Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwioffset3;
86     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
87     int              vdwjidx0A,vdwjidx0B;
88     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
91     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
92     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->ic->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
140     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
141     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179         fix3             = _mm_setzero_pd();
180         fiy3             = _mm_setzero_pd();
181         fiz3             = _mm_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_pd();
185         vvdwsum          = _mm_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_pd(ix0,jx0);
203             dy00             = _mm_sub_pd(iy0,jy0);
204             dz00             = _mm_sub_pd(iz0,jz0);
205             dx10             = _mm_sub_pd(ix1,jx0);
206             dy10             = _mm_sub_pd(iy1,jy0);
207             dz10             = _mm_sub_pd(iz1,jz0);
208             dx20             = _mm_sub_pd(ix2,jx0);
209             dy20             = _mm_sub_pd(iy2,jy0);
210             dz20             = _mm_sub_pd(iz2,jz0);
211             dx30             = _mm_sub_pd(ix3,jx0);
212             dy30             = _mm_sub_pd(iy3,jy0);
213             dz30             = _mm_sub_pd(iz3,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
219             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
220
221             rinv00           = avx128fma_invsqrt_d(rsq00);
222             rinv10           = avx128fma_invsqrt_d(rsq10);
223             rinv20           = avx128fma_invsqrt_d(rsq20);
224             rinv30           = avx128fma_invsqrt_d(rsq30);
225
226             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
228             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234
235             fjx0             = _mm_setzero_pd();
236             fjy0             = _mm_setzero_pd();
237             fjz0             = _mm_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
247                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm_mul_pd(r00,vftabscale);
251             vfitab           = _mm_cvttpd_epi32(rt);
252 #ifdef __XOP__
253             vfeps            = _mm_frcz_pd(rt);
254 #else
255             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
256 #endif
257             twovfeps         = _mm_add_pd(vfeps,vfeps);
258             vfitab           = _mm_slli_epi32(vfitab,3);
259
260             /* CUBIC SPLINE TABLE DISPERSION */
261             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
263             GMX_MM_TRANSPOSE2_PD(Y,F);
264             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
265             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
266             GMX_MM_TRANSPOSE2_PD(G,H);
267             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
268             VV               = _mm_macc_pd(vfeps,Fp,Y);
269             vvdw6            = _mm_mul_pd(c6_00,VV);
270             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
271             fvdw6            = _mm_mul_pd(c6_00,FF);
272
273             /* CUBIC SPLINE TABLE REPULSION */
274             vfitab           = _mm_add_epi32(vfitab,ifour);
275             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             GMX_MM_TRANSPOSE2_PD(Y,F);
278             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
279             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(G,H);
281             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
282             VV               = _mm_macc_pd(vfeps,Fp,Y);
283             vvdw12           = _mm_mul_pd(c12_00,VV);
284             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
285             fvdw12           = _mm_mul_pd(c12_00,FF);
286             vvdw             = _mm_add_pd(vvdw12,vvdw6);
287             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Update vectorial force */
295             fix0             = _mm_macc_pd(dx00,fscal,fix0);
296             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
297             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
298             
299             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
300             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
301             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
302
303             /**************************
304              * CALCULATE INTERACTIONS *
305              **************************/
306
307             r10              = _mm_mul_pd(rsq10,rinv10);
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq10             = _mm_mul_pd(iq1,jq0);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm_mul_pd(r10,ewtabscale);
316             ewitab           = _mm_cvttpd_epi32(ewrt);
317 #ifdef __XOP__
318             eweps            = _mm_frcz_pd(ewrt);
319 #else
320             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
321 #endif
322             twoeweps         = _mm_add_pd(eweps,eweps);
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
326             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
327             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
328             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
329             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
330             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
331             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
332             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
333             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_pd(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Update vectorial force */
341             fix1             = _mm_macc_pd(dx10,fscal,fix1);
342             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
343             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
344             
345             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
346             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
