11f0b1a067193632663bc6f2ab21dfafc0f91456
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128d           c6grid_00;
102     __m128d           c6grid_10;
103     __m128d           c6grid_20;
104     real             *vdwgridparam;
105     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
106     __m128d           one_half  = _mm_set1_pd(0.5);
107     __m128d           minus_one = _mm_set1_pd(-1.0);
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131     vdwgridparam     = fr->ljpme_c6grid;
132     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
133     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
134     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
135
136     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
137     ewtab            = fr->ic->tabq_coul_FDV0;
138     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
139     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
140
141     /* Setup water-specific parameters */
142     inr              = nlist->iinr[0];
143     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
144     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
145     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
146     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_pd();
175         fiy0             = _mm_setzero_pd();
176         fiz0             = _mm_setzero_pd();
177         fix1             = _mm_setzero_pd();
178         fiy1             = _mm_setzero_pd();
179         fiz1             = _mm_setzero_pd();
180         fix2             = _mm_setzero_pd();
181         fiy2             = _mm_setzero_pd();
182         fiz2             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
215             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
216             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm_invsqrt_pd(rsq00);
219             rinv10           = gmx_mm_invsqrt_pd(rsq10);
220             rinv20           = gmx_mm_invsqrt_pd(rsq20);
221
222             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
223             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
224             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230
231             fjx0             = _mm_setzero_pd();
232             fjy0             = _mm_setzero_pd();
233             fjz0             = _mm_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             r00              = _mm_mul_pd(rsq00,rinv00);
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_pd(iq0,jq0);
243             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
245             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
246                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
247
248             /* EWALD ELECTROSTATICS */
249
250             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
251             ewrt             = _mm_mul_pd(r00,ewtabscale);
252             ewitab           = _mm_cvttpd_epi32(ewrt);
253 #ifdef __XOP__
254             eweps            = _mm_frcz_pd(ewrt);
255 #else
256             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
257 #endif
258             twoeweps         = _mm_add_pd(eweps,eweps);
259             ewitab           = _mm_slli_epi32(ewitab,2);
260             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
261             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
262             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
263             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
264             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
265             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
266             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
267             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
268             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
269             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
270
271             /* Analytical LJ-PME */
272             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
273             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
274             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
275             exponent         = gmx_simd_exp_d(ewcljrsq);
276             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
277             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
278             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
279             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
280             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
281             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
282             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
283             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velecsum         = _mm_add_pd(velecsum,velec);
287             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
288
289             fscal            = _mm_add_pd(felec,fvdw);
290
291             /* Update vectorial force */
292             fix0             = _mm_macc_pd(dx00,fscal,fix0);
293             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
294             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
295             
296             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
297             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
298             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _mm_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm_mul_pd(iq1,jq0);
308
309             /* EWALD ELECTROSTATICS */
310
311             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
312             ewrt             = _mm_mul_pd(r10,ewtabscale);
313             ewitab           = _mm_cvttpd_epi32(ewrt);
314 #ifdef __XOP__
315             eweps            = _mm_frcz_pd(ewrt);
316 #else
317             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
318 #endif
319             twoeweps         = _mm_add_pd(eweps,eweps);
320             ewitab           = _mm_slli_epi32(ewitab,2);
321             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
322             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
323             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
324             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
325             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
326             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
327             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
328             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
329             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
330             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velecsum         = _mm_add_pd(velecsum,velec);
334
335             fscal            = felec;
336
337             /* Update vectorial force */
