Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            LJEwald
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B;
85     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
94     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
95     __m128d           c6grid_00;
96     real             *vdwgridparam;
97     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98     __m128d           one_half  = _mm_set1_pd(0.5);
99     __m128d           minus_one = _mm_set1_pd(-1.0);
100     __m128i          ewitab;
101     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
102     real             *ewtab;
103     __m128d          dummy_mask,cutoff_mask;
104     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
105     __m128d          one     = _mm_set1_pd(1.0);
106     __m128d          two     = _mm_set1_pd(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_pd(fr->epsfac);
119     charge           = mdatoms->chargeA;
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123     vdwgridparam     = fr->ljpme_c6grid;
124     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
125     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
126     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
127
128     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
129     ewtab            = fr->ic->tabq_coul_FDV0;
130     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
131     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm_setzero_pd();
159         fiy0             = _mm_setzero_pd();
160         fiz0             = _mm_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
164         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm_setzero_pd();
168         vvdwsum          = _mm_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179
180             /* load j atom coordinates */
181             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                               &jx0,&jy0,&jz0);
183
184             /* Calculate displacement vector */
185             dx00             = _mm_sub_pd(ix0,jx0);
186             dy00             = _mm_sub_pd(iy0,jy0);
187             dz00             = _mm_sub_pd(iz0,jz0);
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
191
192             rinv00           = gmx_mm_invsqrt_pd(rsq00);
193
194             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
195
196             /* Load parameters for j particles */
197             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             qq00             = _mm_mul_pd(iq0,jq0);
209             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
210                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
211             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
212                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
213
214             /* EWALD ELECTROSTATICS */
215
216             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
217             ewrt             = _mm_mul_pd(r00,ewtabscale);
218             ewitab           = _mm_cvttpd_epi32(ewrt);
219 #ifdef __XOP__
220             eweps            = _mm_frcz_pd(ewrt);
221 #else
222             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
223 #endif
224             twoeweps         = _mm_add_pd(eweps,eweps);
225             ewitab           = _mm_slli_epi32(ewitab,2);
226             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
227             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
228             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
229             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
230             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
231             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
232             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
233             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
234             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
235             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
236
237             /* Analytical LJ-PME */
238             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
239             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
240             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
241             exponent         = gmx_simd_exp_d(ewcljrsq);
242             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
243             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
244             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
245             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
246             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
247             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
248             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
249             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _mm_add_pd(velecsum,velec);
253             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
254
255             fscal            = _mm_add_pd(felec,fvdw);
256
257             /* Update vectorial force */
258             fix0             = _mm_macc_pd(dx00,fscal,fix0);
259             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
260             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
261             
262             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
263                                                    _mm_mul_pd(dx00,fscal),
264                                                    _mm_mul_pd(dy00,fscal),
265                                                    _mm_mul_pd(dz00,fscal));
266
267             /* Inner loop uses 68 flops */
268         }
269
270         if(jidx<j_index_end)
271         {
272
273             jnrA             = jjnr[jidx];
274             j_coord_offsetA  = DIM*jnrA;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
278                                               &jx0,&jy0,&jz0);
279
280             /* Calculate displacement vector */
