one     = _mm_set1_pd(1.0);
128     __m128d          two     = _mm_set1_pd(2.0);
129     x                = xx[0];
130     f                = ff[0];
131
132     nri              = nlist->nri;
133     iinr             = nlist->iinr;
134     jindex           = nlist->jindex;
135     jjnr             = nlist->jjnr;
136     shiftidx         = nlist->shift;
137     gid              = nlist->gid;
138     shiftvec         = fr->shift_vec[0];
139     fshift           = fr->fshift[0];
140     facel            = _mm_set1_pd(fr->epsfac);
141     charge           = mdatoms->chargeA;
142     nvdwtype         = fr->ntype;
143     vdwparam         = fr->nbfp;
144     vdwtype          = mdatoms->typeA;
145     vdwgridparam     = fr->ljpme_c6grid;
146     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
147     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
148     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
149
150     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
151     ewtab            = fr->ic->tabq_coul_FDV0;
152     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
153     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
154
155     /* Setup water-specific parameters */
156     inr              = nlist->iinr[0];
157     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
158     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
159     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
160     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
161
162     jq0              = _mm_set1_pd(charge[inr+0]);
163     jq1              = _mm_set1_pd(charge[inr+1]);
164     jq2              = _mm_set1_pd(charge[inr+2]);
165     vdwjidx0A        = 2*vdwtype[inr+0];
166     qq00             = _mm_mul_pd(iq0,jq0);
167     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
168     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
169     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
170     qq01             = _mm_mul_pd(iq0,jq1);
171     qq02             = _mm_mul_pd(iq0,jq2);
172     qq10             = _mm_mul_pd(iq1,jq0);
173     qq11             = _mm_mul_pd(iq1,jq1);
174     qq12             = _mm_mul_pd(iq1,jq2);
175     qq20             = _mm_mul_pd(iq2,jq0);
176     qq21             = _mm_mul_pd(iq2,jq1);
177     qq22             = _mm_mul_pd(iq2,jq2);
178
179     /* Avoid stupid compiler warnings */
180     jnrA = jnrB = 0;
181     j_coord_offsetA = 0;
182     j_coord_offsetB = 0;
183
184     outeriter        = 0;
185     inneriter        = 0;
186
187     /* Start outer loop over neighborlists */
188     for(iidx=0; iidx<nri; iidx++)
189     {
190         /* Load shift vector for this list */
191         i_shift_offset   = DIM*shiftidx[iidx];
192
193         /* Load limits for loop over neighbors */
194         j_index_start    = jindex[iidx];
195         j_index_end      = jindex[iidx+1];
196
197         /* Get outer coordinate index */
198         inr              = iinr[iidx];
199         i_coord_offset   = DIM*inr;
200
201         /* Load i particle coords and add shift vector */
202         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
203                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
204
205         fix0             = _mm_setzero_pd();
206         fiy0             = _mm_setzero_pd();
207         fiz0             = _mm_setzero_pd();
208         fix1             = _mm_setzero_pd();
209         fiy1             = _mm_setzero_pd();
210         fiz1             = _mm_setzero_pd();
211         fix2             = _mm_setzero_pd();
212         fiy2             = _mm_setzero_pd();
213         fiz2             = _mm_setzero_pd();
214
215         /* Reset potential sums */
216         velecsum         = _mm_setzero_pd();
217         vvdwsum          = _mm_setzero_pd();
218
219         /* Start inner kernel loop */
220         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
221         {
222
223             /* Get j neighbor index, and coordinate index */
224             jnrA             = jjnr[jidx];
225             jnrB             = jjnr[jidx+1];
226             j_coord_offsetA  = DIM*jnrA;
227             j_coord_offsetB  = DIM*jnrB;
228
229             /* load j atom coordinates */
230             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
231                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
232
233             /* Calculate displacement vector */
234             dx00             = _mm_sub_pd(ix0,jx0);
235             dy00             = _mm_sub_pd(iy0,jy0);
236             dz00             = _mm_sub_pd(iz0,jz0);
237             dx01             = _mm_sub_pd(ix0,jx1);
238             dy01             = _mm_sub_pd(iy0,jy1);
239             dz01             = _mm_sub_pd(iz0,jz1);
240             dx02             = _mm_sub_pd(ix0,jx2);
241             dy02             = _mm_sub_pd(iy0,jy2);
242             dz02             = _mm_sub_pd(iz0,jz2);
243             dx10             = _mm_sub_pd(ix1,jx0);
244             dy10             = _mm_sub_pd(iy1,jy0);
245             dz10             = _mm_sub_pd(iz1,jz0);
246             dx11             = _mm_sub_pd(ix1,jx1);
247             dy11             = _mm_sub_pd(iy1,jy1);
248             dz11             = _mm_sub_pd(iz1,jz1);
249             dx12             = _mm_sub_pd(ix1,jx2);
250             dy12             = _mm_sub_pd(iy1,jy2);
251             dz12             = _mm_sub_pd(iz1,jz2);
252             dx20             = _mm_sub_pd(ix2,jx0);
253             dy20             = _mm_sub_pd(iy2,jy0);
254             dz20             = _mm_sub_pd(iz2,jz0);
255             dx21             = _mm_sub_pd(ix2,jx1);
256             dy21             = _mm_sub_pd(iy2,jy1);
257             dz21             = _mm_sub_pd(iz2,jz1);
258             dx22             = _mm_sub_pd(ix2,jx2);
259             dy22             = _mm_sub_pd(iy2,jy2);
260             dz22             = _mm_sub_pd(iz2,jz2);
261
262             /* Calculate squared distance and things based on it */
263             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
264             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
265             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
266             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
267             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
268             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
269             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
270             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
271             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
272
273             rinv00           = gmx_mm_invsqrt_pd(rsq00);
274             rinv01           = gmx_mm_invsqrt_pd(rsq01);
275             rinv02           = gmx_mm_invsqrt_pd(rsq02);
276             rinv10           = gmx_mm_invsqrt_pd(rsq10);
277             rinv11           = gmx_mm_invsqrt_pd(rsq11);
278             rinv12           = gmx_mm_invsqrt_pd(rsq12);
279             rinv20           = gmx_mm_invsqrt_pd(rsq20);
280             rinv21           = gmx_mm_invsqrt_pd(rsq21);
281             rinv22           = gmx_mm_invsqrt_pd(rsq22);
282
283             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
284             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
285             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
286             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
287             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
288             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
289             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
290             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
291             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
292
293             fjx0             = _mm_setzero_pd();
294             fjy0             = _mm_setzero_pd();
295             fjz0             = _mm_setzero_pd();
296             fjx1             = _mm_setzero_pd();
297             fjy1             = _mm_setzero_pd();
298             fjz1             = _mm_setzero_pd();
299             fjx2             = _mm_setzero_pd();
300             fjy2             = _mm_setzero_pd();
301             fjz2             = _mm_setzero_pd();
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             r00              = _mm_mul_pd(rsq00,rinv00);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r00,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314 #ifdef __XOP__
315             eweps            = _mm_frcz_pd(ewrt);
316 #else
317             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
318 #endif
319             twoeweps         = _mm_add_pd(eweps,eweps);
320             ewitab           = _mm_slli_epi32(ewitab,2);
321             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
322             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
323             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
324             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
325             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
326             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
327             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
328             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
329             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
330             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
331
332             /* Analytical LJ-PME */
333             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
334             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
335             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
336             exponent         = gmx_simd_exp_d(ewcljrsq);
337             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
338             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
339             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
340             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
341             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
342             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
343             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
344             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm_add_pd(velecsum,velec);
348             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
349
350             fscal            = _mm_add_pd(felec,fvdw);
351
352             /* Update vectorial force */
353             fix0             = _mm_macc_pd(dx00,fscal,fix0);
354             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
355             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
356             
357             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
358             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
359             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
360
361             /**************************
362              * CALCULATE INTERACTIONS *
363              **************************/
364
365             r01              = _mm_mul_pd(rsq01,rinv01);
366
367             /* EWALD ELECTROSTATICS */
368
369             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370             ewrt             = _mm_mul_pd(r01,ewtabscale);
371             ewitab           = _mm_cvttpd_epi32(ewrt);
372 #ifdef __XOP__
373             eweps            = _mm_frcz_pd(ewrt);
374 #else
375             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
376 #endif
377             twoeweps         = _mm_add_pd(eweps,eweps);
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
381             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
382             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
383             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
384             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
385             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
386             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
387             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
388             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
389
390             /* Update potential sum for this i atom from the interaction with this j atom. */
391             velecsum         = _mm_add_pd(velecsum,velec);
392
393             fscal            = felec;
394
395             /* Update vectorial force */
396             fix0             = _mm_macc_pd(dx01,fscal,fix0);
397             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
398             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
399             
400             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
401             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
402             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             r02              = _mm_mul_pd(rsq02,rinv02);
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = _mm_mul_pd(r02,ewtabscale);
414             ewitab           = _mm_cvttpd_epi32(ewrt);
415 #ifdef __XOP__
