Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwjidx0A,vdwjidx0B;
82     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
83     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
84     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
91     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
92     __m128d           c6grid_00;
93     real             *vdwgridparam;
94     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
95     __m128d           one_half  = _mm_set1_pd(0.5);
96     __m128d           minus_one = _mm_set1_pd(-1.0);
97     __m128i          ewitab;
98     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     real             *ewtab;
100     __m128d          dummy_mask,cutoff_mask;
101     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
102     __m128d          one     = _mm_set1_pd(1.0);
103     __m128d          two     = _mm_set1_pd(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_pd(fr->ic->epsfac);
116     charge           = mdatoms->chargeA;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120     vdwgridparam     = fr->ljpme_c6grid;
121     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
122     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
123     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
124
125     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
128     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155         fix0             = _mm_setzero_pd();
156         fiy0             = _mm_setzero_pd();
157         fiz0             = _mm_setzero_pd();
158
159         /* Load parameters for i particles */
160         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
161         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm_setzero_pd();
165         vvdwsum          = _mm_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             j_coord_offsetA  = DIM*jnrA;
175             j_coord_offsetB  = DIM*jnrB;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_pd(ix0,jx0);
183             dy00             = _mm_sub_pd(iy0,jy0);
184             dz00             = _mm_sub_pd(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
188
189             rinv00           = avx128fma_invsqrt_d(rsq00);
190
191             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
192
193             /* Load parameters for j particles */
194             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             r00              = _mm_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm_mul_pd(iq0,jq0);
206             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
207                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
208             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
209                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
210
211             /* EWALD ELECTROSTATICS */
212
213             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
214             ewrt             = _mm_mul_pd(r00,ewtabscale);
215             ewitab           = _mm_cvttpd_epi32(ewrt);
216 #ifdef __XOP__
217             eweps            = _mm_frcz_pd(ewrt);
218 #else
219             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
220 #endif
221             twoeweps         = _mm_add_pd(eweps,eweps);
222             ewitab           = _mm_slli_epi32(ewitab,2);
223             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
224             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
225             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
226             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
227             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
228             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
229             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
230             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
231             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
232             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
233
234             /* Analytical LJ-PME */
235             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
236             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
237             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
238             exponent         = avx128fma_exp_d(ewcljrsq);
239             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
240             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
241             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
242             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
243             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
244             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
245             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
246             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
247
248             /* Update potential sum for this i atom from the interaction with this j atom. */
249             velecsum         = _mm_add_pd(velecsum,velec);
250             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
251
252             fscal            = _mm_add_pd(felec,fvdw);
253
254             /* Update vectorial force */
255             fix0             = _mm_macc_pd(dx00,fscal,fix0);
256             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
257             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
258             
259             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
260                                                    _mm_mul_pd(dx00,fscal),
261                                                    _mm_mul_pd(dy00,fscal),
262                                                    _mm_mul_pd(dz00,fscal));
263
264             /* Inner loop uses 68 flops */
265         }
266
267         if(jidx<j_index_end)
268         {
269
270             jnrA             = jjnr[jidx];
271             j_coord_offsetA  = DIM*jnrA;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
275                                               &jx0,&jy0,&jz0);
276
277             /* Calculate displacement vector */
278             dx00             = _mm_sub_pd(ix0,jx0);
279             dy00             = _mm_sub_pd(iy0,jy0);
280             dz00             = _mm_sub_pd(iz0,jz0);
281
282             /* Calculate squared distance and things based on it */
283             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
284
285             rinv00           = avx128fma_invsqrt_d(rsq00);
286
287             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
288
289             /* Load parameters for j particles */
290             jq0              = _mm_load_sd(charge+jnrA+0);
291             vdwjidx0A        = 2*vdwtype[jnrA+0];
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r00              = _mm_mul_pd(rsq00,rinv00);
298
299             /* Compute parameters for interactions between i and j atoms */
300             qq00             = _mm_mul_pd(iq0,jq0);
301             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
302             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
303
304             /* EWALD ELECTROSTATICS */
305
306             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307             ewrt             = _mm_mul_pd(r00,ewtabscale);
308             ewitab           = _mm_cvttpd_epi32(ewrt);
309 #ifdef __XOP__
310             eweps            = _mm_frcz_pd(ewrt);
311 #else
312             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
313 #endif
314             twoeweps         = _mm_add_pd(eweps,eweps);
315             ewitab           = _mm_slli_epi32(ewitab,2);
316             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
317             ewtabD           = _mm_setzero_pd();
318             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