281             dx00             = _mm_sub_pd(ix0,jx0);
282             dy00             = _mm_sub_pd(iy0,jy0);
283             dz00             = _mm_sub_pd(iz0,jz0);
284
285             /* Calculate squared distance and things based on it */
286             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
287
288             rinv00           = gmx_mm_invsqrt_pd(rsq00);
289
290             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
291
292             /* Load parameters for j particles */
293             jq0              = _mm_load_sd(charge+jnrA+0);
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r00              = _mm_mul_pd(rsq00,rinv00);
301
302             /* Compute parameters for interactions between i and j atoms */
303             qq00             = _mm_mul_pd(iq0,jq0);
304             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
305             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
306
307             /* EWALD ELECTROSTATICS */
308
309             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
310             ewrt             = _mm_mul_pd(r00,ewtabscale);
311             ewitab           = _mm_cvttpd_epi32(ewrt);
312 #ifdef __XOP__
313             eweps            = _mm_frcz_pd(ewrt);
314 #else
315             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
316 #endif
317             twoeweps         = _mm_add_pd(eweps,eweps);
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm_setzero_pd();
321             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
322             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
323             ewtabFn          = _mm_setzero_pd();
324             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
325             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
326             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
327             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
328             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
329
330             /* Analytical LJ-PME */
331             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
332             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
333             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
334             exponent         = gmx_simd_exp_d(ewcljrsq);
335             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
336             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
337             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
338             vvdw6            = _mm_mul_pd(_mm_macc_pd(-c6grid_00,_mm_sub_pd(one,poly),c6_00),rinvsix);
339             vvdw12           = _mm_mul_pd(c12_00,_mm_mul_pd(rinvsix,rinvsix));
340             vvdw             = _mm_msub_pd(vvdw12,one_twelfth,_mm_mul_pd(vvdw6,one_sixth));
341             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
342             fvdw             = _mm_mul_pd(_mm_add_pd(vvdw12,_mm_msub_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6),vvdw6)),rinvsq00);
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
346             velecsum         = _mm_add_pd(velecsum,velec);
347             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
348             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
349
350             fscal            = _mm_add_pd(felec,fvdw);
351
352             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
353
354             /* Update vectorial force */
355             fix0             = _mm_macc_pd(dx00,fscal,fix0);
356             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
357             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
358             
359             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
360                                                    _mm_mul_pd(dx00,fscal),
361                                                    _mm_mul_pd(dy00,fscal),
362                                                    _mm_mul_pd(dz00,fscal));
363
364             /* Inner loop uses 68 flops */
365         }
366
367         /* End of innermost loop */
368
369         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
370                                               f+i_coord_offset,fshift+i_shift_offset);
371
372         ggid                        = gid[iidx];
373         /* Update potential energies */
374         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
375         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
376
377         /* Increment number of inner iterations */
378         inneriter                  += j_index_end - j_index_start;
379
380         /* Outer loop uses 9 flops */
381     }
382
383     /* Increment number of outer iterations */
384     outeriter        += nri;
385
386     /* Update outer/inner flops */
387
388     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
389 }
390 /*
391  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
392  * Electrostatics interaction: Ewald
393  * VdW interaction:            LJEwald
394  * Geometry:                   Particle-Particle
395  * Calculate force/pot:        Force
396  */
397 void
398 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_avx_128_fma_double
399                     (t_nblist                    * gmx_restrict       nlist,
400                      rvec                        * gmx_restrict          xx,
401                      rvec                        * gmx_restrict          ff,
402                      t_forcerec                  * gmx_restrict          fr,
403                      t_mdatoms                   * gmx_restrict     mdatoms,
404                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
405                      t_nrnb                      * gmx_restrict        nrnb)
406 {
407     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
408      * just 0 for non-waters.
409      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
410      * jnr indices corresponding to data put in the four positions in the SIMD register.