338             fix1             = _mm_macc_pd(dx10,fscal,fix1);
339             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
340             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
341             
342             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
343             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
344             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r20              = _mm_mul_pd(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm_mul_pd(iq2,jq0);
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = _mm_mul_pd(r20,ewtabscale);
359             ewitab           = _mm_cvttpd_epi32(ewrt);
360 #ifdef __XOP__
361             eweps            = _mm_frcz_pd(ewrt);
362 #else
363             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
364 #endif
365             twoeweps         = _mm_add_pd(eweps,eweps);
366             ewitab           = _mm_slli_epi32(ewitab,2);
367             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
368             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
369             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
370             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
371             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
372             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
373             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
374             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
375             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
376             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velecsum         = _mm_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             /* Update vectorial force */
384             fix2             = _mm_macc_pd(dx20,fscal,fix2);
385             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
386             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
387             
388             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
389             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
390             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
391
392             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 159 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             jnrA             = jjnr[jidx];
401             j_coord_offsetA  = DIM*jnrA;
402
403             /* load j atom coordinates */
404             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
405                                               &jx0,&jy0,&jz0);
406
407             /* Calculate displacement vector */
408             dx00             = _mm_sub_pd(ix0,jx0);
409             dy00             = _mm_sub_pd(iy0,jy0);
410             dz00             = _mm_sub_pd(iz0,jz0);
411             dx10             = _mm_sub_pd(ix1,jx0);
412             dy10             = _mm_sub_pd(iy1,jy0);
413             dz10             = _mm_sub_pd(iz1,jz0);
414             dx20             = _mm_sub_pd(ix2,jx0);
415             dy20             = _mm_sub_pd(iy2,jy0);
416             dz20             = _mm_sub_pd(iz2,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
420             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
422
423             rinv00           = gmx_mm_invsqrt_pd(rsq00);
424             rinv10           = gmx_mm_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm_invsqrt_pd(rsq20);
426
427             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
428             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
429             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
430
431             /* Load parameters for j particles */
432             jq0              = _mm_load_sd(charge+jnrA+0);
433             vdwjidx0A        = 2*vdwtype[jnrA+0];
434
435             fjx0             = _mm_setzero_pd();
436             fjy0             = _mm_setzero_pd();
437             fjz0             = _mm_setzero_pd();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             r00              = _mm_mul_pd(rsq00,rinv00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_pd(iq0,jq0);
447             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
448             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
449
450             /* EWALD ELECTROSTATICS */
451
452             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
453             ewrt             = _mm_mul_pd(r00,ewtabscale);
454             ewitab           = _mm_cvttpd_epi32(ewrt);
455 #ifdef __XOP__
456             eweps            = _mm_frcz_pd(ewrt);
457 #else
458             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
459 #endif
460             twoeweps         = _mm_add_pd(eweps,eweps);
461             ewitab           = _mm_slli_epi32(ewitab,2);
462             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
463             ewtabD           = _mm_setzero_pd();
464             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
465             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
466             ewtabFn          = _mm_setzero_pd();
467             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
468             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
469             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
470             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
471             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
472
473             /* Analytical LJ-PME */
474             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
475             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
476             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
477             exponent         = gmx_simd_exp_d(ewcljrsq);
478             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
479             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
480             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
481             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
482             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
483             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
484             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
485             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
486
487             /* Update potential sum for this i atom from the interaction with this j atom. */
488             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
489             velecsum         = _mm_add_pd(velecsum,velec);
490             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
491             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
492
493             fscal            = _mm_add_pd(felec,fvdw);
494
495             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
496
497             /* Update vectorial force */
498             fix0             = _mm_macc_pd(dx00,fscal,fix0);
