Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwjidx0A,vdwjidx0B;
83     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
84     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
85     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
86     real             *charge;
87     int              nvdwtype;
88     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
92     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
93     __m128d           c6grid_00;
94     real             *vdwgridparam;
95     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     __m128d           one_half  = _mm_set1_pd(0.5);
97     __m128d           minus_one = _mm_set1_pd(-1.0);
98     __m128i          ewitab;
99     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100     real             *ewtab;
101     __m128d          dummy_mask,cutoff_mask;
102     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
103     __m128d          one     = _mm_set1_pd(1.0);
104     __m128d          two     = _mm_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121     vdwgridparam     = fr->ljpme_c6grid;
122     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
123     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
124     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
125
126     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
129     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm_setzero_pd();
157         fiy0             = _mm_setzero_pd();
158         fiz0             = _mm_setzero_pd();
159
160         /* Load parameters for i particles */
161         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
162         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm_setzero_pd();
166         vvdwsum          = _mm_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_pd(ix0,jx0);
184             dy00             = _mm_sub_pd(iy0,jy0);
185             dz00             = _mm_sub_pd(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
189
190             rinv00           = gmx_mm_invsqrt_pd(rsq00);
191
192             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             r00              = _mm_mul_pd(rsq00,rinv00);
204
205             /* Compute parameters for interactions between i and j atoms */
206             qq00             = _mm_mul_pd(iq0,jq0);
207             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
209             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
210                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
211
212             /* EWALD ELECTROSTATICS */
213
214             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215             ewrt             = _mm_mul_pd(r00,ewtabscale);
216             ewitab           = _mm_cvttpd_epi32(ewrt);
217 #ifdef __XOP__
218             eweps            = _mm_frcz_pd(ewrt);
219 #else
220             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
221 #endif
222             twoeweps         = _mm_add_pd(eweps,eweps);
223             ewitab           = _mm_slli_epi32(ewitab,2);
224             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
225             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
226             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
227             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
228             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
229             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
230             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
231             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
232             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
233             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
234
235             /* Analytical LJ-PME */
236             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
237             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
238             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
239             exponent         = gmx_simd_exp_d(ewcljrsq);
240             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
241             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
242             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
243             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
244             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
245             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
246             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
247             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm_add_pd(velecsum,velec);
251             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
252
253             fscal            = _mm_add_pd(felec,fvdw);
254
255             /* Update vectorial force */
256             fix0             = _mm_macc_pd(dx00,fscal,fix0);
257             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
258             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
259             
260             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
261                                                    _mm_mul_pd(dx00,fscal),
262                                                    _mm_mul_pd(dy00,fscal),
263                                                    _mm_mul_pd(dz00,fscal));
264
265             /* Inner loop uses 68 flops */
266         }
267
268         if(jidx<j_index_end)
269         {
270
271             jnrA             = jjnr[jidx];
272             j_coord_offsetA  = DIM*jnrA;
273
274             /* load j atom coordinates */
275             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_pd(ix0,jx0);
280             dy00             = _mm_sub_pd(iy0,jy0);
281             dz00             = _mm_sub_pd(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
285
286             rinv00           = gmx_mm_invsqrt_pd(rsq00);
287
288             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
289
290             /* Load parameters for j particles */
291             jq0              = _mm_load_sd(charge+jnrA+0);
292             vdwjidx0A        = 2*vdwtype[jnrA+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Compute parameters for interactions between i and j atoms */
301             qq00             = _mm_mul_pd(iq0,jq0);
302             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
303             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
304
305             /* EWALD ELECTROSTATICS */
306
307             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
308             ewrt             = _mm_mul_pd(r00,ewtabscale);
309             ewitab           = _mm_cvttpd_epi32(ewrt);
310 #ifdef __XOP__
311             eweps            = _mm_frcz_pd(ewrt);
312 #else
313             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
314 #endif
315             twoeweps         = _mm_add_pd(eweps,eweps);
316             ewitab           = _mm_slli_epi32(ewitab,2);
317             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
318             ewtabD           = _mm_setzero_pd();
319             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
320             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
321             ewtabFn          = _mm_setzero_pd();
322             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
323             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
324             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
325             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
326             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
327
328             /* Analytical LJ-PME */