411      */
412     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
413     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
414     int              jnrA,jnrB;
415     int              j_coord_offsetA,j_coord_offsetB;
416     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
417     real             rcutoff_scalar;
418     real             *shiftvec,*fshift,*x,*f;
419     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
420     int              vdwioffset0;
421     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422     int              vdwjidx0A,vdwjidx0B;
423     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
424     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
425     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
426     real             *charge;
427     int              nvdwtype;
428     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
429     int              *vdwtype;
430     real             *vdwparam;
431     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
432     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
433     __m128d           c6grid_00;
434     real             *vdwgridparam;
435     __m128d           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
436     __m128d           one_half  = _mm_set1_pd(0.5);
437     __m128d           minus_one = _mm_set1_pd(-1.0);
438     __m128i          ewitab;
439     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
440     real             *ewtab;
441     __m128d          dummy_mask,cutoff_mask;
442     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
443     __m128d          one     = _mm_set1_pd(1.0);
444     __m128d          two     = _mm_set1_pd(2.0);
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     facel            = _mm_set1_pd(fr->epsfac);
457     charge           = mdatoms->chargeA;
458     nvdwtype         = fr->ntype;
459     vdwparam         = fr->nbfp;
460     vdwtype          = mdatoms->typeA;
461     vdwgridparam     = fr->ljpme_c6grid;
462     sh_lj_ewald      = _mm_set1_pd(fr->ic->sh_lj_ewald);
463     ewclj            = _mm_set1_pd(fr->ewaldcoeff_lj);
464     ewclj2           = _mm_mul_pd(minus_one,_mm_mul_pd(ewclj,ewclj));
465
466     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
467     ewtab            = fr->ic->tabq_coul_F;
468     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
469     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
470
471     /* Avoid stupid compiler warnings */
472     jnrA = jnrB = 0;
473     j_coord_offsetA = 0;
474     j_coord_offsetB = 0;
475
476     outeriter        = 0;
477     inneriter        = 0;
478
479     /* Start outer loop over neighborlists */
480     for(iidx=0; iidx<nri; iidx++)
481     {
482         /* Load shift vector for this list */
483         i_shift_offset   = DIM*shiftidx[iidx];
484
485         /* Load limits for loop over neighbors */
486         j_index_start    = jindex[iidx];
487         j_index_end      = jindex[iidx+1];
488
489         /* Get outer coordinate index */
490         inr              = iinr[iidx];
491         i_coord_offset   = DIM*inr;
492
493         /* Load i particle coords and add shift vector */
494         gmx_mm_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
495
496         fix0             = _mm_setzero_pd();
497         fiy0             = _mm_setzero_pd();
498         fiz0             = _mm_setzero_pd();
499
500         /* Load parameters for i particles */
501         iq0              = _mm_mul_pd(facel,_mm_load1_pd(charge+inr+0));
502         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
503
504         /* Start inner kernel loop */
505         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
506         {
507
508             /* Get j neighbor index, and coordinate index */
509             jnrA             = jjnr[jidx];
510             jnrB             = jjnr[jidx+1];
511             j_coord_offsetA  = DIM*jnrA;
512             j_coord_offsetB  = DIM*jnrB;
513
514             /* load j atom coordinates */
515             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
516                                               &jx0,&jy0,&jz0);
517
518             /* Calculate displacement vector */
519             dx00             = _mm_sub_pd(ix0,jx0);
520             dy00             = _mm_sub_pd(iy0,jy0);
521             dz00             = _mm_sub_pd(iz0,jz0);
522
523             /* Calculate squared distance and things based on it */
524             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
525
526             rinv00           = gmx_mm_invsqrt_pd(rsq00);
527
528             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
529
530             /* Load parameters for j particles */
531             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
532             vdwjidx0A        = 2*vdwtype[jnrA+0];
533             vdwjidx0B        = 2*vdwtype[jnrB+0];
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r00              = _mm_mul_pd(rsq00,rinv00);
540
541             /* Compute parameters for interactions between i and j atoms */
542             qq00             = _mm_mul_pd(iq0,jq0);
543             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
544                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
545             c6grid_00       = gmx_mm_load_2real_swizzle_pd(vdwgridparam+vdwioffset0+vdwjidx0A,
546                                                                vdwgridparam+vdwioffset0+vdwjidx0B);
547
548             /* EWALD ELECTROSTATICS */
549
550             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
551             ewrt             = _mm_mul_pd(r00,ewtabscale);
552             ewitab           = _mm_cvttpd_epi32(ewrt);
553 #ifdef __XOP__
554             eweps            = _mm_frcz_pd(ewrt);
555 #else
556             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
557 #endif
558             twoeweps         = _mm_add_pd(eweps,eweps);
559             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
560                                          &ewtabF,&ewtabFn);
561             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