319             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
320             ewtabFn          = _mm_setzero_pd();
321             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
322             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
323             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
324             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
325             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
326
327             /* Analytical LJ-PME */
328             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
329             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
330             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
331             exponent         = avx128fma_exp_d(ewcljrsq);
332             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
333             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
334             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
335             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
336             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
337             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
338             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
339             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
343             velecsum         = _mm_add_pd(velecsum,velec);
344             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
345             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
346
347             fscal            = _mm_add_pd(felec,fvdw);
348
349             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
350
351             /* Update vectorial force */
352             fix0             = _mm_macc_pd(dx00,fscal,fix0);
353             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
354             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
355             
356             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
357                                                    _mm_mul_pd(dx00,fscal),
358                                                    _mm_mul_pd(dy00,fscal),
359                                                    _mm_mul_pd(dz00,fscal));
360
361             /* Inner loop uses 68 flops */
362         }
363
364         /* End of innermost loop */
365
366         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
367                                               f+i_coord_offset,fshift+i_shift_offset);
368
369         ggid                        = gid[iidx];
370         /* Update potential energies */
371         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
372         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
373
374         /* Increment number of inner iterations */
375         inneriter                  += j_index_end - j_index_start;
376
377         /* Outer loop uses 9 flops */
378     }
379
380     /* Increment number of outer iterations */
381     outeriter        += nri;
382
383     /* Update outer/inner flops */
384
385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
386 }
387 /*
388  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
389  * Electrostatics interaction: Ewald
390  * VdW interaction:            LJEwald
391  * Geometry:                   Particle-Particle
392  * Calculate force/pot:        Force
393  */
394 void
395 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
396                     (t_nblist                    * gmx_restrict       nlist,
397                      rvec                        * gmx_restrict          xx,
398                      rvec                        * gmx_restrict          ff,
399                      struct t_forcerec           * gmx_restrict          fr,
400                      t_mdatoms                   * gmx_restrict     mdatoms,
401                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
402                      t_nrnb                      * gmx_restrict        nrnb)
403 {
404     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
405      * just 0 for non-waters.
406      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
407      * jnr indices corresponding to data put in the four positions in the SIMD register.
408      */
409     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
410     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
411     int              jnrA,jnrB;
412     int              j_coord_offsetA,j_coord_offsetB;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
417     int              vdwioffset0;
418     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
419     int              vdwjidx0A,vdwjidx0B;
420     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
422     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
423     real             *charge;
424     int              nvdwtype;
425     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
426     int              *vdwtype;
427     real             *vdwparam;
428     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
429     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
430     __m128d           c6grid_00;
431     real             *vdwgridparam;
432     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
433     __m128d           one_half  = _mm_set1_pd(0.5);
434     __m128d           minus_one = _mm_set1_pd(-1.0);
435     __m128i          ewitab;
436     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
437     real             *ewtab;
438     __m128d          dummy_mask,cutoff_mask;
439     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
440     __m128d          one     = _mm_set1_pd(1.0);
441     __m128d          two     = _mm_set1_pd(2.0);
442     x                = xx[0];
443     f                = ff[0];
444
445     nri              = nlist->nri;
446     iinr             = nlist->iinr;
447     jindex           = nlist->jindex;
448     jjnr             = nlist->jjnr;
449     shiftidx         = nlist->shift;
450     gid              = nlist->gid;
451     shiftvec         = fr->shift_vec[0];
452     fshift           = fr->fshift[0];
453     facel            = _mm_set1_pd(fr->ic->epsfac);
454     charge           = mdatoms->chargeA;
455     nvdwtype         = fr->ntype;
456     vdwparam         = fr->nbfp;
457     vdwtype          = mdatoms->typeA;
458     vdwgridparam     = fr->ljpme_c6grid;
459     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
460     ewclj            = _mm_set1_pd(fr->ic->ewaldcoeff_lj);
461     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
462
463     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
464     ewtab            = fr->ic->tabq_coul_F;
465     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
466     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
467
468     /* Avoid stupid compiler warnings */
469     jnrA = jnrB = 0;
470     j_coord_offsetA = 0;
471     j_coord_offsetB = 0;
472
473     outeriter        = 0;
474     inneriter        = 0;
475
476     /* Start outer loop over neighborlists */
477     for(iidx=0; iidx<nri; iidx++)
478     {
479         /* Load shift vector for this list */
480         i_shift_offset   = DIM*shiftidx[iidx];
481
482         /* Load limits for loop over neighbors */
483         j_index_start    = jindex[iidx];
484         j_index_end      = jindex[iidx+1];
485
486         /* Get outer coordinate index */
487         inr              = iinr[iidx];
488         i_coord_offset   = DIM*inr;
489
490         /* Load i particle coords and add shift vector */
491         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
492
493         fix0             = _mm_setzero_pd();
494         fiy0             = _mm_setzero_pd();
495         fiz0             = _mm_setzero_pd();
496
497         /* Load parameters for i particles */
498         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