416             eweps            = _mm_frcz_pd(ewrt);
417 #else
418             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
419 #endif
420             twoeweps         = _mm_add_pd(eweps,eweps);
421             ewitab           = _mm_slli_epi32(ewitab,2);
422             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
423             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
424             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
425             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
426             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
427             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
428             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
429             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
430             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
431             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
432
433             /* Update potential sum for this i atom from the interaction with this j atom. */
434             velecsum         = _mm_add_pd(velecsum,velec);
435
436             fscal            = felec;
437
438             /* Update vectorial force */
439             fix0             = _mm_macc_pd(dx02,fscal,fix0);
440             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
441             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
442             
443             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
444             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
445             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
446
447             /**************************
448              * CALCULATE INTERACTIONS *
449              **************************/
450
451             r10              = _mm_mul_pd(rsq10,rinv10);
452
453             /* EWALD ELECTROSTATICS */
454
455             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
456             ewrt             = _mm_mul_pd(r10,ewtabscale);
457             ewitab           = _mm_cvttpd_epi32(ewrt);
458 #ifdef __XOP__
459             eweps            = _mm_frcz_pd(ewrt);
460 #else
461             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
462 #endif
463             twoeweps         = _mm_add_pd(eweps,eweps);
464             ewitab           = _mm_slli_epi32(ewitab,2);
465             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
466             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
467             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
468             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
469             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
470             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
471             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
472             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
473             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
474             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
475
476             /* Update potential sum for this i atom from the interaction with this j atom. */
477             velecsum         = _mm_add_pd(velecsum,velec);
478
479             fscal            = felec;
480
481             /* Update vectorial force */
482             fix1             = _mm_macc_pd(dx10,fscal,fix1);
483             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
484             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
485             
486             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
487             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
488             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r11              = _mm_mul_pd(rsq11,rinv11);
495
496             /* EWALD ELECTROSTATICS */
497
498             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499             ewrt             = _mm_mul_pd(r11,ewtabscale);
500             ewitab           = _mm_cvttpd_epi32(ewrt);
501 #ifdef __XOP__
502             eweps            = _mm_frcz_pd(ewrt);
503 #else
504             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
505 #endif
506             twoeweps         = _mm_add_pd(eweps,eweps);
507             ewitab           = _mm_slli_epi32(ewitab,2);
508             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
509             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
510             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
511             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
512             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
513             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
514             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
515             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
516             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
517             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
518
519             /* Update potential sum for this i atom from the interaction with this j atom. */
520             velecsum         = _mm_add_pd(velecsum,velec);
521
522             fscal            = felec;
523
524             /* Update vectorial force */
525             fix1             = _mm_macc_pd(dx11,fscal,fix1);
526             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
527             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
528             
529             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
530             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
531             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             r12              = _mm_mul_pd(rsq12,rinv12);
538
539             /* EWALD ELECTROSTATICS */
540
541             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542             ewrt             = _mm_mul_pd(r12,ewtabscale);
543             ewitab           = _mm_cvttpd_epi32(ewrt);
544 #ifdef __XOP__
545             eweps            = _mm_frcz_pd(ewrt);
546 #else
547             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
548 #endif
549             twoeweps         = _mm_add_pd(eweps,eweps);
550             ewitab           = _mm_slli_epi32(ewitab,2);
551             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
552             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
553             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
554             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
555             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
556             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
557             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
558             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
559             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
560             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
561
562             /* Update potential sum for this i atom from the interaction with this j atom. */
563             velecsum         = _mm_add_pd(velecsum,velec);
564
565             fscal            = felec;
566
567             /* Update vectorial force */
568             fix1             = _mm_macc_pd(dx12,fscal,fix1);
569             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
570             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
571             
572             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
573             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
574             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r20              = _mm_mul_pd(rsq20,rinv20);
581
582             /* EWALD ELECTROSTATICS */
583
584             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
585             ewrt             = _mm_mul_pd(r20,ewtabscale);
586             ewitab           = _mm_cvttpd_epi32(ewrt);
587 #ifdef __XOP__
588             eweps            = _mm_frcz_pd(ewrt);
589 #else
590             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
591 #endif
592             twoeweps         = _mm_add_pd(eweps,eweps);
593             ewitab           = _mm_slli_epi32(ewitab,2);
594             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
595             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
596             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
597             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
598             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
599             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
600             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
601             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
602             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
603             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velecsum         = _mm_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             /* Update vectorial force */
611             fix2             = _mm_macc_pd(dx20,fscal,fix2);
612             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
613             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
614             
615             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
616             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
617             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r21              = _mm_mul_pd(rsq21,rinv21);
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = _mm_mul_pd(r21,ewtabscale);
629             ewitab           = _mm_cvttpd_epi32(ewrt);
630 #ifdef __XOP__
631             eweps            = _mm_frcz_pd(ewrt);
632 #else
633             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
634 #endif
635             twoeweps         = _mm_add_pd(eweps,eweps);
636             ewitab           = _mm_slli_epi32(ewitab,2);
637             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
638             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
639             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
640             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
641             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
642             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
643             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
644             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
645             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
646             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
647
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velecsum         = _mm_add_pd(velecsum,velec);
650
651             fscal            = felec;
652
653             /* Update vectorial force */
654             fix2             = _mm_macc_pd(dx21,fscal,fix2);
655             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
656             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
657             
658             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
659             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
660             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             r22              = _mm_mul_pd(rsq22,rinv22);
667
668             /* EWALD ELECTROSTATICS */
669
670             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
671             ewrt             = _mm_mul_pd(r22,ewtabscale);
672             ewitab           = _mm_cvttpd_epi32(ewrt);
673 #ifdef __XOP__
674             eweps            = _mm_frcz_pd(ewrt);
675 #else
676             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
677 #endif
678             twoeweps         = _mm_add_pd(eweps,eweps);
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
682             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
683             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
684             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
685             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
686             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
687             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
688             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
689             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
690
691             /* Update potential sum for this i atom from the interaction with this j atom. */
692             velecsum         = _mm_add_pd(velecsum,velec);
693
694             fscal            = felec;
695
696             /* Update vectorial force */
697             fix2             = _mm_macc_pd(dx22,fscal,fix2);
698             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
699             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
700             
701             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
702             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
703             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
704
705             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
706