329             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
330             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
331             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
332             exponent         = gmx_simd_exp_d(ewcljrsq);
333             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
334             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
335             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
336             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
337             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
338             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
339             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
340             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
344             velecsum         = _mm_add_pd(velecsum,velec);
345             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
346             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
347
348             fscal            = _mm_add_pd(felec,fvdw);
349
350             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
351
352             /* Update vectorial force */
353             fix0             = _mm_macc_pd(dx00,fscal,fix0);
354             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
355             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
356             
357             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
358                                                    _mm_mul_pd(dx00,fscal),
359                                                    _mm_mul_pd(dy00,fscal),
360                                                    _mm_mul_pd(dz00,fscal));
361
362             /* Inner loop uses 68 flops */
363         }
364
365         /* End of innermost loop */
366
367         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
368                                               f+i_coord_offset,fshift+i_shift_offset);
369
370         ggid                        = gid[iidx];
371         /* Update potential energies */
372         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
373         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
374
375         /* Increment number of inner iterations */
376         inneriter                  += j_index_end - j_index_start;
377
378         /* Outer loop uses 9 flops */
379     }
380
381     /* Increment number of outer iterations */
382     outeriter        += nri;
383
384     /* Update outer/inner flops */
385
386     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
387 }
388 /*
389  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
390  * Electrostatics interaction: Ewald
391  * VdW interaction:            LJEwald
392  * Geometry:                   Particle-Particle
393  * Calculate force/pot:        Force
394  */
395 void
396 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
397                     (t_nblist                    * gmx_restrict       nlist,
398                      rvec                        * gmx_restrict          xx,
399                      rvec                        * gmx_restrict          ff,
400                      t_forcerec                  * gmx_restrict          fr,
401                      t_mdatoms                   * gmx_restrict     mdatoms,
402                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
403                      t_nrnb                      * gmx_restrict        nrnb)
404 {
405     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
406      * just 0 for non-waters.
407      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
408      * jnr indices corresponding to data put in the four positions in the SIMD register.
409      */
410     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
411     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
412     int              jnrA,jnrB;
413     int              j_coord_offsetA,j_coord_offsetB;
414     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
415     real             rcutoff_scalar;
416     real             *shiftvec,*fshift,*x,*f;
417     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
418     int              vdwioffset0;
419     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
420     int              vdwjidx0A,vdwjidx0B;
421     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
422     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
423     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
424     real             *charge;
425     int              nvdwtype;
426     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
427     int              *vdwtype;
428     real             *vdwparam;
429     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
430     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
431     __m128d           c6grid_00;
432     real             *vdwgridparam;
433     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
434     __m128d           one_half  = _mm_set1_pd(0.5);
435     __m128d           minus_one = _mm_set1_pd(-1.0);
436     __m128i          ewitab;
437     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
438     real             *ewtab;
439     __m128d          dummy_mask,cutoff_mask;
440     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
441     __m128d          one     = _mm_set1_pd(1.0);
442     __m128d          two     = _mm_set1_pd(2.0);
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = _mm_set1_pd(fr->epsfac);
455     charge           = mdatoms->chargeA;
456     nvdwtype         = fr->ntype;
457     vdwparam         = fr->nbfp;
458     vdwtype          = mdatoms->typeA;
459     vdwgridparam     = fr->ljpme_c6grid;
460     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
461     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
462     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
463
464     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
465     ewtab            = fr->ic->tabq_coul_F;
466     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
467     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
468
469     /* Avoid stupid compiler warnings */
470     jnrA = jnrB = 0;
471     j_coord_offsetA = 0;
472     j_coord_offsetB = 0;
473
474     outeriter        = 0;
475     inneriter        = 0;
476
477     /* Start outer loop over neighborlists */
478     for(iidx=0; iidx<nri; iidx++)
479     {
480         /* Load shift vector for this list */
481         i_shift_offset   = DIM*shiftidx[iidx];
482
483         /* Load limits for loop over neighbors */
484         j_index_start    = jindex[iidx];
485         j_index_end      = jindex[iidx+1];
486
487         /* Get outer coordinate index */
488         inr              = iinr[iidx];
489         i_coord_offset   = DIM*inr;
490
491         /* Load i particle coords and add shift vector */
492         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
493
494         fix0             = _mm_setzero_pd();
495         fiy0             = _mm_setzero_pd();
496         fiz0             = _mm_setzero_pd();
497
498         /* Load parameters for i particles */
499         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
500         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
501
502         /* Start inner kernel loop */
503         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrA             = jjnr[jidx];
508             jnrB             = jjnr[jidx+1];
509             j_coord_offsetA  = DIM*jnrA;
510             j_coord_offsetB  = DIM*jnrB;
511
512             /* load j atom coordinates */
513             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