562             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
563
564             /* Analytical LJ-PME */
565             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
566             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
567             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
568             exponent         = gmx_simd_exp_d(ewcljrsq);
569             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
570             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
571             /* f6A = 6 * C6grid * (1 - poly) */
572             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
573             /* f6B = C6grid * exponent * beta^6 */
574             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
575             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
576             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
577
578             fscal            = _mm_add_pd(felec,fvdw);
579
580             /* Update vectorial force */
581             fix0             = _mm_macc_pd(dx00,fscal,fix0);
582             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
583             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
584             
585             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,
586                                                    _mm_mul_pd(dx00,fscal),
587                                                    _mm_mul_pd(dy00,fscal),
588                                                    _mm_mul_pd(dz00,fscal));
589
590             /* Inner loop uses 60 flops */
591         }
592
593         if(jidx<j_index_end)
594         {
595
596             jnrA             = jjnr[jidx];
597             j_coord_offsetA  = DIM*jnrA;
598
599             /* load j atom coordinates */
600             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
601                                               &jx0,&jy0,&jz0);
602
603             /* Calculate displacement vector */
604             dx00             = _mm_sub_pd(ix0,jx0);
605             dy00             = _mm_sub_pd(iy0,jy0);
606             dz00             = _mm_sub_pd(iz0,jz0);
607
608             /* Calculate squared distance and things based on it */
609             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
610
611             rinv00           = gmx_mm_invsqrt_pd(rsq00);
612
613             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
614
615             /* Load parameters for j particles */
616             jq0              = _mm_load_sd(charge+jnrA+0);
617             vdwjidx0A        = 2*vdwtype[jnrA+0];
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r00              = _mm_mul_pd(rsq00,rinv00);
624
625             /* Compute parameters for interactions between i and j atoms */
626             qq00             = _mm_mul_pd(iq0,jq0);
627             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
628             c6grid_00       = gmx_mm_load_1real_pd(vdwgridparam+vdwioffset0+vdwjidx0A);
629
630             /* EWALD ELECTROSTATICS */
631
632             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
633             ewrt             = _mm_mul_pd(r00,ewtabscale);
634             ewitab           = _mm_cvttpd_epi32(ewrt);
635 #ifdef __XOP__
636             eweps            = _mm_frcz_pd(ewrt);
637 #else
638             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
639 #endif
640             twoeweps         = _mm_add_pd(eweps,eweps);
641             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
642             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
643             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
644
645             /* Analytical LJ-PME */
646             rinvsix          = _mm_mul_pd(_mm_mul_pd(rinvsq00,rinvsq00),rinvsq00);
647             ewcljrsq         = _mm_mul_pd(ewclj2,rsq00);
648             ewclj6           = _mm_mul_pd(ewclj2,_mm_mul_pd(ewclj2,ewclj2));
649             exponent         = gmx_simd_exp_d(ewcljrsq);
650             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
651             poly             = _mm_mul_pd(exponent,_mm_macc_pd(_mm_mul_pd(ewcljrsq,ewcljrsq),one_half,_mm_sub_pd(one,ewcljrsq)));
652             /* f6A = 6 * C6grid * (1 - poly) */
653             f6A              = _mm_mul_pd(c6grid_00,_mm_sub_pd(one,poly));
654             /* f6B = C6grid * exponent * beta^6 */
655             f6B              = _mm_mul_pd(_mm_mul_pd(c6grid_00,one_sixth),_mm_mul_pd(exponent,ewclj6));
656             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
657             fvdw              = _mm_mul_pd(_mm_macc_pd(_mm_msub_pd(c12_00,rinvsix,_mm_sub_pd(c6_00,f6A)),rinvsix,f6B),rinvsq00);
658
659             fscal            = _mm_add_pd(felec,fvdw);
660
661             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
662
663             /* Update vectorial force */
664             fix0             = _mm_macc_pd(dx00,fscal,fix0);
665             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
666             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
667             
668             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,
669                                                    _mm_mul_pd(dx00,fscal),
670                                                    _mm_mul_pd(dy00,fscal),
671                                                    _mm_mul_pd(dz00,fscal));
672
673             /* Inner loop uses 60 flops */
674         }
675
676         /* End of innermost loop */
677
678         gmx_mm_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
679                                               f+i_coord_offset,fshift+i_shift_offset);
680
681         /* Increment number of inner iterations */
682         inneriter                  += j_index_end - j_index_start;
683
684         /* Outer loop uses 7 flops */
685     }
686
687     /* Increment number of outer iterations */
688     outeriter        += nri;
689
690     /* Update outer/inner flops */
691
692     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*60);
693 }