Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128d           c6grid_00;
99     __m128d           c6grid_10;
100     __m128d           c6grid_20;
101     real             *vdwgridparam;
102     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
103     __m128d           one_half  = _mm_set1_pd(0.5);
104     __m128d           minus_one = _mm_set1_pd(-1.0);
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128     vdwgridparam     = fr->ljpme_c6grid;
129     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
130     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
131     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
141     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
142     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_pd();
183         vvdwsum          = _mm_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194
195             /* load j atom coordinates */
196             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_pd(ix0,jx0);
201             dy00             = _mm_sub_pd(iy0,jy0);
202             dz00             = _mm_sub_pd(iz0,jz0);
203             dx10             = _mm_sub_pd(ix1,jx0);
204             dy10             = _mm_sub_pd(iy1,jy0);
205             dz10             = _mm_sub_pd(iz1,jz0);
206             dx20             = _mm_sub_pd(ix2,jx0);
207             dy20             = _mm_sub_pd(iy2,jy0);
208             dz20             = _mm_sub_pd(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
214
215             rinv00           = avx128fma_invsqrt_d(rsq00);
216             rinv10           = avx128fma_invsqrt_d(rsq10);
217             rinv20           = avx128fma_invsqrt_d(rsq20);
218
219             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
220             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227
228             fjx0             = _mm_setzero_pd();
229             fjy0             = _mm_setzero_pd();
230             fjz0             = _mm_setzero_pd();
231
232             /**************************
233              * CALCULATE INTERACTIONS *
234              **************************/
235
236             r00              = _mm_mul_pd(rsq00,rinv00);
237
238             /* Compute parameters for interactions between i and j atoms */
239             qq00             = _mm_mul_pd(iq0,jq0);
240             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
241                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
242             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
243                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
244
245             /* EWALD ELECTROSTATICS */
246
247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
248             ewrt             = _mm_mul_pd(r00,ewtabscale);
249             ewitab           = _mm_cvttpd_epi32(ewrt);
250 #ifdef __XOP__
251             eweps            = _mm_frcz_pd(ewrt);
252 #else
253             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
254 #endif
255             twoeweps         = _mm_add_pd(eweps,eweps);
256             ewitab           = _mm_slli_epi32(ewitab,2);
257             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
258             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
259             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
260             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
261             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
262             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
263             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
264             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
265             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
266             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
267
268             /* Analytical LJ-PME */
269             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
270             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
271             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
272             exponent         = avx128fma_exp_d(ewcljrsq);
273             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
274             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
275             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
276             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
277             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
278             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
279             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
280             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
281
282             /* Update potential sum for this i atom from the interaction with this j atom. */
283             velecsum         = _mm_add_pd(velecsum,velec);
284             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
285
286             fscal            = _mm_add_pd(felec,fvdw);
287
288             /* Update vectorial force */
289             fix0             = _mm_macc_pd(dx00,fscal,fix0);
290             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
292             
293             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
294             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
295             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             r10              = _mm_mul_pd(rsq10,rinv10);
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_pd(iq1,jq0);
305
306             /* EWALD ELECTROSTATICS */
307
308             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
309             ewrt             = _mm_mul_pd(r10,ewtabscale);
310             ewitab           = _mm_cvttpd_epi32(ewrt);
311 #ifdef __XOP__
312             eweps            = _mm_frcz_pd(ewrt);
313 #else
314             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
315 #endif
316             twoeweps         = _mm_add_pd(eweps,eweps);
317             ewitab           = _mm_slli_epi32(ewitab,2);
318             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
319             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
320             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
321             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
322             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
323             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
324             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
325             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
326             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
327             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_pd(velecsum,velec);
331
332             fscal            = felec;
333
334             /* Update vectorial force */