707             /* Inner loop uses 420 flops */
708         }
709
710         if(jidx<j_index_end)
711         {
712
713             jnrA             = jjnr[jidx];
714             j_coord_offsetA  = DIM*jnrA;
715
716             /* load j atom coordinates */
717             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
718                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
719
720             /* Calculate displacement vector */
721             dx00             = _mm_sub_pd(ix0,jx0);
722             dy00             = _mm_sub_pd(iy0,jy0);
723             dz00             = _mm_sub_pd(iz0,jz0);
724             dx01             = _mm_sub_pd(ix0,jx1);
725             dy01             = _mm_sub_pd(iy0,jy1);
726             dz01             = _mm_sub_pd(iz0,jz1);
727             dx02             = _mm_sub_pd(ix0,jx2);
728             dy02             = _mm_sub_pd(iy0,jy2);
729             dz02             = _mm_sub_pd(iz0,jz2);
730             dx10             = _mm_sub_pd(ix1,jx0);
731             dy10             = _mm_sub_pd(iy1,jy0);
732             dz10             = _mm_sub_pd(iz1,jz0);
733             dx11             = _mm_sub_pd(ix1,jx1);
734             dy11             = _mm_sub_pd(iy1,jy1);
735             dz11             = _mm_sub_pd(iz1,jz1);
736             dx12             = _mm_sub_pd(ix1,jx2);
737             dy12             = _mm_sub_pd(iy1,jy2);
738             dz12             = _mm_sub_pd(iz1,jz2);
739             dx20             = _mm_sub_pd(ix2,jx0);
740             dy20             = _mm_sub_pd(iy2,jy0);
741             dz20             = _mm_sub_pd(iz2,jz0);
742             dx21             = _mm_sub_pd(ix2,jx1);
743             dy21             = _mm_sub_pd(iy2,jy1);
744             dz21             = _mm_sub_pd(iz2,jz1);
745             dx22             = _mm_sub_pd(ix2,jx2);
746             dy22             = _mm_sub_pd(iy2,jy2);
747             dz22             = _mm_sub_pd(iz2,jz2);
748
749             /* Calculate squared distance and things based on it */
750             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
751             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
752             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
753             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
754             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
755             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
756             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
757             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
758             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
759
760             rinv00           = gmx_mm_invsqrt_pd(rsq00);
761             rinv01           = gmx_mm_invsqrt_pd(rsq01);
762             rinv02           = gmx_mm_invsqrt_pd(rsq02);
763             rinv10           = gmx_mm_invsqrt_pd(rsq10);
764             rinv11           = gmx_mm_invsqrt_pd(rsq11);
765             rinv12           = gmx_mm_invsqrt_pd(rsq12);
766             rinv20           = gmx_mm_invsqrt_pd(rsq20);
767             rinv21           = gmx_mm_invsqrt_pd(rsq21);
768             rinv22           = gmx_mm_invsqrt_pd(rsq22);
769
770             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
771             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
772             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
773             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
774             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
775             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
776             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
777             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
778             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
779
780             fjx0             = _mm_setzero_pd();
781             fjy0             = _mm_setzero_pd();
782             fjz0             = _mm_setzero_pd();
783             fjx1             = _mm_setzero_pd();
784             fjy1             = _mm_setzero_pd();
785             fjz1             = _mm_setzero_pd();
786             fjx2             = _mm_setzero_pd();
787             fjy2             = _mm_setzero_pd();
788             fjz2             = _mm_setzero_pd();
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             r00              = _mm_mul_pd(rsq00,rinv00);
795
796             /* EWALD ELECTROSTATICS */
797
798             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
799             ewrt             = _mm_mul_pd(r00,ewtabscale);
800             ewitab           = _mm_cvttpd_epi32(ewrt);
801 #ifdef __XOP__
802             eweps            = _mm_frcz_pd(ewrt);
803 #else
804             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
805 #endif
806             twoeweps         = _mm_add_pd(eweps,eweps);
807             ewitab           = _mm_slli_epi32(ewitab,2);
808             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
809             ewtabD           = _mm_setzero_pd();
810             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
811             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
812             ewtabFn          = _mm_setzero_pd();
813             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
814             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
815             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
816             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
817             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
818
819             /* Analytical LJ-PME */
820             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
821             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
822             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
823             exponent         = gmx_simd_exp_d(ewcljrsq);
824             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
825             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
826             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
827             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
828             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
829             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
830             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
831             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
832
833             /* Update potential sum for this i atom from the interaction with this j atom. */
834             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
835             velecsum         = _mm_add_pd(velecsum,velec);
836             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
837             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
838
839             fscal            = _mm_add_pd(felec,fvdw);
840
841             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
842
843             /* Update vectorial force */
844             fix0             = _mm_macc_pd(dx00,fscal,fix0);
845             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
846             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
847             
848             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
849             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
850             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r01              = _mm_mul_pd(rsq01,rinv01);
857
858             /* EWALD ELECTROSTATICS */
859
860             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
861             ewrt             = _mm_mul_pd(r01,ewtabscale);
862             ewitab           = _mm_cvttpd_epi32(ewrt);
863 #ifdef __XOP__
864             eweps            = _mm_frcz_pd(ewrt);
865 #else
866             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
867 #endif
868             twoeweps         = _mm_add_pd(eweps,eweps);
869             ewitab           = _mm_slli_epi32(ewitab,2);
870             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
871             ewtabD           = _mm_setzero_pd();
872             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
873             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
874             ewtabFn          = _mm_setzero_pd();
875             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
876             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
877             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
878             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
879             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
880
881             /* Update potential sum for this i atom from the interaction with this j atom. */
882             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
883             velecsum         = _mm_add_pd(velecsum,velec);
884
885             fscal            = felec;
886
887             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
888
889             /* Update vectorial force */
890             fix0             = _mm_macc_pd(dx01,fscal,fix0);
891             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
892             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
893             
894             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
895             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
896             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             r02              = _mm_mul_pd(rsq02,rinv02);
903
904             /* EWALD ELECTROSTATICS */
905
906             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
907             ewrt             = _mm_mul_pd(r02,ewtabscale);
908             ewitab           = _mm_cvttpd_epi32(ewrt);
909 #ifdef __XOP__
910             eweps            = _mm_frcz_pd(ewrt);
911 #else
912             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
913 #endif
914             twoeweps         = _mm_add_pd(eweps,eweps);
915             ewitab           = _mm_slli_epi32(ewitab,2);
916             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
917             ewtabD           = _mm_setzero_pd();
918             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
919             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
920             ewtabFn          = _mm_setzero_pd();
921             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
922             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
923             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
924             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
925             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
926
927             /* Update potential sum for this i atom from the interaction with this j atom. */
928             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
929             velecsum         = _mm_add_pd(velecsum,velec);
930
931             fscal            = felec;
932
933             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
934
935             /* Update vectorial force */
936             fix0             = _mm_macc_pd(dx02,fscal,fix0);
937             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
938             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
939             
940             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
941             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
942             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             r10              = _mm_mul_pd(rsq10,rinv10);
949
950             /* EWALD ELECTROSTATICS */
951
952             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
953             ewrt             = _mm_mul_pd(r10,ewtabscale);
954             ewitab           = _mm_cvttpd_epi32(ewrt);
955 #ifdef __XOP__
956             eweps            = _mm_frcz_pd(ewrt);
957 #else
958             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
959 #endif
960             twoeweps         = _mm_add_pd(eweps,eweps);
961             ewitab           = _mm_slli_epi32(ewitab,2);
962             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
963             ewtabD           = _mm_setzero_pd();
964             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
965             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
966             ewtabFn          = _mm_setzero_pd();
967             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
968             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
969             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
970             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
971             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
972
973             /* Update potential sum for this i atom from the interaction with this j atom. */
974             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
975             velecsum         = _mm_add_pd(velecsum,velec);
976
977             fscal            = felec;
978
979             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
