d652a679f2acda846f277e4ff9bc945732c13085
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128d           c6grid_00;
100     __m128d           c6grid_10;
101     __m128d           c6grid_20;
102     real             *vdwgridparam;
103     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
104     __m128d           one_half  = _mm_set1_pd(0.5);
105     __m128d           minus_one = _mm_set1_pd(-1.0);
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129     vdwgridparam     = fr->ljpme_c6grid;
130     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
131     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
132     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
133
134     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
135     ewtab            = fr->ic->tabq_coul_FDV0;
136     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
137     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
138
139     /* Setup water-specific parameters */
140     inr              = nlist->iinr[0];
141     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146     /* Avoid stupid compiler warnings */
147     jnrA = jnrB = 0;
148     j_coord_offsetA = 0;
149     j_coord_offsetB = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_pd();
173         fiy0             = _mm_setzero_pd();
174         fiz0             = _mm_setzero_pd();
175         fix1             = _mm_setzero_pd();
176         fiy1             = _mm_setzero_pd();
177         fiz1             = _mm_setzero_pd();
178         fix2             = _mm_setzero_pd();
179         fiy2             = _mm_setzero_pd();
180         fiz2             = _mm_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_pd();
184         vvdwsum          = _mm_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               &jx0,&jy0,&jz0);
199
200             /* Calculate displacement vector */
201             dx00             = _mm_sub_pd(ix0,jx0);
202             dy00             = _mm_sub_pd(iy0,jy0);
203             dz00             = _mm_sub_pd(iz0,jz0);
204             dx10             = _mm_sub_pd(ix1,jx0);
205             dy10             = _mm_sub_pd(iy1,jy0);
206             dz10             = _mm_sub_pd(iz1,jz0);
207             dx20             = _mm_sub_pd(ix2,jx0);
208             dy20             = _mm_sub_pd(iy2,jy0);
209             dz20             = _mm_sub_pd(iz2,jz0);
210
211             /* Calculate squared distance and things based on it */
212             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
213             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
214             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
215
216             rinv00           = gmx_mm_invsqrt_pd(rsq00);
217             rinv10           = gmx_mm_invsqrt_pd(rsq10);
218             rinv20           = gmx_mm_invsqrt_pd(rsq20);
219
220             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
221             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
222             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228
229             fjx0             = _mm_setzero_pd();
230             fjy0             = _mm_setzero_pd();
231             fjz0             = _mm_setzero_pd();
232
233             /**************************
234              * CALCULATE INTERACTIONS *
235              **************************/
236
237             r00              = _mm_mul_pd(rsq00,rinv00);
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_pd(iq0,jq0);
241             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
243             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
244                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
245
246             /* EWALD ELECTROSTATICS */
247
248             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
249             ewrt             = _mm_mul_pd(r00,ewtabscale);
250             ewitab           = _mm_cvttpd_epi32(ewrt);
251 #ifdef __XOP__
252             eweps            = _mm_frcz_pd(ewrt);
253 #else
254             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
255 #endif
256             twoeweps         = _mm_add_pd(eweps,eweps);
257             ewitab           = _mm_slli_epi32(ewitab,2);
258             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
259             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
260             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
261             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
262             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
263             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
264             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
265             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
266             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
267             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
268
269             /* Analytical LJ-PME */
270             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
271             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
272             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
273             exponent         = gmx_simd_exp_d(ewcljrsq);
274             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
275             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
276             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
277             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
278             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
279             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
280             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
281             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm_add_pd(velecsum,velec);
285             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
286
287             fscal            = _mm_add_pd(felec,fvdw);
288
289             /* Update vectorial force */
290             fix0             = _mm_macc_pd(dx00,fscal,fix0);
291             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
292             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
293             
294             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
295             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
296             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
297
298             /**************************
299              * CALCULATE INTERACTIONS *
300              **************************/
301
302             r10              = _mm_mul_pd(rsq10,rinv10);
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm_mul_pd(iq1,jq0);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r10,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312 #ifdef __XOP__
313             eweps            = _mm_frcz_pd(ewrt);
314 #else
315             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
316 #endif
317             twoeweps         = _mm_add_pd(eweps,eweps);
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
321             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
322             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