499         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
500
501         /* Start inner kernel loop */
502         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
503         {
504
505             /* Get j neighbor index, and coordinate index */
506             jnrA             = jjnr[jidx];
507             jnrB             = jjnr[jidx+1];
508             j_coord_offsetA  = DIM*jnrA;
509             j_coord_offsetB  = DIM*jnrB;
510
511             /* load j atom coordinates */
512             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
513                                               &jx0,&jy0,&jz0);
514
515             /* Calculate displacement vector */
516             dx00             = _mm_sub_pd(ix0,jx0);
517             dy00             = _mm_sub_pd(iy0,jy0);
518             dz00             = _mm_sub_pd(iz0,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
522
523             rinv00           = avx128fma_invsqrt_d(rsq00);
524
525             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
526
527             /* Load parameters for j particles */
528             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
529             vdwjidx0A        = 2*vdwtype[jnrA+0];
530             vdwjidx0B        = 2*vdwtype[jnrB+0];
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             r00              = _mm_mul_pd(rsq00,rinv00);
537
538             /* Compute parameters for interactions between i and j atoms */
539             qq00             = _mm_mul_pd(iq0,jq0);
540             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
541                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
542             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = _mm_mul_pd(r00,ewtabscale);
549             ewitab           = _mm_cvttpd_epi32(ewrt);
550 #ifdef __XOP__
551             eweps            = _mm_frcz_pd(ewrt);
552 #else
553             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
554 #endif
555             twoeweps         = _mm_add_pd(eweps,eweps);
556             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
557                                          &ewtabF,&ewtabFn);
558             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
559             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
560
561             /* Analytical LJ-PME */
562             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
563             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
564             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
565             exponent         = avx128fma_exp_d(ewcljrsq);
566             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
567             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
568             /* f6A = 6 * C6grid * (1 - poly) */
569             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
570             /* f6B = C6grid * exponent * beta^6 */
571             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
572             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
573             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
574
575             fscal            = _mm_add_pd(felec,fvdw);
576
577             /* Update vectorial force */
578             fix0             = _mm_macc_pd(dx00,fscal,fix0);
579             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
580             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
581             
582             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
583                                                    _mm_mul_pd(dx00,fscal),
584                                                    _mm_mul_pd(dy00,fscal),
585                                                    _mm_mul_pd(dz00,fscal));
586
587             /* Inner loop uses 60 flops */
588         }
589
590         if(jidx<j_index_end)
591         {
592
593             jnrA             = jjnr[jidx];
594             j_coord_offsetA  = DIM*jnrA;
595
596             /* load j atom coordinates */
597             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
598                                               &jx0,&jy0,&jz0);
599
600             /* Calculate displacement vector */
601             dx00             = _mm_sub_pd(ix0,jx0);
602             dy00             = _mm_sub_pd(iy0,jy0);
603             dz00             = _mm_sub_pd(iz0,jz0);
604
605             /* Calculate squared distance and things based on it */
606             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
607
608             rinv00           = avx128fma_invsqrt_d(rsq00);
609
610             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
611
612             /* Load parameters for j particles */
613             jq0              = _mm_load_sd(charge+jnrA+0);
614             vdwjidx0A        = 2*vdwtype[jnrA+0];
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             r00              = _mm_mul_pd(rsq00,rinv00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm_mul_pd(iq0,jq0);
624             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
625             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = _mm_mul_pd(r00,ewtabscale);
631             ewitab           = _mm_cvttpd_epi32(ewrt);
632 #ifdef __XOP__
633             eweps            = _mm_frcz_pd(ewrt);
634 #else
635             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
636 #endif
637             twoeweps         = _mm_add_pd(eweps,eweps);
638             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
639             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
640             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
641
642             /* Analytical LJ-PME */
643             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
644             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
645             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
646             exponent         = avx128fma_exp_d(ewcljrsq);
647             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
648             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
649             /* f6A = 6 * C6grid * (1 - poly) */
650             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
651             /* f6B = C6grid * exponent * beta^6 */
652             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
653             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
654             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
655
656             fscal            = _mm_add_pd(felec,fvdw);
657
658             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
659
660             /* Update vectorial force */
661             fix0             = _mm_macc_pd(dx00,fscal,fix0);
662             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
663             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
664             
665             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
666                                                    _mm_mul_pd(dx00,fscal),
667                                                    _mm_mul_pd(dy00,fscal),
668                                                    _mm_mul_pd(dz00,fscal));
669
670             /* Inner loop uses 60 flops */
671         }
672
673         /* End of innermost loop */
674
675         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
676                                               f+i_coord_offset,fshift+i_shift_offset);
677
678         /* Increment number of inner iterations */
679         inneriter                  += j_index_end - j_index_start;
680
681         /* Outer loop uses 7 flops */
682     }
683
684     /* Increment number of outer iterations */
685     outeriter        += nri;
686
687     /* Update outer/inner flops */
688
689     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
690 }