980
981             /* Update vectorial force */
982             fix1             = _mm_macc_pd(dx10,fscal,fix1);
983             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
984             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
985             
986             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
987             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
988             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             r11              = _mm_mul_pd(rsq11,rinv11);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm_mul_pd(r11,ewtabscale);
1000             ewitab           = _mm_cvttpd_epi32(ewrt);
1001 #ifdef __XOP__
1002             eweps            = _mm_frcz_pd(ewrt);
1003 #else
1004             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1005 #endif
1006             twoeweps         = _mm_add_pd(eweps,eweps);
1007             ewitab           = _mm_slli_epi32(ewitab,2);
1008             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1009             ewtabD           = _mm_setzero_pd();
1010             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1011             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1012             ewtabFn          = _mm_setzero_pd();
1013             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1014             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1015             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1016             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1017             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1018
1019             /* Update potential sum for this i atom from the interaction with this j atom. */
1020             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1021             velecsum         = _mm_add_pd(velecsum,velec);
1022
1023             fscal            = felec;
1024
1025             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1026
1027             /* Update vectorial force */
1028             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1029             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1030             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1031             
1032             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1033             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1034             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1035
1036             /**************************
1037              * CALCULATE INTERACTIONS *
1038              **************************/
1039
1040             r12              = _mm_mul_pd(rsq12,rinv12);
1041
1042             /* EWALD ELECTROSTATICS */
1043
1044             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1045             ewrt             = _mm_mul_pd(r12,ewtabscale);
1046             ewitab           = _mm_cvttpd_epi32(ewrt);
1047 #ifdef __XOP__
1048             eweps            = _mm_frcz_pd(ewrt);
1049 #else
1050             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1051 #endif
1052             twoeweps         = _mm_add_pd(eweps,eweps);
1053             ewitab           = _mm_slli_epi32(ewitab,2);
1054             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1055             ewtabD           = _mm_setzero_pd();
1056             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1057             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1058             ewtabFn          = _mm_setzero_pd();
1059             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1060             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1061             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1062             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1063             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1064
1065             /* Update potential sum for this i atom from the interaction with this j atom. */
1066             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1067             velecsum         = _mm_add_pd(velecsum,velec);
1068
1069             fscal            = felec;
1070
1071             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1072
1073             /* Update vectorial force */
1074             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1075             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1076             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1077             
1078             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1079             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1080             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             r20              = _mm_mul_pd(rsq20,rinv20);
1087
1088             /* EWALD ELECTROSTATICS */
1089
1090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1091             ewrt             = _mm_mul_pd(r20,ewtabscale);
1092             ewitab           = _mm_cvttpd_epi32(ewrt);
1093 #ifdef __XOP__
1094             eweps            = _mm_frcz_pd(ewrt);
1095 #else
1096             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1097 #endif
1098             twoeweps         = _mm_add_pd(eweps,eweps);
1099             ewitab           = _mm_slli_epi32(ewitab,2);
1100             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1101             ewtabD           = _mm_setzero_pd();
1102             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1103             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1104             ewtabFn          = _mm_setzero_pd();
1105             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1106             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1107             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1108             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1109             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1110
1111             /* Update potential sum for this i atom from the interaction with this j atom. */
1112             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1113             velecsum         = _mm_add_pd(velecsum,velec);
1114
1115             fscal            = felec;
1116
1117             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1118
1119             /* Update vectorial force */
1120             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1121             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1122             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1123             
1124             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1125             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1126             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1127
1128             /**************************
1129              * CALCULATE INTERACTIONS *
1130              **************************/
1131
1132             r21              = _mm_mul_pd(rsq21,rinv21);
1133
1134             /* EWALD ELECTROSTATICS */
1135
1136             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1137             ewrt             = _mm_mul_pd(r21,ewtabscale);
1138             ewitab           = _mm_cvttpd_epi32(ewrt);
1139 #ifdef __XOP__
1140             eweps            = _mm_frcz_pd(ewrt);
1141 #else
1142             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1143 #endif
1144             twoeweps         = _mm_add_pd(eweps,eweps);
1145             ewitab           = _mm_slli_epi32(ewitab,2);
1146             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1147             ewtabD           = _mm_setzero_pd();
1148             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1149             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1150             ewtabFn          = _mm_setzero_pd();
1151             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1152             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1153             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1154             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1155             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1156
1157             /* Update potential sum for this i atom from the interaction with this j atom. */
1158             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1159             velecsum         = _mm_add_pd(velecsum,velec);
1160
1161             fscal            = felec;
1162
1163             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1164
1165             /* Update vectorial force */
1166             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1167             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1168             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1169             
1170             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1171             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1172             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             r22              = _mm_mul_pd(rsq22,rinv22);
1179
1180             /* EWALD ELECTROSTATICS */
1181
1182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1183             ewrt             = _mm_mul_pd(r22,ewtabscale);
1184             ewitab           = _mm_cvttpd_epi32(ewrt);
1185 #ifdef __XOP__
1186             eweps            = _mm_frcz_pd(ewrt);
1187 #else
1188             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1189 #endif
1190             twoeweps         = _mm_add_pd(eweps,eweps);
1191             ewitab           = _mm_slli_epi32(ewitab,2);
1192             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1193             ewtabD           = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1195             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1196             ewtabFn          = _mm_setzero_pd();
1197             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1198             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1199             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1200             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1201             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1202
1203             /* Update potential sum for this i atom from the interaction with this j atom. */
1204             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1205             velecsum         = _mm_add_pd(velecsum,velec);
1206
1207             fscal            = felec;
1208
1209             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1210
1211             /* Update vectorial force */
1212             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1213             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1214             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1215             
1216             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1217             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1218             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1219
1220             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1221
1222             /* Inner loop uses 420 flops */
1223         }
1224
1225         /* End of innermost loop */
1226
1227         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1228                                               f+i_coord_offset,fshift+i_shift_offset);
1229
1230         ggid                        = gid[iidx];
1231         /* Update potential energies */
1232         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1233         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1234
1235         /* Increment number of inner iterations */
1236         inneriter                  += j_index_end - j_index_start;
1237
1238         /* Outer loop uses 20 flops */
1239     }
1240
1241     /* Increment number of outer iterations */
1242     outeriter        += nri;
1243
1244     /* Update outer/inner flops */
1245
1246     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*420);
1247 }
1248 /*
1249  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_avx_128_fma_double
1250  * Electrostatics interaction: Ewald
1251  * VdW interaction:            LJEwald
1252  * Geometry:                   Water3-Water3
1253  * Calculate force/pot:        Force
1254  */
1255 void
1256 nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_avx_128_fma_double
1257                     (t_nblist                    * gmx_restrict       nlist,
1258                      rvec                        * gmx_restrict          xx,
1259                      rvec                        * gmx_restrict          ff,
1260                      t_forcerec                  * gmx_restrict          fr,
1261                      t_mdatoms                   * gmx_restrict     mdatoms,
1262                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1263                      t_nrnb                      * gmx_restrict        nrnb)
1264 {
1265     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1266      * just 0 for non-waters.