323             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
324             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
325             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
326             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
327             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
328             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
329
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm_add_pd(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Update vectorial force */
336             fix1             = _mm_macc_pd(dx10,fscal,fix1);
337             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
338             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
339             
340             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
341             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
342             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r20              = _mm_mul_pd(rsq20,rinv20);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq20             = _mm_mul_pd(iq2,jq0);
352
353             /* EWALD ELECTROSTATICS */
354
355             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356             ewrt             = _mm_mul_pd(r20,ewtabscale);
357             ewitab           = _mm_cvttpd_epi32(ewrt);
358 #ifdef __XOP__
359             eweps            = _mm_frcz_pd(ewrt);
360 #else
361             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
362 #endif
363             twoeweps         = _mm_add_pd(eweps,eweps);
364             ewitab           = _mm_slli_epi32(ewitab,2);
365             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
366             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
367             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
368             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
369             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
370             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
371             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
372             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
373             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
374             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
375
376             /* Update potential sum for this i atom from the interaction with this j atom. */
377             velecsum         = _mm_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             /* Update vectorial force */
382             fix2             = _mm_macc_pd(dx20,fscal,fix2);
383             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
384             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
385             
386             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
387             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
388             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
389
390             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
391
392             /* Inner loop uses 159 flops */
393         }
394
395         if(jidx<j_index_end)
396         {
397
398             jnrA             = jjnr[jidx];
399             j_coord_offsetA  = DIM*jnrA;
400
401             /* load j atom coordinates */
402             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
403                                               &jx0,&jy0,&jz0);
404
405             /* Calculate displacement vector */
406             dx00             = _mm_sub_pd(ix0,jx0);
407             dy00             = _mm_sub_pd(iy0,jy0);
408             dz00             = _mm_sub_pd(iz0,jz0);
409             dx10             = _mm_sub_pd(ix1,jx0);
410             dy10             = _mm_sub_pd(iy1,jy0);
411             dz10             = _mm_sub_pd(iz1,jz0);
412             dx20             = _mm_sub_pd(ix2,jx0);
413             dy20             = _mm_sub_pd(iy2,jy0);
414             dz20             = _mm_sub_pd(iz2,jz0);
415
416             /* Calculate squared distance and things based on it */
417             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
418             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
419             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
420
421             rinv00           = gmx_mm_invsqrt_pd(rsq00);
422             rinv10           = gmx_mm_invsqrt_pd(rsq10);
423             rinv20           = gmx_mm_invsqrt_pd(rsq20);
424
425             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
426             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
427             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
428
429             /* Load parameters for j particles */
430             jq0              = _mm_load_sd(charge+jnrA+0);
431             vdwjidx0A        = 2*vdwtype[jnrA+0];
432
433             fjx0             = _mm_setzero_pd();
434             fjy0             = _mm_setzero_pd();
435             fjz0             = _mm_setzero_pd();
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             r00              = _mm_mul_pd(rsq00,rinv00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_pd(iq0,jq0);
445             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
446             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
447
448             /* EWALD ELECTROSTATICS */
449
450             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
451             ewrt             = _mm_mul_pd(r00,ewtabscale);
452             ewitab           = _mm_cvttpd_epi32(ewrt);
453 #ifdef __XOP__
454             eweps            = _mm_frcz_pd(ewrt);
455 #else
456             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
457 #endif
458             twoeweps         = _mm_add_pd(eweps,eweps);
459             ewitab           = _mm_slli_epi32(ewitab,2);
460             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
461             ewtabD           = _mm_setzero_pd();
462             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
463             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
464             ewtabFn          = _mm_setzero_pd();
465             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
466             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
467             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
468             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
469             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
470
471             /* Analytical LJ-PME */
472             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
473             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
474             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
475             exponent         = gmx_simd_exp_d(ewcljrsq);
476             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
477             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
478             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
479             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
480             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