499             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
500             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
501             
502             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
503             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
504             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             r10              = _mm_mul_pd(rsq10,rinv10);
511
512             /* Compute parameters for interactions between i and j atoms */
513             qq10             = _mm_mul_pd(iq1,jq0);
514
515             /* EWALD ELECTROSTATICS */
516
517             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
518             ewrt             = _mm_mul_pd(r10,ewtabscale);
519             ewitab           = _mm_cvttpd_epi32(ewrt);
520 #ifdef __XOP__
521             eweps            = _mm_frcz_pd(ewrt);
522 #else
523             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
524 #endif
525             twoeweps         = _mm_add_pd(eweps,eweps);
526             ewitab           = _mm_slli_epi32(ewitab,2);
527             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
528             ewtabD           = _mm_setzero_pd();
529             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
530             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
531             ewtabFn          = _mm_setzero_pd();
532             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
533             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
534             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
535             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
536             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
537
538             /* Update potential sum for this i atom from the interaction with this j atom. */
539             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
540             velecsum         = _mm_add_pd(velecsum,velec);
541
542             fscal            = felec;
543
544             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
545
546             /* Update vectorial force */
547             fix1             = _mm_macc_pd(dx10,fscal,fix1);
548             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
549             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
550             
551             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
552             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
553             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             r20              = _mm_mul_pd(rsq20,rinv20);
560
561             /* Compute parameters for interactions between i and j atoms */
562             qq20             = _mm_mul_pd(iq2,jq0);
563
564             /* EWALD ELECTROSTATICS */
565
566             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
567             ewrt             = _mm_mul_pd(r20,ewtabscale);
568             ewitab           = _mm_cvttpd_epi32(ewrt);
569 #ifdef __XOP__
570             eweps            = _mm_frcz_pd(ewrt);
571 #else
572             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
573 #endif
574             twoeweps         = _mm_add_pd(eweps,eweps);
575             ewitab           = _mm_slli_epi32(ewitab,2);
576             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
577             ewtabD           = _mm_setzero_pd();
578             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
579             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
580             ewtabFn          = _mm_setzero_pd();
581             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
582             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
583             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
584             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
585             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
586
587             /* Update potential sum for this i atom from the interaction with this j atom. */
588             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
589             velecsum         = _mm_add_pd(velecsum,velec);
590
591             fscal            = felec;
592
593             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
594
595             /* Update vectorial force */
596             fix2             = _mm_macc_pd(dx20,fscal,fix2);
597             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
598             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
599             
600             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
601             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
602             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
603
604             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
605
606             /* Inner loop uses 159 flops */
607         }
608
609         /* End of innermost loop */
610
611         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
612                                               f+i_coord_offset,fshift+i_shift_offset);
613
614         ggid                        = gid[iidx];
615         /* Update potential energies */
616         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
617         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
618
619         /* Increment number of inner iterations */
620         inneriter                  += j_index_end - j_index_start;
621
622         /* Outer loop uses 20 flops */
623     }
624
625     /* Increment number of outer iterations */
626     outeriter        += nri;
627
628     /* Update outer/inner flops */
629
630     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*159);
631 }
632 /*
633  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
634  * Electrostatics interaction: Ewald
635  * VdW interaction:            LJEwald
636  * Geometry:                   Water3-Particle
637  * Calculate force/pot:        Force
638  */
639 void
640 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_avx_128_fma_double
641                     (t_nblist                    * gmx_restrict       nlist,
642                      rvec                        * gmx_restrict          xx,
643                      rvec                        * gmx_restrict          ff,
644                      t_forcerec                  * gmx_restrict          fr,
645                      t_mdatoms                   * gmx_restrict     mdatoms,
646                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
647                      t_nrnb                      * gmx_restrict        nrnb)
648 {
649     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
650      * just 0 for non-waters.
651      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
652      * jnr indices corresponding to data put in the four positions in the SIMD register.