1267      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1268      * jnr indices corresponding to data put in the four positions in the SIMD register.
1269      */
1270     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1271     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1272     int              jnrA,jnrB;
1273     int              j_coord_offsetA,j_coord_offsetB;
1274     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1275     real             rcutoff_scalar;
1276     real             *shiftvec,*fshift,*x,*f;
1277     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1278     int              vdwioffset0;
1279     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1280     int              vdwioffset1;
1281     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1282     int              vdwioffset2;
1283     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1284     int              vdwjidx0A,vdwjidx0B;
1285     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1286     int              vdwjidx1A,vdwjidx1B;
1287     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1288     int              vdwjidx2A,vdwjidx2B;
1289     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1290     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1291     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1292     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1293     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1294     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1295     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1296     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1297     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1298     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1299     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1300     real             *charge;
1301     int              nvdwtype;
1302     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1303     int              *vdwtype;
1304     real             *vdwparam;
1305     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1306     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1307     __m128d           c6grid_00;
1308     __m128d           c6grid_01;
1309     __m128d           c6grid_02;
1310     __m128d           c6grid_10;
1311     __m128d           c6grid_11;
1312     __m128d           c6grid_12;
1313     __m128d           c6grid_20;
1314     __m128d           c6grid_21;
1315     __m128d           c6grid_22;
1316     real             *vdwgridparam;
1317     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
1318     __m128d           one_half  = _mm_set1_pd(0.5);
1319     __m128d           minus_one = _mm_set1_pd(-1.0);
1320     __m128i          ewitab;
1321     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1322     real             *ewtab;
1323     __m128d          dummy_mask,cutoff_mask;
1324     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1325     __m128d          one     = _mm_set1_pd(1.0);
1326     __m128d          two     = _mm_set1_pd(2.0);
1327     x                = xx[0];
1328     f                = ff[0];
1329
1330     nri              = nlist->nri;
1331     iinr             = nlist->iinr;
1332     jindex           = nlist->jindex;
1333     jjnr             = nlist->jjnr;
1334     shiftidx         = nlist->shift;
1335     gid              = nlist->gid;
1336     shiftvec         = fr->shift_vec[0];
1337     fshift           = fr->fshift[0];
1338     facel            = _mm_set1_pd(fr->epsfac);
1339     charge           = mdatoms->chargeA;
1340     nvdwtype         = fr->ntype;
1341     vdwparam         = fr->nbfp;
1342     vdwtype          = mdatoms->typeA;
1343     vdwgridparam     = fr->ljpme_c6grid;
1344     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
1345     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
1346     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
1347
1348     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1349     ewtab            = fr->ic->tabq_coul_F;
1350     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1351     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1352
1353     /* Setup water-specific parameters */
1354     inr              = nlist->iinr[0];
1355     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1356     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1357     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1358     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1359
1360     jq0              = _mm_set1_pd(charge[inr+0]);
1361     jq1              = _mm_set1_pd(charge[inr+1]);
1362     jq2              = _mm_set1_pd(charge[inr+2]);
1363     vdwjidx0A        = 2*vdwtype[inr+0];
1364     qq00             = _mm_mul_pd(iq0,jq0);
1365     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1366     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1367     c6grid_00        = _mm_set1_pd(vdwgridparam[vdwioffset0+vdwjidx0A]);
1368     qq01             = _mm_mul_pd(iq0,jq1);
1369     qq02             = _mm_mul_pd(iq0,jq2);
1370     qq10             = _mm_mul_pd(iq1,jq0);
1371     qq11             = _mm_mul_pd(iq1,jq1);
1372     qq12             = _mm_mul_pd(iq1,jq2);
1373     qq20             = _mm_mul_pd(iq2,jq0);
1374     qq21             = _mm_mul_pd(iq2,jq1);
1375     qq22             = _mm_mul_pd(iq2,jq2);
1376
1377     /* Avoid stupid compiler warnings */
1378     jnrA = jnrB = 0;
1379     j_coord_offsetA = 0;
1380     j_coord_offsetB = 0;
1381
1382     outeriter        = 0;
1383     inneriter        = 0;
1384
1385     /* Start outer loop over neighborlists */
1386     for(iidx=0; iidx<nri; iidx++)
1387     {
1388         /* Load shift vector for this list */
1389         i_shift_offset   = DIM*shiftidx[iidx];
1390
1391         /* Load limits for loop over neighbors */
1392         j_index_start    = jindex[iidx];
1393         j_index_end      = jindex[iidx+1];
1394
1395         /* Get outer coordinate index */
1396         inr              = iinr[iidx];
1397         i_coord_offset   = DIM*inr;
1398
1399         /* Load i particle coords and add shift vector */
1400         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1401                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1402
1403         fix0             = _mm_setzero_pd();
1404         fiy0             = _mm_setzero_pd();
1405         fiz0             = _mm_setzero_pd();
1406         fix1             = _mm_setzero_pd();
1407         fiy1             = _mm_setzero_pd();
1408         fiz1             = _mm_setzero_pd();
1409         fix2             = _mm_setzero_pd();
1410         fiy2             = _mm_setzero_pd();
1411         fiz2             = _mm_setzero_pd();
1412
1413         /* Start inner kernel loop */
1414         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1415         {
1416
1417             /* Get j neighbor index, and coordinate index */
1418             jnrA             = jjnr[jidx];
1419             jnrB             = jjnr[jidx+1];
1420             j_coord_offsetA  = DIM*jnrA;
1421             j_coord_offsetB  = DIM*jnrB;
1422
1423             /* load j atom coordinates */
1424             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1425                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1426
1427             /* Calculate displacement vector */
1428             dx00             = _mm_sub_pd(ix0,jx0);
1429             dy00             = _mm_sub_pd(iy0,jy0);
1430             dz00             = _mm_sub_pd(iz0,jz0);
1431             dx01             = _mm_sub_pd(ix0,jx1);
1432             dy01             = _mm_sub_pd(iy0,jy1);
1433             dz01             = _mm_sub_pd(iz0,jz1);
1434             dx02             = _mm_sub_pd(ix0,jx2);
1435             dy02             = _mm_sub_pd(iy0,jy2);
1436             dz02             = _mm_sub_pd(iz0,jz2);
1437             dx10             = _mm_sub_pd(ix1,jx0);
1438             dy10             = _mm_sub_pd(iy1,jy0);
1439             dz10             = _mm_sub_pd(iz1,jz0);
1440             dx11             = _mm_sub_pd(ix1,jx1);
1441             dy11             = _mm_sub_pd(iy1,jy1);
1442             dz11             = _mm_sub_pd(iz1,jz1);
1443             dx12             = _mm_sub_pd(ix1,jx2);
1444             dy12             = _mm_sub_pd(iy1,jy2);
1445             dz12             = _mm_sub_pd(iz1,jz2);
1446             dx20             = _mm_sub_pd(ix2,jx0);
1447             dy20             = _mm_sub_pd(iy2,jy0);
1448             dz20             = _mm_sub_pd(iz2,jz0);
1449             dx21             = _mm_sub_pd(ix2,jx1);
1450             dy21             = _mm_sub_pd(iy2,jy1);
1451             dz21             = _mm_sub_pd(iz2,jz1);
1452             dx22             = _mm_sub_pd(ix2,jx2);
1453             dy22             = _mm_sub_pd(iy2,jy2);
1454             dz22             = _mm_sub_pd(iz2,jz2);
1455
1456             /* Calculate squared distance and things based on it */
1457             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1458             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1459             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1460             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1461             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1462             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1463             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1464             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1465             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1466
1467             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1468             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1469             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1470             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1471             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1472             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1473             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1474             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1475             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1476
1477             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1478             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1479             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1480             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1481             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1482             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1483             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1484             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1485             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1486
1487             fjx0             = _mm_setzero_pd();
1488             fjy0             = _mm_setzero_pd();
1489             fjz0             = _mm_setzero_pd();
1490             fjx1             = _mm_setzero_pd();
1491             fjy1             = _mm_setzero_pd();
1492             fjz1             = _mm_setzero_pd();
1493             fjx2             = _mm_setzero_pd();
1494             fjy2             = _mm_setzero_pd();