481             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
482             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
483             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
484
485             /* Update potential sum for this i atom from the interaction with this j atom. */
486             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
487             velecsum         = _mm_add_pd(velecsum,velec);
488             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
489             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
490
491             fscal            = _mm_add_pd(felec,fvdw);
492
493             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
494
495             /* Update vectorial force */
496             fix0             = _mm_macc_pd(dx00,fscal,fix0);
497             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
498             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
499             
500             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
501             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
502             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             r10              = _mm_mul_pd(rsq10,rinv10);
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq10             = _mm_mul_pd(iq1,jq0);
512
513             /* EWALD ELECTROSTATICS */
514
515             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
516             ewrt             = _mm_mul_pd(r10,ewtabscale);
517             ewitab           = _mm_cvttpd_epi32(ewrt);
518 #ifdef __XOP__
519             eweps            = _mm_frcz_pd(ewrt);
520 #else
521             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
522 #endif
523             twoeweps         = _mm_add_pd(eweps,eweps);
524             ewitab           = _mm_slli_epi32(ewitab,2);
525             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
526             ewtabD           = _mm_setzero_pd();
527             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
528             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
529             ewtabFn          = _mm_setzero_pd();
530             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
531             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
532             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
533             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
534             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
538             velecsum         = _mm_add_pd(velecsum,velec);
539
540             fscal            = felec;
541
542             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
543
544             /* Update vectorial force */
545             fix1             = _mm_macc_pd(dx10,fscal,fix1);
546             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
547             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
548             
549             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
550             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
551             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             r20              = _mm_mul_pd(rsq20,rinv20);
558
559             /* Compute parameters for interactions between i and j atoms */
560             qq20             = _mm_mul_pd(iq2,jq0);
561
562             /* EWALD ELECTROSTATICS */
563
564             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
565             ewrt             = _mm_mul_pd(r20,ewtabscale);
566             ewitab           = _mm_cvttpd_epi32(ewrt);
567 #ifdef __XOP__
568             eweps            = _mm_frcz_pd(ewrt);
569 #else
570             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
571 #endif
572             twoeweps         = _mm_add_pd(eweps,eweps);
573             ewitab           = _mm_slli_epi32(ewitab,2);
574             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
575             ewtabD           = _mm_setzero_pd();
576             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
577             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
578             ewtabFn          = _mm_setzero_pd();
579             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
580             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
581             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
582             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
583             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
587             velecsum         = _mm_add_pd(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
592
593             /* Update vectorial force */
594             fix2             = _mm_macc_pd(dx20,fscal,fix2);
595             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
596             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
597             
598             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
599             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
600             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
601
602             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
603
604             /* Inner loop uses 159 flops */
605         }
606
607         /* End of innermost loop */
608
609         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
610                                               f+i_coord_offset,fshift+i_shift_offset);
611
612         ggid                        = gid[iidx];
613         /* Update potential energies */
614         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
615         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
616
617         /* Increment number of inner iterations */
618         inneriter                  += j_index_end - j_index_start;
619
620         /* Outer loop uses 20 flops */
621     }
622
623     /* Increment number of outer iterations */
624     outeriter        += nri;
625
626     /* Update outer/inner flops */
627
628     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
629 }
630 /*
631  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
632  * Electrostatics interaction: Ewald
633  * VdW interaction:            LJEwald
634  * Geometry:                   Water3-Particle
635  * Calculate force/pot:        Force
636  */
637 void
638 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
639                     (t_nblist                    * gmx_restrict       nlist,
640                      rvec                        * gmx_restrict          xx,
641                      rvec                        * gmx_restrict          ff,
642                      t_forcerec                  * gmx_restrict          fr,
643                      t_mdatoms                   * gmx_restrict     mdatoms,
644                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
645                      t_nrnb                      * gmx_restrict        nrnb)
646 {
647     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
648      * just 0 for non-waters.
649      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
650      * jnr indices corresponding to data put in the four positions in the SIMD register.