347             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r20              = _mm_mul_pd(rsq20,rinv20);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm_mul_pd(iq2,jq0);
357
358             /* EWALD ELECTROSTATICS */
359
360             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
361             ewrt             = _mm_mul_pd(r20,ewtabscale);
362             ewitab           = _mm_cvttpd_epi32(ewrt);
363 #ifdef __XOP__
364             eweps            = _mm_frcz_pd(ewrt);
365 #else
366             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
367 #endif
368             twoeweps         = _mm_add_pd(eweps,eweps);
369             ewitab           = _mm_slli_epi32(ewitab,2);
370             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
371             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
372             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
373             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
374             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
375             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
376             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
377             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
378             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
379             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm_add_pd(velecsum,velec);
383
384             fscal            = felec;
385
386             /* Update vectorial force */
387             fix2             = _mm_macc_pd(dx20,fscal,fix2);
388             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
389             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
390             
391             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
392             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
393             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             r30              = _mm_mul_pd(rsq30,rinv30);
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq30             = _mm_mul_pd(iq3,jq0);
403
404             /* EWALD ELECTROSTATICS */
405
406             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
407             ewrt             = _mm_mul_pd(r30,ewtabscale);
408             ewitab           = _mm_cvttpd_epi32(ewrt);
409 #ifdef __XOP__
410             eweps            = _mm_frcz_pd(ewrt);
411 #else
412             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
413 #endif
414             twoeweps         = _mm_add_pd(eweps,eweps);
415             ewitab           = _mm_slli_epi32(ewitab,2);
416             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
417             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
418             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
419             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
420             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
421             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
422             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
423             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
424             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
425             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
426
427             /* Update potential sum for this i atom from the interaction with this j atom. */
428             velecsum         = _mm_add_pd(velecsum,velec);
429
430             fscal            = felec;
431
432             /* Update vectorial force */
433             fix3             = _mm_macc_pd(dx30,fscal,fix3);
434             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
435             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
436             
437             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
438             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
439             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
440
441             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
442
443             /* Inner loop uses 194 flops */
444         }
445
446         if(jidx<j_index_end)
447         {
448
449             jnrA             = jjnr[jidx];
450             j_coord_offsetA  = DIM*jnrA;
451
452             /* load j atom coordinates */
453             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
454                                               &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm_sub_pd(ix0,jx0);
458             dy00             = _mm_sub_pd(iy0,jy0);
459             dz00             = _mm_sub_pd(iz0,jz0);
460             dx10             = _mm_sub_pd(ix1,jx0);
461             dy10             = _mm_sub_pd(iy1,jy0);
462             dz10             = _mm_sub_pd(iz1,jz0);
463             dx20             = _mm_sub_pd(ix2,jx0);
464             dy20             = _mm_sub_pd(iy2,jy0);
465             dz20             = _mm_sub_pd(iz2,jz0);
466             dx30             = _mm_sub_pd(ix3,jx0);
467             dy30             = _mm_sub_pd(iy3,jy0);
468             dz30             = _mm_sub_pd(iz3,jz0);
469
470             /* Calculate squared distance and things based on it */
471             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
472             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
473             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
474             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
475
476             rinv00           = avx128fma_invsqrt_d(rsq00);
477             rinv10           = avx128fma_invsqrt_d(rsq10);
478             rinv20           = avx128fma_invsqrt_d(rsq20);
479             rinv30           = avx128fma_invsqrt_d(rsq30);
480
481             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
482             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
483             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
484
485             /* Load parameters for j particles */
486             jq0              = _mm_load_sd(charge+jnrA+0);
487             vdwjidx0A        = 2*vdwtype[jnrA+0];
488
489             fjx0             = _mm_setzero_pd();
490             fjy0             = _mm_setzero_pd();
491             fjz0             = _mm_setzero_pd();
492
493             /**************************