1495             fjz2             = _mm_setzero_pd();
1496
1497             /**************************
1498              * CALCULATE INTERACTIONS *
1499              **************************/
1500
1501             r00              = _mm_mul_pd(rsq00,rinv00);
1502
1503             /* EWALD ELECTROSTATICS */
1504
1505             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1506             ewrt             = _mm_mul_pd(r00,ewtabscale);
1507             ewitab           = _mm_cvttpd_epi32(ewrt);
1508 #ifdef __XOP__
1509             eweps            = _mm_frcz_pd(ewrt);
1510 #else
1511             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1512 #endif
1513             twoeweps         = _mm_add_pd(eweps,eweps);
1514             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1515                                          &ewtabF,&ewtabFn);
1516             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1517             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1518
1519             /* Analytical LJ-PME */
1520             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1521             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1522             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1523             exponent         = gmx_simd_exp_d(ewcljrsq);
1524             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1525             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1526             /* f6A = 6 * C6grid * (1 - poly) */
1527             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1528             /* f6B = C6grid * exponent * beta^6 */
1529             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1530             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1531             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1532
1533             fscal            = _mm_add_pd(felec,fvdw);
1534
1535             /* Update vectorial force */
1536             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1537             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1538             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1539             
1540             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1541             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1542             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1543
1544             /**************************
1545              * CALCULATE INTERACTIONS *
1546              **************************/
1547
1548             r01              = _mm_mul_pd(rsq01,rinv01);
1549
1550             /* EWALD ELECTROSTATICS */
1551
1552             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1553             ewrt             = _mm_mul_pd(r01,ewtabscale);
1554             ewitab           = _mm_cvttpd_epi32(ewrt);
1555 #ifdef __XOP__
1556             eweps            = _mm_frcz_pd(ewrt);
1557 #else
1558             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1559 #endif
1560             twoeweps         = _mm_add_pd(eweps,eweps);
1561             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1562                                          &ewtabF,&ewtabFn);
1563             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1564             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1565
1566             fscal            = felec;
1567
1568             /* Update vectorial force */
1569             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1570             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1571             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1572             
1573             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1574             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1575             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1576
1577             /**************************
1578              * CALCULATE INTERACTIONS *
1579              **************************/
1580
1581             r02              = _mm_mul_pd(rsq02,rinv02);
1582
1583             /* EWALD ELECTROSTATICS */
1584
1585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1586             ewrt             = _mm_mul_pd(r02,ewtabscale);
1587             ewitab           = _mm_cvttpd_epi32(ewrt);
1588 #ifdef __XOP__
1589             eweps            = _mm_frcz_pd(ewrt);
1590 #else
1591             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1592 #endif
1593             twoeweps         = _mm_add_pd(eweps,eweps);
1594             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1595                                          &ewtabF,&ewtabFn);
1596             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1597             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1598
1599             fscal            = felec;
1600
1601             /* Update vectorial force */
1602             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1603             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1604             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1605             
1606             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1607             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1608             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1609
1610             /**************************
1611              * CALCULATE INTERACTIONS *
1612              **************************/
1613
1614             r10              = _mm_mul_pd(rsq10,rinv10);
1615
1616             /* EWALD ELECTROSTATICS */
1617
1618             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1619             ewrt             = _mm_mul_pd(r10,ewtabscale);
1620             ewitab           = _mm_cvttpd_epi32(ewrt);
1621 #ifdef __XOP__
1622             eweps            = _mm_frcz_pd(ewrt);
1623 #else
1624             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1625 #endif
1626             twoeweps         = _mm_add_pd(eweps,eweps);
1627             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1628                                          &ewtabF,&ewtabFn);
1629             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1630             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1631
1632             fscal            = felec;
1633
1634             /* Update vectorial force */
1635             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1636             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1637             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1638             
1639             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1640             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1641             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1642
1643             /**************************
1644              * CALCULATE INTERACTIONS *
1645              **************************/
1646
1647             r11              = _mm_mul_pd(rsq11,rinv11);
1648
1649             /* EWALD ELECTROSTATICS */
1650
1651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1652             ewrt             = _mm_mul_pd(r11,ewtabscale);
1653             ewitab           = _mm_cvttpd_epi32(ewrt);
1654 #ifdef __XOP__
1655             eweps            = _mm_frcz_pd(ewrt);
1656 #else
1657             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1658 #endif
1659             twoeweps         = _mm_add_pd(eweps,eweps);
1660             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1661                                          &ewtabF,&ewtabFn);
1662             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1663             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1664
1665             fscal            = felec;
1666
1667             /* Update vectorial force */
1668             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1669             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1670             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1671             
1672             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1673             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1674             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1675
1676             /**************************
1677              * CALCULATE INTERACTIONS *
1678              **************************/
1679
1680             r12              = _mm_mul_pd(rsq12,rinv12);
1681
1682             /* EWALD ELECTROSTATICS */
1683
1684             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1685             ewrt             = _mm_mul_pd(r12,ewtabscale);
1686             ewitab           = _mm_cvttpd_epi32(ewrt);
1687 #ifdef __XOP__
1688             eweps            = _mm_frcz_pd(ewrt);
1689 #else
1690             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1691 #endif
1692             twoeweps         = _mm_add_pd(eweps,eweps);
1693             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1694                                          &ewtabF,&ewtabFn);
1695             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1696             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1697
1698             fscal            = felec;
1699
1700             /* Update vectorial force */
1701             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1702             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1703             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1704             
1705             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1706             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1707             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1708
1709             /**************************
1710              * CALCULATE INTERACTIONS *
1711              **************************/
1712
1713             r20              = _mm_mul_pd(rsq20,rinv20);
1714
1715             /* EWALD ELECTROSTATICS */
1716
1717             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1718             ewrt             = _mm_mul_pd(r20,ewtabscale);
1719             ewitab           = _mm_cvttpd_epi32(ewrt);
1720 #ifdef __XOP__
1721             eweps            = _mm_frcz_pd(ewrt);
1722 #else
1723             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1724 #endif
1725             twoeweps         = _mm_add_pd(eweps,eweps);
1726             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1727                                          &ewtabF,&ewtabFn);
1728             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1729             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1730
1731             fscal            = felec;
1732
1733             /* Update vectorial force */
1734             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1735             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1736             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1737             
1738             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1739             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1740             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1741