335             fix1             = _mm_macc_pd(dx10,fscal,fix1);
336             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
337             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
338             
339             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
340             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
341             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             r20              = _mm_mul_pd(rsq20,rinv20);
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_pd(iq2,jq0);
351
352             /* EWALD ELECTROSTATICS */
353
354             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355             ewrt             = _mm_mul_pd(r20,ewtabscale);
356             ewitab           = _mm_cvttpd_epi32(ewrt);
357 #ifdef __XOP__
358             eweps            = _mm_frcz_pd(ewrt);
359 #else
360             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
361 #endif
362             twoeweps         = _mm_add_pd(eweps,eweps);
363             ewitab           = _mm_slli_epi32(ewitab,2);
364             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
365             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
366             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
367             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
368             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
369             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
370             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
371             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
372             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
373             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velecsum         = _mm_add_pd(velecsum,velec);
377
378             fscal            = felec;
379
380             /* Update vectorial force */
381             fix2             = _mm_macc_pd(dx20,fscal,fix2);
382             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
383             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
384             
385             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
386             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
387             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
388
389             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
390
391             /* Inner loop uses 159 flops */
392         }
393
394         if(jidx<j_index_end)
395         {
396
397             jnrA             = jjnr[jidx];
398             j_coord_offsetA  = DIM*jnrA;
399
400             /* load j atom coordinates */
401             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
402                                               &jx0,&jy0,&jz0);
403
404             /* Calculate displacement vector */
405             dx00             = _mm_sub_pd(ix0,jx0);
406             dy00             = _mm_sub_pd(iy0,jy0);
407             dz00             = _mm_sub_pd(iz0,jz0);
408             dx10             = _mm_sub_pd(ix1,jx0);
409             dy10             = _mm_sub_pd(iy1,jy0);
410             dz10             = _mm_sub_pd(iz1,jz0);
411             dx20             = _mm_sub_pd(ix2,jx0);
412             dy20             = _mm_sub_pd(iy2,jy0);
413             dz20             = _mm_sub_pd(iz2,jz0);
414
415             /* Calculate squared distance and things based on it */
416             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
417             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
418             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
419
420             rinv00           = avx128fma_invsqrt_d(rsq00);
421             rinv10           = avx128fma_invsqrt_d(rsq10);
422             rinv20           = avx128fma_invsqrt_d(rsq20);
423
424             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
425             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
426             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
427
428             /* Load parameters for j particles */
429             jq0              = _mm_load_sd(charge+jnrA+0);
430             vdwjidx0A        = 2*vdwtype[jnrA+0];
431
432             fjx0             = _mm_setzero_pd();
433             fjy0             = _mm_setzero_pd();
434             fjz0             = _mm_setzero_pd();
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             r00              = _mm_mul_pd(rsq00,rinv00);
441
442             /* Compute parameters for interactions between i and j atoms */
443             qq00             = _mm_mul_pd(iq0,jq0);
444             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
445             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
446
447             /* EWALD ELECTROSTATICS */
448
449             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
450             ewrt             = _mm_mul_pd(r00,ewtabscale);
451             ewitab           = _mm_cvttpd_epi32(ewrt);
452 #ifdef __XOP__
453             eweps            = _mm_frcz_pd(ewrt);
454 #else
455             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
456 #endif
457             twoeweps         = _mm_add_pd(eweps,eweps);
458             ewitab           = _mm_slli_epi32(ewitab,2);
459             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
460             ewtabD           = _mm_setzero_pd();
461             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
462             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
463             ewtabFn          = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
465             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
466             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
467             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
468             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
469
470             /* Analytical LJ-PME */
471             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
472             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
473             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
474             exponent         = avx128fma_exp_d(ewcljrsq);
475             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
476             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
477             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
478             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
479             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
480             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
481             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
482             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
483