494              * CALCULATE INTERACTIONS *
495              **************************/
496
497             r00              = _mm_mul_pd(rsq00,rinv00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm_mul_pd(r00,vftabscale);
504             vfitab           = _mm_cvttpd_epi32(rt);
505 #ifdef __XOP__
506             vfeps            = _mm_frcz_pd(rt);
507 #else
508             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
509 #endif
510             twovfeps         = _mm_add_pd(vfeps,vfeps);
511             vfitab           = _mm_slli_epi32(vfitab,3);
512
513             /* CUBIC SPLINE TABLE DISPERSION */
514             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
515             F                = _mm_setzero_pd();
516             GMX_MM_TRANSPOSE2_PD(Y,F);
517             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
518             H                = _mm_setzero_pd();
519             GMX_MM_TRANSPOSE2_PD(G,H);
520             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
521             VV               = _mm_macc_pd(vfeps,Fp,Y);
522             vvdw6            = _mm_mul_pd(c6_00,VV);
523             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
524             fvdw6            = _mm_mul_pd(c6_00,FF);
525
526             /* CUBIC SPLINE TABLE REPULSION */
527             vfitab           = _mm_add_epi32(vfitab,ifour);
528             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
529             F                = _mm_setzero_pd();
530             GMX_MM_TRANSPOSE2_PD(Y,F);
531             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
532             H                = _mm_setzero_pd();
533             GMX_MM_TRANSPOSE2_PD(G,H);
534             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
535             VV               = _mm_macc_pd(vfeps,Fp,Y);
536             vvdw12           = _mm_mul_pd(c12_00,VV);
537             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
538             fvdw12           = _mm_mul_pd(c12_00,FF);
539             vvdw             = _mm_add_pd(vvdw12,vvdw6);
540             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
541
542             /* Update potential sum for this i atom from the interaction with this j atom. */
543             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
544             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
545
546             fscal            = fvdw;
547
548             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
549
550             /* Update vectorial force */
551             fix0             = _mm_macc_pd(dx00,fscal,fix0);
552             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
553             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
554             
555             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
556             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
557             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r10              = _mm_mul_pd(rsq10,rinv10);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq10             = _mm_mul_pd(iq1,jq0);
567
568             /* EWALD ELECTROSTATICS */
569
570             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
571             ewrt             = _mm_mul_pd(r10,ewtabscale);
572             ewitab           = _mm_cvttpd_epi32(ewrt);
573 #ifdef __XOP__
574             eweps            = _mm_frcz_pd(ewrt);
575 #else
576             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
577 #endif
578             twoeweps         = _mm_add_pd(eweps,eweps);
579             ewitab           = _mm_slli_epi32(ewitab,2);
580             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
581             ewtabD           = _mm_setzero_pd();
582             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
583             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
584             ewtabFn          = _mm_setzero_pd();
585             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
586             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
587             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
588             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
589             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
593             velecsum         = _mm_add_pd(velecsum,velec);
594
595             fscal            = felec;
596
597             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
598
599             /* Update vectorial force */
600             fix1             = _mm_macc_pd(dx10,fscal,fix1);
601             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
602             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
603             
604             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
605             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
606             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r20              = _mm_mul_pd(rsq20,rinv20);
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq20             = _mm_mul_pd(iq2,jq0);
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
620             ewrt             = _mm_mul_pd(r20,ewtabscale);
621             ewitab           = _mm_cvttpd_epi32(ewrt);
622 #ifdef __XOP__
623             eweps            = _mm_frcz_pd(ewrt);
624 #else
625             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
626 #endif
627             twoeweps         = _mm_add_pd(eweps,eweps);
628             ewitab           = _mm_slli_epi32(ewitab,2);
629             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
630             ewtabD           = _mm_setzero_pd();
631             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
632             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
633             ewtabFn          = _mm_setzero_pd();
634             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
635             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
636             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
637             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
638             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
639
640             /* Update potential sum for this i atom from the interaction with this j atom. */