1742             /**************************
1743              * CALCULATE INTERACTIONS *
1744              **************************/
1745
1746             r21              = _mm_mul_pd(rsq21,rinv21);
1747
1748             /* EWALD ELECTROSTATICS */
1749
1750             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1751             ewrt             = _mm_mul_pd(r21,ewtabscale);
1752             ewitab           = _mm_cvttpd_epi32(ewrt);
1753 #ifdef __XOP__
1754             eweps            = _mm_frcz_pd(ewrt);
1755 #else
1756             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1757 #endif
1758             twoeweps         = _mm_add_pd(eweps,eweps);
1759             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1760                                          &ewtabF,&ewtabFn);
1761             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1762             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1763
1764             fscal            = felec;
1765
1766             /* Update vectorial force */
1767             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1768             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1769             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1770             
1771             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1772             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1773             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1774
1775             /**************************
1776              * CALCULATE INTERACTIONS *
1777              **************************/
1778
1779             r22              = _mm_mul_pd(rsq22,rinv22);
1780
1781             /* EWALD ELECTROSTATICS */
1782
1783             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1784             ewrt             = _mm_mul_pd(r22,ewtabscale);
1785             ewitab           = _mm_cvttpd_epi32(ewrt);
1786 #ifdef __XOP__
1787             eweps            = _mm_frcz_pd(ewrt);
1788 #else
1789             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1790 #endif
1791             twoeweps         = _mm_add_pd(eweps,eweps);
1792             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1793                                          &ewtabF,&ewtabFn);
1794             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1795             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1796
1797             fscal            = felec;
1798
1799             /* Update vectorial force */
1800             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1801             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1802             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1803             
1804             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1805             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1806             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1807
1808             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1809
1810             /* Inner loop uses 372 flops */
1811         }
1812
1813         if(jidx<j_index_end)
1814         {
1815
1816             jnrA             = jjnr[jidx];
1817             j_coord_offsetA  = DIM*jnrA;
1818
1819             /* load j atom coordinates */
1820             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1821                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1822
1823             /* Calculate displacement vector */
1824             dx00             = _mm_sub_pd(ix0,jx0);
1825             dy00             = _mm_sub_pd(iy0,jy0);
1826             dz00             = _mm_sub_pd(iz0,jz0);
1827             dx01             = _mm_sub_pd(ix0,jx1);
1828             dy01             = _mm_sub_pd(iy0,jy1);
1829             dz01             = _mm_sub_pd(iz0,jz1);
1830             dx02             = _mm_sub_pd(ix0,jx2);
1831             dy02             = _mm_sub_pd(iy0,jy2);
1832             dz02             = _mm_sub_pd(iz0,jz2);
1833             dx10             = _mm_sub_pd(ix1,jx0);
1834             dy10             = _mm_sub_pd(iy1,jy0);
1835             dz10             = _mm_sub_pd(iz1,jz0);
1836             dx11             = _mm_sub_pd(ix1,jx1);
1837             dy11             = _mm_sub_pd(iy1,jy1);
1838             dz11             = _mm_sub_pd(iz1,jz1);
1839             dx12             = _mm_sub_pd(ix1,jx2);
1840             dy12             = _mm_sub_pd(iy1,jy2);
1841             dz12             = _mm_sub_pd(iz1,jz2);
1842             dx20             = _mm_sub_pd(ix2,jx0);
1843             dy20             = _mm_sub_pd(iy2,jy0);
1844             dz20             = _mm_sub_pd(iz2,jz0);
1845             dx21             = _mm_sub_pd(ix2,jx1);
1846             dy21             = _mm_sub_pd(iy2,jy1);
1847             dz21             = _mm_sub_pd(iz2,jz1);
1848             dx22             = _mm_sub_pd(ix2,jx2);
1849             dy22             = _mm_sub_pd(iy2,jy2);
1850             dz22             = _mm_sub_pd(iz2,jz2);
1851
1852             /* Calculate squared distance and things based on it */
1853             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1854             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1855             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1856             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1857             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1858             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1859             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1860             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1861             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1862
1863             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1864             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1865             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1866             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1867             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1868             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1869             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1870             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1871             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1872
1873             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1874             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1875             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1876             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1877             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1878             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1879             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1880             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1881             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1882
1883             fjx0             = _mm_setzero_pd();
1884             fjy0             = _mm_setzero_pd();
1885             fjz0             = _mm_setzero_pd();
1886             fjx1             = _mm_setzero_pd();
1887             fjy1             = _mm_setzero_pd();
1888             fjz1             = _mm_setzero_pd();
1889             fjx2             = _mm_setzero_pd();
1890             fjy2             = _mm_setzero_pd();
1891             fjz2             = _mm_setzero_pd();
1892
1893             /**************************
1894              * CALCULATE INTERACTIONS *
1895              **************************/
1896
1897             r00              = _mm_mul_pd(rsq00,rinv00);
1898
1899             /* EWALD ELECTROSTATICS */
1900
1901             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1902             ewrt             = _mm_mul_pd(r00,ewtabscale);
1903             ewitab           = _mm_cvttpd_epi32(ewrt);
1904 #ifdef __XOP__
1905             eweps            = _mm_frcz_pd(ewrt);
1906 #else
1907             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1908 #endif
1909             twoeweps         = _mm_add_pd(eweps,eweps);
1910             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1911             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1912             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1913
1914             /* Analytical LJ-PME */
1915             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1916             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1917             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1918             exponent         = gmx_simd_exp_d(ewcljrsq);
1919             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1920             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1921             /* f6A = 6 * C6grid * (1 - poly) */
1922             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1923             /* f6B = C6grid * exponent * beta^6 */
1924             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1925             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1926             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1927
1928             fscal            = _mm_add_pd(felec,fvdw);
1929
1930             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1931
1932             /* Update vectorial force */
1933             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1934             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1935             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1936             
1937             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1938             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1939             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1940
1941             /**************************
1942              * CALCULATE INTERACTIONS *
1943              **************************/
1944
1945             r01              = _mm_mul_pd(rsq01,rinv01);
1946
1947             /* EWALD ELECTROSTATICS */
1948
1949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1950             ewrt             = _mm_mul_pd(r01,ewtabscale);
1951             ewitab           = _mm_cvttpd_epi32(ewrt);
1952 #ifdef __XOP__
1953             eweps            = _mm_frcz_pd(ewrt);
1954 #else
1955             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1956 #endif
1957             twoeweps         = _mm_add_pd(eweps,eweps);
1958             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1959             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1960             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1961
1962             fscal            = felec;
1963
1964             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1965
1966             /* Update vectorial force */
1967             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1968             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1969             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1970             
1971             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1972             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1973             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1974