651      */
652     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
653     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
654     int              jnrA,jnrB;
655     int              j_coord_offsetA,j_coord_offsetB;
656     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
657     real             rcutoff_scalar;
658     real             *shiftvec,*fshift,*x,*f;
659     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
660     int              vdwioffset0;
661     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
662     int              vdwioffset1;
663     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
664     int              vdwioffset2;
665     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
666     int              vdwjidx0A,vdwjidx0B;
667     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
668     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
669     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
670     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
671     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
672     real             *charge;
673     int              nvdwtype;
674     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
675     int              *vdwtype;
676     real             *vdwparam;
677     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
678     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
679     __m128d           c6grid_00;
680     __m128d           c6grid_10;
681     __m128d           c6grid_20;
682     real             *vdwgridparam;
683     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
684     __m128d           one_half  = _mm_set1_pd(0.5);
685     __m128d           minus_one = _mm_set1_pd(-1.0);
686     __m128i          ewitab;
687     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
688     real             *ewtab;
689     __m128d          dummy_mask,cutoff_mask;
690     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
691     __m128d          one     = _mm_set1_pd(1.0);
692     __m128d          two     = _mm_set1_pd(2.0);
693     x                = xx[0];
694     f                = ff[0];
695
696     nri              = nlist->nri;
697     iinr             = nlist->iinr;
698     jindex           = nlist->jindex;
699     jjnr             = nlist->jjnr;
700     shiftidx         = nlist->shift;
701     gid              = nlist->gid;
702     shiftvec         = fr->shift_vec[0];
703     fshift           = fr->fshift[0];
704     facel            = _mm_set1_pd(fr->epsfac);
705     charge           = mdatoms->chargeA;
706     nvdwtype         = fr->ntype;
707     vdwparam         = fr->nbfp;
708     vdwtype          = mdatoms->typeA;
709     vdwgridparam     = fr->ljpme_c6grid;
710     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
711     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
712     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
713
714     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
715     ewtab            = fr->ic->tabq_coul_F;
716     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
717     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
718
719     /* Setup water-specific parameters */
720     inr              = nlist->iinr[0];
721     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
722     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
723     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
724     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
725
726     /* Avoid stupid compiler warnings */
727     jnrA = jnrB = 0;
728     j_coord_offsetA = 0;
729     j_coord_offsetB = 0;
730
731     outeriter        = 0;
732     inneriter        = 0;
733
734     /* Start outer loop over neighborlists */
735     for(iidx=0; iidx<nri; iidx++)
736     {
737         /* Load shift vector for this list */
738         i_shift_offset   = DIM*shiftidx[iidx];
739
740         /* Load limits for loop over neighbors */
741         j_index_start    = jindex[iidx];
742         j_index_end      = jindex[iidx+1];
743
744         /* Get outer coordinate index */
745         inr              = iinr[iidx];
746         i_coord_offset   = DIM*inr;
747
748         /* Load i particle coords and add shift vector */
749         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
750                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
751
752         fix0             = _mm_setzero_pd();
753         fiy0             = _mm_setzero_pd();
754         fiz0             = _mm_setzero_pd();
755         fix1             = _mm_setzero_pd();
756         fiy1             = _mm_setzero_pd();
757         fiz1             = _mm_setzero_pd();
758         fix2             = _mm_setzero_pd();
759         fiy2             = _mm_setzero_pd();
760         fiz2             = _mm_setzero_pd();
761
762         /* Start inner kernel loop */
763         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
764         {
765
766             /* Get j neighbor index, and coordinate index */
767             jnrA             = jjnr[jidx];
768             jnrB             = jjnr[jidx+1];
769             j_coord_offsetA  = DIM*jnrA;
770             j_coord_offsetB  = DIM*jnrB;
771
772             /* load j atom coordinates */
773             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
774                                               &jx0,&jy0,&jz0);
775
776             /* Calculate displacement vector */
777             dx00             = _mm_sub_pd(ix0,jx0);
778             dy00             = _mm_sub_pd(iy0,jy0);
779             dz00             = _mm_sub_pd(iz0,jz0);
780             dx10             = _mm_sub_pd(ix1,jx0);
781             dy10             = _mm_sub_pd(iy1,jy0);
782             dz10             = _mm_sub_pd(iz1,jz0);
783             dx20             = _mm_sub_pd(ix2,jx0);
784             dy20             = _mm_sub_pd(iy2,jy0);
785             dz20             = _mm_sub_pd(iz2,jz0);
786
787             /* Calculate squared distance and things based on it */
788             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
789             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
790             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
791
792             rinv00           = gmx_mm_invsqrt_pd(rsq00);
793             rinv10           = gmx_mm_invsqrt_pd(rsq10);
794             rinv20           = gmx_mm_invsqrt_pd(rsq20);
795
796             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
797             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
798             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
799
800             /* Load parameters for j particles */
801             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
802             vdwjidx0A        = 2*vdwtype[jnrA+0];
803             vdwjidx0B        = 2*vdwtype[jnrB+0];
804
805             fjx0             = _mm_setzero_pd();