514                                               &jx0,&jy0,&jz0);
515
516             /* Calculate displacement vector */
517             dx00             = _mm_sub_pd(ix0,jx0);
518             dy00             = _mm_sub_pd(iy0,jy0);
519             dz00             = _mm_sub_pd(iz0,jz0);
520
521             /* Calculate squared distance and things based on it */
522             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
523
524             rinv00           = gmx_mm_invsqrt_pd(rsq00);
525
526             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
527
528             /* Load parameters for j particles */
529             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             r00              = _mm_mul_pd(rsq00,rinv00);
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq00             = _mm_mul_pd(iq0,jq0);
541             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
542                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
543             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
545
546             /* EWALD ELECTROSTATICS */
547
548             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
549             ewrt             = _mm_mul_pd(r00,ewtabscale);
550             ewitab           = _mm_cvttpd_epi32(ewrt);
551 #ifdef __XOP__
552             eweps            = _mm_frcz_pd(ewrt);
553 #else
554             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
555 #endif
556             twoeweps         = _mm_add_pd(eweps,eweps);
557             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
558                                          &ewtabF,&ewtabFn);
559             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
560             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
561
562             /* Analytical LJ-PME */
563             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
564             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
565             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
566             exponent         = gmx_simd_exp_d(ewcljrsq);
567             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
568             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
569             /* f6A = 6 * C6grid * (1 - poly) */
570             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
571             /* f6B = C6grid * exponent * beta^6 */
572             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
573             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
574             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
575
576             fscal            = _mm_add_pd(felec,fvdw);
577
578             /* Update vectorial force */
579             fix0             = _mm_macc_pd(dx00,fscal,fix0);
580             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
581             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
582             
583             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
584                                                    _mm_mul_pd(dx00,fscal),
585                                                    _mm_mul_pd(dy00,fscal),
586                                                    _mm_mul_pd(dz00,fscal));
587
588             /* Inner loop uses 60 flops */
589         }
590
591         if(jidx<j_index_end)
592         {
593
594             jnrA             = jjnr[jidx];
595             j_coord_offsetA  = DIM*jnrA;
596
597             /* load j atom coordinates */
598             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
599                                               &jx0,&jy0,&jz0);
600
601             /* Calculate displacement vector */
602             dx00             = _mm_sub_pd(ix0,jx0);
603             dy00             = _mm_sub_pd(iy0,jy0);
604             dz00             = _mm_sub_pd(iz0,jz0);
605
606             /* Calculate squared distance and things based on it */
607             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
608
609             rinv00           = gmx_mm_invsqrt_pd(rsq00);
610
611             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
612
613             /* Load parameters for j particles */
614             jq0              = _mm_load_sd(charge+jnrA+0);
615             vdwjidx0A        = 2*vdwtype[jnrA+0];
616
617             /**************************
618              * CALCULATE INTERACTIONS *
619              **************************/
620
621             r00              = _mm_mul_pd(rsq00,rinv00);
622
623             /* Compute parameters for interactions between i and j atoms */
624             qq00             = _mm_mul_pd(iq0,jq0);
625             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
626             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
627
628             /* EWALD ELECTROSTATICS */
629
630             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
631             ewrt             = _mm_mul_pd(r00,ewtabscale);
632             ewitab           = _mm_cvttpd_epi32(ewrt);
633 #ifdef __XOP__
634             eweps            = _mm_frcz_pd(ewrt);
635 #else
636             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
637 #endif
638             twoeweps         = _mm_add_pd(eweps,eweps);
639             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
640             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
641             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
642
643             /* Analytical LJ-PME */
644             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
645             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
646             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
647             exponent         = gmx_simd_exp_d(ewcljrsq);
648             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
649             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
650             /* f6A = 6 * C6grid * (1 - poly) */
651             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
652             /* f6B = C6grid * exponent * beta^6 */
653             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
654             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
655             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
656
657             fscal            = _mm_add_pd(felec,fvdw);
658
659             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
660
661             /* Update vectorial force */
662             fix0             = _mm_macc_pd(dx00,fscal,fix0);
663             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
664             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
665             
666             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
667                                                    _mm_mul_pd(dx00,fscal),
668                                                    _mm_mul_pd(dy00,fscal),
669                                                    _mm_mul_pd(dz00,fscal));
670
671             /* Inner loop uses 60 flops */
672         }
673
674         /* End of innermost loop */
675
676         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
677                                               f+i_coord_offset,fshift+i_shift_offset);
678
679         /* Increment number of inner iterations */
680         inneriter                  += j_index_end - j_index_start;
681
682         /* Outer loop uses 7 flops */
683     }
684
685     /* Increment number of outer iterations */
686     outeriter        += nri;
687
688     /* Update outer/inner flops */
689
690     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
691 }