1975             /**************************
1976              * CALCULATE INTERACTIONS *
1977              **************************/
1978
1979             r02              = _mm_mul_pd(rsq02,rinv02);
1980
1981             /* EWALD ELECTROSTATICS */
1982
1983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1984             ewrt             = _mm_mul_pd(r02,ewtabscale);
1985             ewitab           = _mm_cvttpd_epi32(ewrt);
1986 #ifdef __XOP__
1987             eweps            = _mm_frcz_pd(ewrt);
1988 #else
1989             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1990 #endif
1991             twoeweps         = _mm_add_pd(eweps,eweps);
1992             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1993             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1994             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1995
1996             fscal            = felec;
1997
1998             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1999
2000             /* Update vectorial force */
2001             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2002             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2003             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2004             
2005             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2006             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2007             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2008
2009             /**************************
2010              * CALCULATE INTERACTIONS *
2011              **************************/
2012
2013             r10              = _mm_mul_pd(rsq10,rinv10);
2014
2015             /* EWALD ELECTROSTATICS */
2016
2017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2018             ewrt             = _mm_mul_pd(r10,ewtabscale);
2019             ewitab           = _mm_cvttpd_epi32(ewrt);
2020 #ifdef __XOP__
2021             eweps            = _mm_frcz_pd(ewrt);
2022 #else
2023             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2024 #endif
2025             twoeweps         = _mm_add_pd(eweps,eweps);
2026             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2027             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2028             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2029
2030             fscal            = felec;
2031
2032             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2033
2034             /* Update vectorial force */
2035             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2036             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2037             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2038             
2039             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2040             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2041             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2042
2043             /**************************
2044              * CALCULATE INTERACTIONS *
2045              **************************/
2046
2047             r11              = _mm_mul_pd(rsq11,rinv11);
2048
2049             /* EWALD ELECTROSTATICS */
2050
2051             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2052             ewrt             = _mm_mul_pd(r11,ewtabscale);
2053             ewitab           = _mm_cvttpd_epi32(ewrt);
2054 #ifdef __XOP__
2055             eweps            = _mm_frcz_pd(ewrt);
2056 #else
2057             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2058 #endif
2059             twoeweps         = _mm_add_pd(eweps,eweps);
2060             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2061             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2062             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2063
2064             fscal            = felec;
2065
2066             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2067
2068             /* Update vectorial force */
2069             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2070             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2071             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2072             
2073             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2074             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2075             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2076
2077             /**************************
2078              * CALCULATE INTERACTIONS *
2079              **************************/
2080
2081             r12              = _mm_mul_pd(rsq12,rinv12);
2082
2083             /* EWALD ELECTROSTATICS */
2084
2085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2086             ewrt             = _mm_mul_pd(r12,ewtabscale);
2087             ewitab           = _mm_cvttpd_epi32(ewrt);
2088 #ifdef __XOP__
2089             eweps            = _mm_frcz_pd(ewrt);
2090 #else
2091             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2092 #endif
2093             twoeweps         = _mm_add_pd(eweps,eweps);
2094             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2095             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2096             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2097
2098             fscal            = felec;
2099
2100             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2101
2102             /* Update vectorial force */
2103             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2104             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2105             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2106             
2107             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2108             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2109             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2110
2111             /**************************
2112              * CALCULATE INTERACTIONS *
2113              **************************/
2114
2115             r20              = _mm_mul_pd(rsq20,rinv20);
2116
2117             /* EWALD ELECTROSTATICS */
2118
2119             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2120             ewrt             = _mm_mul_pd(r20,ewtabscale);
2121             ewitab           = _mm_cvttpd_epi32(ewrt);
2122 #ifdef __XOP__
2123             eweps            = _mm_frcz_pd(ewrt);
2124 #else
2125             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2126 #endif
2127             twoeweps         = _mm_add_pd(eweps,eweps);
2128             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2129             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2130             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2131
2132             fscal            = felec;
2133
2134             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2135
2136             /* Update vectorial force */
2137             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2138             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2139             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2140             
2141             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2142             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2143             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2144
2145             /**************************
2146              * CALCULATE INTERACTIONS *
2147              **************************/
2148
2149             r21              = _mm_mul_pd(rsq21,rinv21);
2150
2151             /* EWALD ELECTROSTATICS */
2152
2153             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2154             ewrt             = _mm_mul_pd(r21,ewtabscale);
2155             ewitab           = _mm_cvttpd_epi32(ewrt);
2156 #ifdef __XOP__
2157             eweps            = _mm_frcz_pd(ewrt);
2158 #else
2159             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2160 #endif
2161             twoeweps         = _mm_add_pd(eweps,eweps);
2162             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2163             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2164             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2165
2166             fscal            = felec;
2167
2168             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2169
2170             /* Update vectorial force */
2171             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2172             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2173             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2174             
2175             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2176             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2177             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2178
2179             /**************************
2180              * CALCULATE INTERACTIONS *
2181              **************************/
2182
2183             r22              = _mm_mul_pd(rsq22,rinv22);
2184
2185             /* EWALD ELECTROSTATICS */
2186
2187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2188             ewrt             = _mm_mul_pd(r22,ewtabscale);
2189             ewitab           = _mm_cvttpd_epi32(ewrt);
2190 #ifdef __XOP__
2191             eweps            = _mm_frcz_pd(ewrt);
2192 #else
2193             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2194 #endif
2195             twoeweps         = _mm_add_pd(eweps,eweps);
2196             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2197             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2198             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2199
2200             fscal            = felec;
2201
2202             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2203
2204             /* Update vectorial force */
2205             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2206             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2207             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2208             
2209             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2210             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2211             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2212
2213             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2214
2215             /* Inner loop uses 372 flops */
2216         }
2217
2218         /* End of innermost loop */
2219
2220         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2221                                               f+i_coord_offset,fshift+i_shift_offset);
2222
2223         /* Increment number of inner iterations */
2224         inneriter                  += j_index_end - j_index_start;
2225
2226         /* Outer loop uses 18 flops */
2227     }
2228
2229     /* Increment number of outer iterations */
2230     outeriter        += nri;
2231
2232     /* Update outer/inner flops */
2233
2234     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*372);
2235 }