484             /* Update potential sum for this i atom from the interaction with this j atom. */
485             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
486             velecsum         = _mm_add_pd(velecsum,velec);
487             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
488             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
489
490             fscal            = _mm_add_pd(felec,fvdw);
491
492             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
493
494             /* Update vectorial force */
495             fix0             = _mm_macc_pd(dx00,fscal,fix0);
496             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
497             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
498             
499             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
500             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
501             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
502
503             /**************************
504              * CALCULATE INTERACTIONS *
505              **************************/
506
507             r10              = _mm_mul_pd(rsq10,rinv10);
508
509             /* Compute parameters for interactions between i and j atoms */
510             qq10             = _mm_mul_pd(iq1,jq0);
511
512             /* EWALD ELECTROSTATICS */
513
514             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
515             ewrt             = _mm_mul_pd(r10,ewtabscale);
516             ewitab           = _mm_cvttpd_epi32(ewrt);
517 #ifdef __XOP__
518             eweps            = _mm_frcz_pd(ewrt);
519 #else
520             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
521 #endif
522             twoeweps         = _mm_add_pd(eweps,eweps);
523             ewitab           = _mm_slli_epi32(ewitab,2);
524             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
525             ewtabD           = _mm_setzero_pd();
526             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
527             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
528             ewtabFn          = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
530             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
531             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
532             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
533             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
537             velecsum         = _mm_add_pd(velecsum,velec);
538
539             fscal            = felec;
540
541             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
542
543             /* Update vectorial force */
544             fix1             = _mm_macc_pd(dx10,fscal,fix1);
545             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
546             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
547             
548             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
549             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
550             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             r20              = _mm_mul_pd(rsq20,rinv20);
557
558             /* Compute parameters for interactions between i and j atoms */
559             qq20             = _mm_mul_pd(iq2,jq0);
560
561             /* EWALD ELECTROSTATICS */
562
563             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
564             ewrt             = _mm_mul_pd(r20,ewtabscale);
565             ewitab           = _mm_cvttpd_epi32(ewrt);
566 #ifdef __XOP__
567             eweps            = _mm_frcz_pd(ewrt);
568 #else
569             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
570 #endif
571             twoeweps         = _mm_add_pd(eweps,eweps);
572             ewitab           = _mm_slli_epi32(ewitab,2);
573             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
574             ewtabD           = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
576             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
577             ewtabFn          = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
579             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
580             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
581             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
582             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
586             velecsum         = _mm_add_pd(velecsum,velec);
587
588             fscal            = felec;
589
590             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
591
592             /* Update vectorial force */
593             fix2             = _mm_macc_pd(dx20,fscal,fix2);
594             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
595             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
596             
597             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
598             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
599             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
600
601             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
602
603             /* Inner loop uses 159 flops */
604         }
605
606         /* End of innermost loop */
607
608         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
609                                               f+i_coord_offset,fshift+i_shift_offset);
610
611         ggid                        = gid[iidx];
612         /* Update potential energies */
613         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
614         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 20 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
628 }
629 /*
630  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
631  * Electrostatics interaction: Ewald
632  * VdW interaction:            LJEwald
633  * Geometry:                   Water3-Particle
634  * Calculate force/pot:        Force
635  */
636 void
637 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
638                     (t_nblist                    * gmx_restrict       nlist,
639                      rvec                        * gmx_restrict          xx,
640                      rvec                        * gmx_restrict          ff,
641                      struct t_forcerec           * gmx_restrict          fr,
642                      t_mdatoms                   * gmx_restrict     mdatoms,
643                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
644                      t_nrnb                      * gmx_restrict        nrnb)
645 {
646     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
647      * just 0 for non-waters.
648      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
649      * jnr indices corresponding to data put in the four positions in the SIMD register.