653      */
654     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
655     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
656     int              jnrA,jnrB;
657     int              j_coord_offsetA,j_coord_offsetB;
658     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
659     real             rcutoff_scalar;
660     real             *shiftvec,*fshift,*x,*f;
661     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
662     int              vdwioffset0;
663     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
664     int              vdwioffset1;
665     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
666     int              vdwioffset2;
667     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
668     int              vdwjidx0A,vdwjidx0B;
669     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
670     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
671     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
672     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
673     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
674     real             *charge;
675     int              nvdwtype;
676     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
677     int              *vdwtype;
678     real             *vdwparam;
679     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
680     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
681     __m128d           c6grid_00;
682     __m128d           c6grid_10;
683     __m128d           c6grid_20;
684     real             *vdwgridparam;
685     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
686     __m128d           one_half  = _mm_set1_pd(0.5);
687     __m128d           minus_one = _mm_set1_pd(-1.0);
688     __m128i          ewitab;
689     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
690     real             *ewtab;
691     __m128d          dummy_mask,cutoff_mask;
692     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
693     __m128d          one     = _mm_set1_pd(1.0);
694     __m128d          two     = _mm_set1_pd(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm_set1_pd(fr->epsfac);
707     charge           = mdatoms->chargeA;
708     nvdwtype         = fr->ntype;
709     vdwparam         = fr->nbfp;
710     vdwtype          = mdatoms->typeA;
711     vdwgridparam     = fr->ljpme_c6grid;
712     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
713     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
714     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
715
716     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
717     ewtab            = fr->ic->tabq_coul_F;
718     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
719     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
720
721     /* Setup water-specific parameters */
722     inr              = nlist->iinr[0];
723     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
724     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
725     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
726     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
727
728     /* Avoid stupid compiler warnings */
729     jnrA = jnrB = 0;
730     j_coord_offsetA = 0;
731     j_coord_offsetB = 0;
732
733     outeriter        = 0;
734     inneriter        = 0;
735
736     /* Start outer loop over neighborlists */
737     for(iidx=0; iidx<nri; iidx++)
738     {
739         /* Load shift vector for this list */
740         i_shift_offset   = DIM*shiftidx[iidx];
741
742         /* Load limits for loop over neighbors */
743         j_index_start    = jindex[iidx];
744         j_index_end      = jindex[iidx+1];
745
746         /* Get outer coordinate index */
747         inr              = iinr[iidx];
748         i_coord_offset   = DIM*inr;
749
750         /* Load i particle coords and add shift vector */
751         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
752                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
753
754         fix0             = _mm_setzero_pd();
755         fiy0             = _mm_setzero_pd();
756         fiz0             = _mm_setzero_pd();
757         fix1             = _mm_setzero_pd();
758         fiy1             = _mm_setzero_pd();
759         fiz1             = _mm_setzero_pd();
760         fix2             = _mm_setzero_pd();
761         fiy2             = _mm_setzero_pd();
762         fiz2             = _mm_setzero_pd();
763
764         /* Start inner kernel loop */
765         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
766         {
767
768             /* Get j neighbor index, and coordinate index */
769             jnrA             = jjnr[jidx];
770             jnrB             = jjnr[jidx+1];
771             j_coord_offsetA  = DIM*jnrA;
772             j_coord_offsetB  = DIM*jnrB;
773
774             /* load j atom coordinates */
775             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
776                                               &jx0,&jy0,&jz0);
777
778             /* Calculate displacement vector */
779             dx00             = _mm_sub_pd(ix0,jx0);
780             dy00             = _mm_sub_pd(iy0,jy0);
781             dz00             = _mm_sub_pd(iz0,jz0);
782             dx10             = _mm_sub_pd(ix1,jx0);
783             dy10             = _mm_sub_pd(iy1,jy0);
784             dz10             = _mm_sub_pd(iz1,jz0);
785             dx20             = _mm_sub_pd(ix2,jx0);
786             dy20             = _mm_sub_pd(iy2,jy0);
787             dz20             = _mm_sub_pd(iz2,jz0);
788
789             /* Calculate squared distance and things based on it */
790             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
791             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
792             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
793
794             rinv00           = gmx_mm_invsqrt_pd(rsq00);
795             rinv10           = gmx_mm_invsqrt_pd(rsq10);
796             rinv20           = gmx_mm_invsqrt_pd(rsq20);
797
798             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
799             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
800             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
801
802             /* Load parameters for j particles */
803             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
804             vdwjidx0A        = 2*vdwtype[jnrA+0];
805             vdwjidx0B        = 2*vdwtype[jnrB+0];
806
807             fjx0             = _mm_setzero_pd();
808             fjy0             = _mm_setzero_pd();
809             fjz0             = _mm_setzero_pd();
810
811             /**************************
812              * CALCULATE INTERACTIONS *
813              **************************/
814
815             r00              = _mm_mul_pd(rsq00,rinv00);