806             fjy0             = _mm_setzero_pd();
807             fjz0             = _mm_setzero_pd();
808
809             /**************************
810              * CALCULATE INTERACTIONS *
811              **************************/
812
813             r00              = _mm_mul_pd(rsq00,rinv00);
814
815             /* Compute parameters for interactions between i and j atoms */
816             qq00             = _mm_mul_pd(iq0,jq0);
817             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
818                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
819             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
820                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
821
822             /* EWALD ELECTROSTATICS */
823
824             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
825             ewrt             = _mm_mul_pd(r00,ewtabscale);
826             ewitab           = _mm_cvttpd_epi32(ewrt);
827 #ifdef __XOP__
828             eweps            = _mm_frcz_pd(ewrt);
829 #else
830             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
831 #endif
832             twoeweps         = _mm_add_pd(eweps,eweps);
833             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
834                                          &ewtabF,&ewtabFn);
835             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
836             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
837
838             /* Analytical LJ-PME */
839             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
840             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
841             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
842             exponent         = gmx_simd_exp_d(ewcljrsq);
843             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
844             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
845             /* f6A = 6 * C6grid * (1 - poly) */
846             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
847             /* f6B = C6grid * exponent * beta^6 */
848             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
849             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
850             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
851
852             fscal            = _mm_add_pd(felec,fvdw);
853
854             /* Update vectorial force */
855             fix0             = _mm_macc_pd(dx00,fscal,fix0);
856             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
857             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
858             
859             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
860             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
861             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             r10              = _mm_mul_pd(rsq10,rinv10);
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq10             = _mm_mul_pd(iq1,jq0);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
875             ewrt             = _mm_mul_pd(r10,ewtabscale);
876             ewitab           = _mm_cvttpd_epi32(ewrt);
877 #ifdef __XOP__
878             eweps            = _mm_frcz_pd(ewrt);
879 #else
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881 #endif
882             twoeweps         = _mm_add_pd(eweps,eweps);
883             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
884                                          &ewtabF,&ewtabFn);
885             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
886             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
887
888             fscal            = felec;
889
890             /* Update vectorial force */
891             fix1             = _mm_macc_pd(dx10,fscal,fix1);
892             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
893             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
894             
895             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
896             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
897             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r20              = _mm_mul_pd(rsq20,rinv20);
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq20             = _mm_mul_pd(iq2,jq0);
907
908             /* EWALD ELECTROSTATICS */
909
910             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
911             ewrt             = _mm_mul_pd(r20,ewtabscale);
912             ewitab           = _mm_cvttpd_epi32(ewrt);
913 #ifdef __XOP__
914             eweps            = _mm_frcz_pd(ewrt);
915 #else
916             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
917 #endif
918             twoeweps         = _mm_add_pd(eweps,eweps);
919             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
920                                          &ewtabF,&ewtabFn);
921             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
923
924             fscal            = felec;
925
926             /* Update vectorial force */
927             fix2             = _mm_macc_pd(dx20,fscal,fix2);
928             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
929             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
930             
931             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
932             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
933             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
934
935             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
936
937             /* Inner loop uses 141 flops */
938         }
939
940         if(jidx<j_index_end)
941         {
942
943             jnrA             = jjnr[jidx];
944             j_coord_offsetA  = DIM*jnrA;
945
946             /* load j atom coordinates */
947             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
948                                               &jx0,&jy0,&jz0);
949
950             /* Calculate displacement vector */
951             dx00             = _mm_sub_pd(ix0,jx0);
952             dy00             = _mm_sub_pd(iy0,jy0);
953             dz00             = _mm_sub_pd(iz0,jz0);
954             dx10             = _mm_sub_pd(ix1,jx0);
955             dy10             = _mm_sub_pd(iy1,jy0);
956             dz10             = _mm_sub_pd(iz1,jz0);
957             dx20             = _mm_sub_pd(ix2,jx0);
958             dy20             = _mm_sub_pd(iy2,jy0);
959             dz20             = _mm_sub_pd(iz2,jz0);
960
961             /* Calculate squared distance and things based on it */
962             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
963             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
964             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
965
966             rinv00           = gmx_mm_invsqrt_pd(rsq00);