650      */
651     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
652     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
653     int              jnrA,jnrB;
654     int              j_coord_offsetA,j_coord_offsetB;
655     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
656     real             rcutoff_scalar;
657     real             *shiftvec,*fshift,*x,*f;
658     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
659     int              vdwioffset0;
660     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
661     int              vdwioffset1;
662     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
663     int              vdwioffset2;
664     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
665     int              vdwjidx0A,vdwjidx0B;
666     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
667     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
668     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
669     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
670     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
671     real             *charge;
672     int              nvdwtype;
673     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
674     int              *vdwtype;
675     real             *vdwparam;
676     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
677     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
678     __m128d           c6grid_00;
679     __m128d           c6grid_10;
680     __m128d           c6grid_20;
681     real             *vdwgridparam;
682     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
683     __m128d           one_half  = _mm_set1_pd(0.5);
684     __m128d           minus_one = _mm_set1_pd(-1.0);
685     __m128i          ewitab;
686     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
687     real             *ewtab;
688     __m128d          dummy_mask,cutoff_mask;
689     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
690     __m128d          one     = _mm_set1_pd(1.0);
691     __m128d          two     = _mm_set1_pd(2.0);
692     x                = xx[0];
693     f                = ff[0];
694
695     nri              = nlist->nri;
696     iinr             = nlist->iinr;
697     jindex           = nlist->jindex;
698     jjnr             = nlist->jjnr;
699     shiftidx         = nlist->shift;
700     gid              = nlist->gid;
701     shiftvec         = fr->shift_vec[0];
702     fshift           = fr->fshift[0];
703     facel            = _mm_set1_pd(fr->ic->epsfac);
704     charge           = mdatoms->chargeA;
705     nvdwtype         = fr->ntype;
706     vdwparam         = fr->nbfp;
707     vdwtype          = mdatoms->typeA;
708     vdwgridparam     = fr->ljpme_c6grid;
709     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
710     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
711     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
712
713     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
714     ewtab            = fr->ic->tabq_coul_F;
715     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
716     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
717
718     /* Setup water-specific parameters */
719     inr              = nlist->iinr[0];
720     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
721     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
722     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
723     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
724
725     /* Avoid stupid compiler warnings */
726     jnrA = jnrB = 0;
727     j_coord_offsetA = 0;
728     j_coord_offsetB = 0;
729
730     outeriter        = 0;
731     inneriter        = 0;
732
733     /* Start outer loop over neighborlists */
734     for(iidx=0; iidx<nri; iidx++)
735     {
736         /* Load shift vector for this list */
737         i_shift_offset   = DIM*shiftidx[iidx];
738
739         /* Load limits for loop over neighbors */
740         j_index_start    = jindex[iidx];
741         j_index_end      = jindex[iidx+1];
742
743         /* Get outer coordinate index */
744         inr              = iinr[iidx];
745         i_coord_offset   = DIM*inr;
746
747         /* Load i particle coords and add shift vector */
748         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
749                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
750
751         fix0             = _mm_setzero_pd();
752         fiy0             = _mm_setzero_pd();
753         fiz0             = _mm_setzero_pd();
754         fix1             = _mm_setzero_pd();
755         fiy1             = _mm_setzero_pd();
756         fiz1             = _mm_setzero_pd();
757         fix2             = _mm_setzero_pd();
758         fiy2             = _mm_setzero_pd();
759         fiz2             = _mm_setzero_pd();
760
761         /* Start inner kernel loop */
762         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
763         {
764
765             /* Get j neighbor index, and coordinate index */
766             jnrA             = jjnr[jidx];
767             jnrB             = jjnr[jidx+1];
768             j_coord_offsetA  = DIM*jnrA;
769             j_coord_offsetB  = DIM*jnrB;
770
771             /* load j atom coordinates */
772             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
773                                               &jx0,&jy0,&jz0);
774
775             /* Calculate displacement vector */
776             dx00             = _mm_sub_pd(ix0,jx0);
777             dy00             = _mm_sub_pd(iy0,jy0);
778             dz00             = _mm_sub_pd(iz0,jz0);
779             dx10             = _mm_sub_pd(ix1,jx0);
780             dy10             = _mm_sub_pd(iy1,jy0);
781             dz10             = _mm_sub_pd(iz1,jz0);
782             dx20             = _mm_sub_pd(ix2,jx0);
783             dy20             = _mm_sub_pd(iy2,jy0);
784             dz20             = _mm_sub_pd(iz2,jz0);
785
786             /* Calculate squared distance and things based on it */
787             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
788             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
789             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
790
791             rinv00           = avx128fma_invsqrt_d(rsq00);
792             rinv10           = avx128fma_invsqrt_d(rsq10);
793             rinv20           = avx128fma_invsqrt_d(rsq20);
794
795             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
796             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
797             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
798
799             /* Load parameters for j particles */
800             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
801             vdwjidx0A        = 2*vdwtype[jnrA+0];
802             vdwjidx0B        = 2*vdwtype[jnrB+0];
803
804             fjx0             = _mm_setzero_pd();
805             fjy0             = _mm_setzero_pd();
806             fjz0             = _mm_setzero_pd();
807
808             /**************************
809              * CALCULATE INTERACTIONS *