816
817             /* Compute parameters for interactions between i and j atoms */
818             qq00             = _mm_mul_pd(iq0,jq0);
819             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
820                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
821             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
822                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
823
824             /* EWALD ELECTROSTATICS */
825
826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
827             ewrt             = _mm_mul_pd(r00,ewtabscale);
828             ewitab           = _mm_cvttpd_epi32(ewrt);
829 #ifdef __XOP__
830             eweps            = _mm_frcz_pd(ewrt);
831 #else
832             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
833 #endif
834             twoeweps         = _mm_add_pd(eweps,eweps);
835             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
836                                          &ewtabF,&ewtabFn);
837             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
838             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
839
840             /* Analytical LJ-PME */
841             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
842             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
843             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
844             exponent         = gmx_simd_exp_d(ewcljrsq);
845             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
846             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
847             /* f6A = 6 * C6grid * (1 - poly) */
848             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
849             /* f6B = C6grid * exponent * beta^6 */
850             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
851             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
852             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
853
854             fscal            = _mm_add_pd(felec,fvdw);
855
856             /* Update vectorial force */
857             fix0             = _mm_macc_pd(dx00,fscal,fix0);
858             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
859             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
860             
861             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
862             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
863             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
864
865             /**************************
866              * CALCULATE INTERACTIONS *
867              **************************/
868
869             r10              = _mm_mul_pd(rsq10,rinv10);
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq10             = _mm_mul_pd(iq1,jq0);
873
874             /* EWALD ELECTROSTATICS */
875
876             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
877             ewrt             = _mm_mul_pd(r10,ewtabscale);
878             ewitab           = _mm_cvttpd_epi32(ewrt);
879 #ifdef __XOP__
880             eweps            = _mm_frcz_pd(ewrt);
881 #else
882             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
883 #endif
884             twoeweps         = _mm_add_pd(eweps,eweps);
885             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
886                                          &ewtabF,&ewtabFn);
887             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
888             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
889
890             fscal            = felec;
891
892             /* Update vectorial force */
893             fix1             = _mm_macc_pd(dx10,fscal,fix1);
894             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
895             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
896             
897             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
898             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
899             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r20              = _mm_mul_pd(rsq20,rinv20);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq20             = _mm_mul_pd(iq2,jq0);
909
910             /* EWALD ELECTROSTATICS */
911
912             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
913             ewrt             = _mm_mul_pd(r20,ewtabscale);
914             ewitab           = _mm_cvttpd_epi32(ewrt);
915 #ifdef __XOP__
916             eweps            = _mm_frcz_pd(ewrt);
917 #else
918             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
919 #endif
920             twoeweps         = _mm_add_pd(eweps,eweps);
921             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
922                                          &ewtabF,&ewtabFn);
923             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
924             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
925
926             fscal            = felec;
927
928             /* Update vectorial force */
929             fix2             = _mm_macc_pd(dx20,fscal,fix2);
930             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
931             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
932             
933             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
934             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
935             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
936
937             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
938
939             /* Inner loop uses 141 flops */
940         }
941
942         if(jidx<j_index_end)
943         {
944
945             jnrA             = jjnr[jidx];
946             j_coord_offsetA  = DIM*jnrA;
947
948             /* load j atom coordinates */
949             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
950                                               &jx0,&jy0,&jz0);
951
952             /* Calculate displacement vector */
953             dx00             = _mm_sub_pd(ix0,jx0);
954             dy00             = _mm_sub_pd(iy0,jy0);
955             dz00             = _mm_sub_pd(iz0,jz0);
956             dx10             = _mm_sub_pd(ix1,jx0);
957             dy10             = _mm_sub_pd(iy1,jy0);
958             dz10             = _mm_sub_pd(iz1,jz0);
959             dx20             = _mm_sub_pd(ix2,jx0);
960             dy20             = _mm_sub_pd(iy2,jy0);
961             dz20             = _mm_sub_pd(iz2,jz0);
962
963             /* Calculate squared distance and things based on it */
964             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
965             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
966             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
967