641             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
642             velecsum         = _mm_add_pd(velecsum,velec);
643
644             fscal            = felec;
645
646             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
647
648             /* Update vectorial force */
649             fix2             = _mm_macc_pd(dx20,fscal,fix2);
650             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
651             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
652             
653             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
654             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
655             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             r30              = _mm_mul_pd(rsq30,rinv30);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq30             = _mm_mul_pd(iq3,jq0);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
669             ewrt             = _mm_mul_pd(r30,ewtabscale);
670             ewitab           = _mm_cvttpd_epi32(ewrt);
671 #ifdef __XOP__
672             eweps            = _mm_frcz_pd(ewrt);
673 #else
674             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
675 #endif
676             twoeweps         = _mm_add_pd(eweps,eweps);
677             ewitab           = _mm_slli_epi32(ewitab,2);
678             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
679             ewtabD           = _mm_setzero_pd();
680             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
681             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
682             ewtabFn          = _mm_setzero_pd();
683             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
684             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
685             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
686             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
687             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
688
689             /* Update potential sum for this i atom from the interaction with this j atom. */
690             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
691             velecsum         = _mm_add_pd(velecsum,velec);
692
693             fscal            = felec;
694
695             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
696
697             /* Update vectorial force */
698             fix3             = _mm_macc_pd(dx30,fscal,fix3);
699             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
700             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
701             
702             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
703             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
704             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
705
706             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
707
708             /* Inner loop uses 194 flops */
709         }
710
711         /* End of innermost loop */
712
713         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
714                                               f+i_coord_offset,fshift+i_shift_offset);
715
716         ggid                        = gid[iidx];
717         /* Update potential energies */
718         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
719         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
720
721         /* Increment number of inner iterations */
722         inneriter                  += j_index_end - j_index_start;
723
724         /* Outer loop uses 26 flops */
725     }
726
727     /* Increment number of outer iterations */
728     outeriter        += nri;
729
730     /* Update outer/inner flops */
731
732     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
733 }
734 /*
735  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
736  * Electrostatics interaction: Ewald
737  * VdW interaction:            CubicSplineTable
738  * Geometry:                   Water4-Particle
739  * Calculate force/pot:        Force
740  */
741 void
742 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
743                     (t_nblist                    * gmx_restrict       nlist,
744                      rvec                        * gmx_restrict          xx,
745                      rvec                        * gmx_restrict          ff,
746                      struct t_forcerec           * gmx_restrict          fr,
747                      t_mdatoms                   * gmx_restrict     mdatoms,
748                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
749                      t_nrnb                      * gmx_restrict        nrnb)
750 {
751     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
752      * just 0 for non-waters.
753      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
754      * jnr indices corresponding to data put in the four positions in the SIMD register.
755      */
756     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
757     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
758     int              jnrA,jnrB;
759     int              j_coord_offsetA,j_coord_offsetB;
760     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
761     real             rcutoff_scalar;
762     real             *shiftvec,*fshift,*x,*f;
763     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
764     int              vdwioffset0;
765     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
766     int              vdwioffset1;
767     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
768     int              vdwioffset2;
769     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
770     int              vdwioffset3;
771     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
772     int              vdwjidx0A,vdwjidx0B;
773     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
774     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
775     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
776     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
777     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
778     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
779     real             *charge;
780     int              nvdwtype;