810              **************************/
811
812             r00              = _mm_mul_pd(rsq00,rinv00);
813
814             /* Compute parameters for interactions between i and j atoms */
815             qq00             = _mm_mul_pd(iq0,jq0);
816             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
817                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
818             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
819                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
820
821             /* EWALD ELECTROSTATICS */
822
823             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
824             ewrt             = _mm_mul_pd(r00,ewtabscale);
825             ewitab           = _mm_cvttpd_epi32(ewrt);
826 #ifdef __XOP__
827             eweps            = _mm_frcz_pd(ewrt);
828 #else
829             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
830 #endif
831             twoeweps         = _mm_add_pd(eweps,eweps);
832             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
833                                          &ewtabF,&ewtabFn);
834             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
835             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
836
837             /* Analytical LJ-PME */
838             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
839             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
840             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
841             exponent         = avx128fma_exp_d(ewcljrsq);
842             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
843             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
844             /* f6A = 6 * C6grid * (1 - poly) */
845             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
846             /* f6B = C6grid * exponent * beta^6 */
847             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
848             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
849             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
850
851             fscal            = _mm_add_pd(felec,fvdw);
852
853             /* Update vectorial force */
854             fix0             = _mm_macc_pd(dx00,fscal,fix0);
855             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
856             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
857             
858             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
859             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
860             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             r10              = _mm_mul_pd(rsq10,rinv10);
867
868             /* Compute parameters for interactions between i and j atoms */
869             qq10             = _mm_mul_pd(iq1,jq0);
870
871             /* EWALD ELECTROSTATICS */
872
873             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
874             ewrt             = _mm_mul_pd(r10,ewtabscale);
875             ewitab           = _mm_cvttpd_epi32(ewrt);
876 #ifdef __XOP__
877             eweps            = _mm_frcz_pd(ewrt);
878 #else
879             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
880 #endif
881             twoeweps         = _mm_add_pd(eweps,eweps);
882             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
883                                          &ewtabF,&ewtabFn);
884             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
885             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
886
887             fscal            = felec;
888
889             /* Update vectorial force */
890             fix1             = _mm_macc_pd(dx10,fscal,fix1);
891             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
892             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
893             
894             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
895             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
896             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
897
898             /**************************
899              * CALCULATE INTERACTIONS *
900              **************************/
901
902             r20              = _mm_mul_pd(rsq20,rinv20);
903
904             /* Compute parameters for interactions between i and j atoms */
905             qq20             = _mm_mul_pd(iq2,jq0);
906
907             /* EWALD ELECTROSTATICS */
908
909             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
910             ewrt             = _mm_mul_pd(r20,ewtabscale);
911             ewitab           = _mm_cvttpd_epi32(ewrt);
912 #ifdef __XOP__
913             eweps            = _mm_frcz_pd(ewrt);
914 #else
915             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
916 #endif
917             twoeweps         = _mm_add_pd(eweps,eweps);
918             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
919                                          &ewtabF,&ewtabFn);
920             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
921             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
922
923             fscal            = felec;
924
925             /* Update vectorial force */
926             fix2             = _mm_macc_pd(dx20,fscal,fix2);
927             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
928             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
929             
930             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
931             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
932             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
933
934             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
935
936             /* Inner loop uses 141 flops */
937         }
938
939         if(jidx<j_index_end)
940         {
941
942             jnrA             = jjnr[jidx];
943             j_coord_offsetA  = DIM*jnrA;
944
945             /* load j atom coordinates */
946             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
947                                               &jx0,&jy0,&jz0);
948
949             /* Calculate displacement vector */
950             dx00             = _mm_sub_pd(ix0,jx0);
951             dy00             = _mm_sub_pd(iy0,jy0);
952             dz00             = _mm_sub_pd(iz0,jz0);
953             dx10             = _mm_sub_pd(ix1,jx0);
954             dy10             = _mm_sub_pd(iy1,jy0);
955             dz10             = _mm_sub_pd(iz1,jz0);
956             dx20             = _mm_sub_pd(ix2,jx0);
957             dy20             = _mm_sub_pd(iy2,jy0);
958             dz20             = _mm_sub_pd(iz2,jz0);
959
960             /* Calculate squared distance and things based on it */
961             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
962             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
963             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
964
965             rinv00           = avx128fma_invsqrt_d(rsq00);
966             rinv10           = avx128fma_invsqrt_d(rsq10);