968             rinv00           = gmx_mm_invsqrt_pd(rsq00);
969             rinv10           = gmx_mm_invsqrt_pd(rsq10);
970             rinv20           = gmx_mm_invsqrt_pd(rsq20);
971
972             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
973             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
974             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
975
976             /* Load parameters for j particles */
977             jq0              = _mm_load_sd(charge+jnrA+0);
978             vdwjidx0A        = 2*vdwtype[jnrA+0];
979
980             fjx0             = _mm_setzero_pd();
981             fjy0             = _mm_setzero_pd();
982             fjz0             = _mm_setzero_pd();
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             r00              = _mm_mul_pd(rsq00,rinv00);
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq00             = _mm_mul_pd(iq0,jq0);
992             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
993             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
994
995             /* EWALD ELECTROSTATICS */
996
997             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
998             ewrt             = _mm_mul_pd(r00,ewtabscale);
999             ewitab           = _mm_cvttpd_epi32(ewrt);
1000 #ifdef __XOP__
1001             eweps            = _mm_frcz_pd(ewrt);
1002 #else
1003             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1004 #endif
1005             twoeweps         = _mm_add_pd(eweps,eweps);
1006             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1007             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1008             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1009
1010             /* Analytical LJ-PME */
1011             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1012             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
1013             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
1014             exponent         = gmx_simd_exp_d(ewcljrsq);
1015             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1016             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
1017             /* f6A = 6 * C6grid * (1 - poly) */
1018             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
1019             /* f6B = C6grid * exponent * beta^6 */
1020             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
1021             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1022             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
1023
1024             fscal            = _mm_add_pd(felec,fvdw);
1025
1026             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1027
1028             /* Update vectorial force */
1029             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1030             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1031             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1032             
1033             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1034             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1035             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r10              = _mm_mul_pd(rsq10,rinv10);
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm_mul_pd(iq1,jq0);
1045
1046             /* EWALD ELECTROSTATICS */
1047
1048             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1049             ewrt             = _mm_mul_pd(r10,ewtabscale);
1050             ewitab           = _mm_cvttpd_epi32(ewrt);
1051 #ifdef __XOP__
1052             eweps            = _mm_frcz_pd(ewrt);
1053 #else
1054             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1055 #endif
1056             twoeweps         = _mm_add_pd(eweps,eweps);
1057             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1058             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1059             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1064
1065             /* Update vectorial force */
1066             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1067             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1068             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1069             
1070             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1071             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1072             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1073
1074             /**************************
1075              * CALCULATE INTERACTIONS *
1076              **************************/
1077
1078             r20              = _mm_mul_pd(rsq20,rinv20);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq20             = _mm_mul_pd(iq2,jq0);
1082
1083             /* EWALD ELECTROSTATICS */
1084
1085             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086             ewrt             = _mm_mul_pd(r20,ewtabscale);
1087             ewitab           = _mm_cvttpd_epi32(ewrt);
1088 #ifdef __XOP__
1089             eweps            = _mm_frcz_pd(ewrt);
1090 #else
1091             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1092 #endif
1093             twoeweps         = _mm_add_pd(eweps,eweps);
1094             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1095             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1096             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1097
1098             fscal            = felec;
1099
1100             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1101
1102             /* Update vectorial force */
1103             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1104             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1105             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1106             
1107             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1108             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1109             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1110
1111             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1112
1113             /* Inner loop uses 141 flops */
1114         }
1115
1116         /* End of innermost loop */
1117
1118         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1119                                               f+i_coord_offset,fshift+i_shift_offset);
1120
1121         /* Increment number of inner iterations */
1122         inneriter                  += j_index_end - j_index_start;
1123
1124         /* Outer loop uses 18 flops */
1125     }
1126
1127     /* Increment number of outer iterations */
1128     outeriter        += nri;
1129
1130     /* Update outer/inner flops */
1131
1132     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*141);
1133 }