781     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
782     int              *vdwtype;
783     real             *vdwparam;
784     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
785     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
786     __m128i          vfitab;
787     __m128i          ifour       = _mm_set1_epi32(4);
788     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
789     real             *vftab;
790     __m128i          ewitab;
791     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
792     real             *ewtab;
793     __m128d          dummy_mask,cutoff_mask;
794     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
795     __m128d          one     = _mm_set1_pd(1.0);
796     __m128d          two     = _mm_set1_pd(2.0);
797     x                = xx[0];
798     f                = ff[0];
799
800     nri              = nlist->nri;
801     iinr             = nlist->iinr;
802     jindex           = nlist->jindex;
803     jjnr             = nlist->jjnr;
804     shiftidx         = nlist->shift;
805     gid              = nlist->gid;
806     shiftvec         = fr->shift_vec[0];
807     fshift           = fr->fshift[0];
808     facel            = _mm_set1_pd(fr->ic->epsfac);
809     charge           = mdatoms->chargeA;
810     nvdwtype         = fr->ntype;
811     vdwparam         = fr->nbfp;
812     vdwtype          = mdatoms->typeA;
813
814     vftab            = kernel_data->table_vdw->data;
815     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
816
817     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
818     ewtab            = fr->ic->tabq_coul_F;
819     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
820     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
821
822     /* Setup water-specific parameters */
823     inr              = nlist->iinr[0];
824     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
825     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
826     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
827     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
828
829     /* Avoid stupid compiler warnings */
830     jnrA = jnrB = 0;
831     j_coord_offsetA = 0;
832     j_coord_offsetB = 0;
833
834     outeriter        = 0;
835     inneriter        = 0;
836
837     /* Start outer loop over neighborlists */
838     for(iidx=0; iidx<nri; iidx++)
839     {
840         /* Load shift vector for this list */
841         i_shift_offset   = DIM*shiftidx[iidx];
842
843         /* Load limits for loop over neighbors */
844         j_index_start    = jindex[iidx];
845         j_index_end      = jindex[iidx+1];
846
847         /* Get outer coordinate index */
848         inr              = iinr[iidx];
849         i_coord_offset   = DIM*inr;
850
851         /* Load i particle coords and add shift vector */
852         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
853                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
854
855         fix0             = _mm_setzero_pd();
856         fiy0             = _mm_setzero_pd();
857         fiz0             = _mm_setzero_pd();
858         fix1             = _mm_setzero_pd();
859         fiy1             = _mm_setzero_pd();
860         fiz1             = _mm_setzero_pd();
861         fix2             = _mm_setzero_pd();
862         fiy2             = _mm_setzero_pd();
863         fiz2             = _mm_setzero_pd();
864         fix3             = _mm_setzero_pd();
865         fiy3             = _mm_setzero_pd();
866         fiz3             = _mm_setzero_pd();
867
868         /* Start inner kernel loop */
869         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
870         {
871
872             /* Get j neighbor index, and coordinate index */
873             jnrA             = jjnr[jidx];
874             jnrB             = jjnr[jidx+1];
875             j_coord_offsetA  = DIM*jnrA;
876             j_coord_offsetB  = DIM*jnrB;
877
878             /* load j atom coordinates */
879             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
880                                               &jx0,&jy0,&jz0);
881
882             /* Calculate displacement vector */
883             dx00             = _mm_sub_pd(ix0,jx0);
884             dy00             = _mm_sub_pd(iy0,jy0);
885             dz00             = _mm_sub_pd(iz0,jz0);
886             dx10             = _mm_sub_pd(ix1,jx0);
887             dy10             = _mm_sub_pd(iy1,jy0);
888             dz10             = _mm_sub_pd(iz1,jz0);
889             dx20             = _mm_sub_pd(ix2,jx0);
890             dy20             = _mm_sub_pd(iy2,jy0);
891             dz20             = _mm_sub_pd(iz2,jz0);
892             dx30             = _mm_sub_pd(ix3,jx0);
893             dy30             = _mm_sub_pd(iy3,jy0);
894             dz30             = _mm_sub_pd(iz3,jz0);
895
896             /* Calculate squared distance and things based on it */
897             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
898             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
899             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
900             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
901
902             rinv00           = avx128fma_invsqrt_d(rsq00);
903             rinv10           = avx128fma_invsqrt_d(rsq10);
904             rinv20           = avx128fma_invsqrt_d(rsq20);
905             rinv30           = avx128fma_invsqrt_d(rsq30);
906
907             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
908             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
909             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
910
911             /* Load parameters for j particles */
912             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
913             vdwjidx0A        = 2*vdwtype[jnrA+0];
914             vdwjidx0B        = 2*vdwtype[jnrB+0];
915
916             fjx0             = _mm_setzero_pd();
917             fjy0             = _mm_setzero_pd();
918             fjz0             = _mm_setzero_pd();
919
920             /**************************
921              * CALCULATE INTERACTIONS *
922              **************************/
923
924             r00              = _mm_mul_pd(rsq00,rinv00);
925