967             rinv20           = avx128fma_invsqrt_d(rsq20);
968
969             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
970             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
971             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
972
973             /* Load parameters for j particles */
974             jq0              = _mm_load_sd(charge+jnrA+0);
975             vdwjidx0A        = 2*vdwtype[jnrA+0];
976
977             fjx0             = _mm_setzero_pd();
978             fjy0             = _mm_setzero_pd();
979             fjz0             = _mm_setzero_pd();
980
981             /**************************
982              * CALCULATE INTERACTIONS *
983              **************************/
984
985             r00              = _mm_mul_pd(rsq00,rinv00);
986
987             /* Compute parameters for interactions between i and j atoms */
988             qq00             = _mm_mul_pd(iq0,jq0);
989             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
990             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
991
992             /* EWALD ELECTROSTATICS */
993
994             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995             ewrt             = _mm_mul_pd(r00,ewtabscale);
996             ewitab           = _mm_cvttpd_epi32(ewrt);
997 #ifdef __XOP__
998             eweps            = _mm_frcz_pd(ewrt);
999 #else
1000             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1001 #endif
1002             twoeweps         = _mm_add_pd(eweps,eweps);
1003             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1004             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1005             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1006
1007             /* Analytical LJ-PME */
1008             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1009             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1010             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1011             exponent         = avx128fma_exp_d(ewcljrsq);
1012             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1013             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1014             /* f6A = 6 * C6grid * (1 - poly) */
1015             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1016             /* f6B = C6grid * exponent * beta^6 */
1017             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1018             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1019             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1020
1021             fscal            = _mm_add_pd(felec,fvdw);
1022
1023             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1024
1025             /* Update vectorial force */
1026             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1027             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1028             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1029             
1030             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1031             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1032             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1033
1034             /**************************
1035              * CALCULATE INTERACTIONS *
1036              **************************/
1037
1038             r10              = _mm_mul_pd(rsq10,rinv10);
1039
1040             /* Compute parameters for interactions between i and j atoms */
1041             qq10             = _mm_mul_pd(iq1,jq0);
1042
1043             /* EWALD ELECTROSTATICS */
1044
1045             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1046             ewrt             = _mm_mul_pd(r10,ewtabscale);
1047             ewitab           = _mm_cvttpd_epi32(ewrt);
1048 #ifdef __XOP__
1049             eweps            = _mm_frcz_pd(ewrt);
1050 #else
1051             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1052 #endif
1053             twoeweps         = _mm_add_pd(eweps,eweps);
1054             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1055             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1056             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1061
1062             /* Update vectorial force */
1063             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1064             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1065             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1066             
1067             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1068             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1069             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1070
1071             /**************************
1072              * CALCULATE INTERACTIONS *
1073              **************************/
1074
1075             r20              = _mm_mul_pd(rsq20,rinv20);
1076
1077             /* Compute parameters for interactions between i and j atoms */
1078             qq20             = _mm_mul_pd(iq2,jq0);
1079
1080             /* EWALD ELECTROSTATICS */
1081
1082             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1083             ewrt             = _mm_mul_pd(r20,ewtabscale);
1084             ewitab           = _mm_cvttpd_epi32(ewrt);
1085 #ifdef __XOP__
1086             eweps            = _mm_frcz_pd(ewrt);
1087 #else
1088             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1089 #endif
1090             twoeweps         = _mm_add_pd(eweps,eweps);
1091             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1092             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1093             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1094
1095             fscal            = felec;
1096
1097             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1098
1099             /* Update vectorial force */
1100             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1101             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1102             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1103             
1104             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1105             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1106             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1107
1108             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1109
1110             /* Inner loop uses 141 flops */
1111         }
1112
1113         /* End of innermost loop */
1114
1115         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1116                                               f+i_coord_offset,fshift+i_shift_offset);
1117
1118         /* Increment number of inner iterations */
1119         inneriter                  += j_index_end - j_index_start;
1120
1121         /* Outer loop uses 18 flops */
1122     }
1123
1124     /* Increment number of outer iterations */
1125     outeriter        += nri;
1126
1127     /* Update outer/inner flops */
1128
1129     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*141);
1130 }