967             rinv10           = gmx_mm_invsqrt_pd(rsq10);
968             rinv20           = gmx_mm_invsqrt_pd(rsq20);
969
970             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
971             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
972             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
973
974             /* Load parameters for j particles */
975             jq0              = _mm_load_sd(charge+jnrA+0);
976             vdwjidx0A        = 2*vdwtype[jnrA+0];
977
978             fjx0             = _mm_setzero_pd();
979             fjy0             = _mm_setzero_pd();
980             fjz0             = _mm_setzero_pd();
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             r00              = _mm_mul_pd(rsq00,rinv00);
987
988             /* Compute parameters for interactions between i and j atoms */
989             qq00             = _mm_mul_pd(iq0,jq0);
990             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
991             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm_mul_pd(r00,ewtabscale);
997             ewitab           = _mm_cvttpd_epi32(ewrt);
998 #ifdef __XOP__
999             eweps            = _mm_frcz_pd(ewrt);
1000 #else
1001             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1002 #endif
1003             twoeweps         = _mm_add_pd(eweps,eweps);
1004             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1005             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1006             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1007
1008             /* Analytical LJ-PME */
1009             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1010             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1011             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1012             exponent         = gmx_simd_exp_d(ewcljrsq);
1013             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1014             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1015             /* f6A = 6 * C6grid * (1 - poly) */
1016             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1017             /* f6B = C6grid * exponent * beta^6 */
1018             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1019             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1020             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1021
1022             fscal            = _mm_add_pd(felec,fvdw);
1023
1024             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1025
1026             /* Update vectorial force */
1027             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1028             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1029             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1030             
1031             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1032             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1033             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r10              = _mm_mul_pd(rsq10,rinv10);
1040
1041             /* Compute parameters for interactions between i and j atoms */
1042             qq10             = _mm_mul_pd(iq1,jq0);
1043
1044             /* EWALD ELECTROSTATICS */
1045
1046             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1047             ewrt             = _mm_mul_pd(r10,ewtabscale);
1048             ewitab           = _mm_cvttpd_epi32(ewrt);
1049 #ifdef __XOP__
1050             eweps            = _mm_frcz_pd(ewrt);
1051 #else
1052             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1053 #endif
1054             twoeweps         = _mm_add_pd(eweps,eweps);
1055             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1056             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1057             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1058
1059             fscal            = felec;
1060
1061             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1062
1063             /* Update vectorial force */
1064             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1065             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1066             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1067             
1068             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1069             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1070             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1071
1072             /**************************
1073              * CALCULATE INTERACTIONS *
1074              **************************/
1075
1076             r20              = _mm_mul_pd(rsq20,rinv20);
1077
1078             /* Compute parameters for interactions between i and j atoms */
1079             qq20             = _mm_mul_pd(iq2,jq0);
1080
1081             /* EWALD ELECTROSTATICS */
1082
1083             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1084             ewrt             = _mm_mul_pd(r20,ewtabscale);
1085             ewitab           = _mm_cvttpd_epi32(ewrt);
1086 #ifdef __XOP__
1087             eweps            = _mm_frcz_pd(ewrt);
1088 #else
1089             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1090 #endif
1091             twoeweps         = _mm_add_pd(eweps,eweps);
1092             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1093             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1094             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1095
1096             fscal            = felec;
1097
1098             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1099
1100             /* Update vectorial force */
1101             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1102             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1103             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1104             
1105             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1106             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1107             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1108
1109             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1110
1111             /* Inner loop uses 141 flops */
1112         }
1113
1114         /* End of innermost loop */
1115
1116         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1117                                               f+i_coord_offset,fshift+i_shift_offset);
1118
1119         /* Increment number of inner iterations */
1120         inneriter                  += j_index_end - j_index_start;
1121
1122         /* Outer loop uses 18 flops */
1123     }
1124
1125     /* Increment number of outer iterations */
1126     outeriter        += nri;
1127
1128     /* Update outer/inner flops */
1129
1130     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*141);
1131 }