926             /* Compute parameters for interactions between i and j atoms */
927             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
928                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
929
930             /* Calculate table index by multiplying r with table scale and truncate to integer */
931             rt               = _mm_mul_pd(r00,vftabscale);
932             vfitab           = _mm_cvttpd_epi32(rt);
933 #ifdef __XOP__
934             vfeps            = _mm_frcz_pd(rt);
935 #else
936             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
937 #endif
938             twovfeps         = _mm_add_pd(vfeps,vfeps);
939             vfitab           = _mm_slli_epi32(vfitab,3);
940
941             /* CUBIC SPLINE TABLE DISPERSION */
942             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
943             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
944             GMX_MM_TRANSPOSE2_PD(Y,F);
945             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
946             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
947             GMX_MM_TRANSPOSE2_PD(G,H);
948             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
949             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
950             fvdw6            = _mm_mul_pd(c6_00,FF);
951
952             /* CUBIC SPLINE TABLE REPULSION */
953             vfitab           = _mm_add_epi32(vfitab,ifour);
954             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
955             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
956             GMX_MM_TRANSPOSE2_PD(Y,F);
957             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
958             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
959             GMX_MM_TRANSPOSE2_PD(G,H);
960             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
961             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
962             fvdw12           = _mm_mul_pd(c12_00,FF);
963             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
964
965             fscal            = fvdw;
966
967             /* Update vectorial force */
968             fix0             = _mm_macc_pd(dx00,fscal,fix0);
969             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
970             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
971             
972             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
973             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
974             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             r10              = _mm_mul_pd(rsq10,rinv10);
981
982             /* Compute parameters for interactions between i and j atoms */
983             qq10             = _mm_mul_pd(iq1,jq0);
984
985             /* EWALD ELECTROSTATICS */
986
987             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
988             ewrt             = _mm_mul_pd(r10,ewtabscale);
989             ewitab           = _mm_cvttpd_epi32(ewrt);
990 #ifdef __XOP__
991             eweps            = _mm_frcz_pd(ewrt);
992 #else
993             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
994 #endif
995             twoeweps         = _mm_add_pd(eweps,eweps);
996             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
997                                          &ewtabF,&ewtabFn);
998             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
999             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1000
1001             fscal            = felec;
1002
1003             /* Update vectorial force */
1004             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1005             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1006             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1007             
1008             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1009             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1010             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1011
1012             /**************************
1013              * CALCULATE INTERACTIONS *
1014              **************************/
1015
1016             r20              = _mm_mul_pd(rsq20,rinv20);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq20             = _mm_mul_pd(iq2,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022
1023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1024             ewrt             = _mm_mul_pd(r20,ewtabscale);
1025             ewitab           = _mm_cvttpd_epi32(ewrt);
1026 #ifdef __XOP__
1027             eweps            = _mm_frcz_pd(ewrt);
1028 #else
1029             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1030 #endif
1031             twoeweps         = _mm_add_pd(eweps,eweps);
1032             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1033                                          &ewtabF,&ewtabFn);
1034             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1035             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1036
1037             fscal            = felec;
1038
1039             /* Update vectorial force */
1040             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1041             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1042             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1043             
1044             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1045             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1046             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r30              = _mm_mul_pd(rsq30,rinv30);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq30             = _mm_mul_pd(iq3,jq0);
1056
1057             /* EWALD ELECTROSTATICS */
1058
1059             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1060             ewrt             = _mm_mul_pd(r30,ewtabscale);
1061             ewitab           = _mm_cvttpd_epi32(ewrt);
1062 #ifdef __XOP__
1063             eweps            = _mm_frcz_pd(ewrt);
1064 #else
1065             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1066 #endif
1067             twoeweps         = _mm_add_pd(eweps,eweps);
1068             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1069                                          &ewtabF,&ewtabFn);
1070             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1071             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1072
1073             fscal            = felec;
1074
1075             /* Update vectorial force */
1076             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1077             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1078             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1079             
1080             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1081             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1082             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1083
1084             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1085
1086             /* Inner loop uses 171 flops */
1087         }
1088
1089         if(jidx<j_index_end)
1090         {
1091
1092             jnrA             = jjnr[jidx];
1093             j_coord_offsetA  = DIM*jnrA;
1094
1095             /* load j atom coordinates */
1096             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1097                                               &jx0,&jy0,&jz0);
1098
1099             /* Calculate displacement vector */
1100             dx00             = _mm_sub_pd(ix0,jx0);
1101             dy00             = _mm_sub_pd(iy0,jy0);
1102             dz00             = _mm_sub_pd(iz0,jz0);
1103             dx10             = _mm_sub_pd(ix1,jx0);
1104             dy10             = _mm_sub_pd(iy1,jy0);
1105             dz10             = _mm_sub_pd(iz1,jz0);
1106             dx20             = _mm_sub_pd(ix2,jx0);
1107             dy20             = _mm_sub_pd(iy2,jy0);
1108             dz20             = _mm_sub_pd(iz2,jz0);
1109             dx30             = _mm_sub_pd(ix3,jx0);
1110             dy30             = _mm_sub_pd(iy3,jy0);
1111             dz30             = _mm_sub_pd(iz3,jz0);
1112
1113             /* Calculate squared distance and things based on it */
1114             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1115             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1116             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1117             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1118
1119             rinv00           = avx128fma_invsqrt_d(rsq00);
1120             rinv10           = avx128fma_invsqrt_d(rsq10);
1121             rinv20           = avx128fma_invsqrt_d(rsq20);
1122             rinv30           = avx128fma_invsqrt_d(rsq30);
1123
1124             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1125             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1126             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1127
1128             /* Load parameters for j particles */
1129             jq0              = _mm_load_sd(charge+jnrA+0);
1130             vdwjidx0A        = 2*vdwtype[jnrA+0];
1131
1132             fjx0             = _mm_setzero_pd();
1133             fjy0             = _mm_setzero_pd();
1134             fjz0             = _mm_setzero_pd();
1135
1136             /**************************
1137              * CALCULATE INTERACTIONS *
1138              **************************/
1139
1140             r00              = _mm_mul_pd(rsq00,rinv00);
1141
1142             /* Compute parameters for interactions between i and j atoms */
1143             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1144
1145             /* Calculate table index by multiplying r with table scale and truncate to integer */
1146             rt               = _mm_mul_pd(r00,vftabscale);
1147             vfitab           = _mm_cvttpd_epi32(rt);
1148 #ifdef __XOP__
1149             vfeps            = _mm_frcz_pd(rt);
1150 #else
1151             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1152 #endif
1153             twovfeps         = _mm_add_pd(vfeps,vfeps);
1154             vfitab           = _mm_slli_epi32(vfitab,3);
1155
1156             /* CUBIC SPLINE TABLE DISPERSION */
1157             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1158             F                = _mm_setzero_pd();
1159             GMX_MM_TRANSPOSE2_PD(Y,F);
1160             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1161             H                = _mm_setzero_pd();
1162             GMX_MM_TRANSPOSE2_PD(G,H);
1163             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1164             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1165             fvdw6            = _mm_mul_pd(c6_00,FF);
1166
1167             /* CUBIC SPLINE TABLE REPULSION */
1168             vfitab           = _mm_add_epi32(vfitab,ifour);
1169             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1170             F                = _mm_setzero_pd();
1171             GMX_MM_TRANSPOSE2_PD(Y,F);
1172             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1173             H                = _mm_setzero_pd();
1174             GMX_MM_TRANSPOSE2_PD(G,H);
1175             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1176             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1177             fvdw12           = _mm_mul_pd(c12_00,FF);
1178             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1179
1180             fscal            = fvdw;
1181
1182             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1183
1184             /* Update vectorial force */
1185             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1186             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1187             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1188             
1189             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1190             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1191             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1192
1193             /**************************
1194              * CALCULATE INTERACTIONS *
1195              **************************/
1196
1197             r10              = _mm_mul_pd(rsq10,rinv10);
1198
1199             /* Compute parameters for interactions between i and j atoms */
1200             qq10             = _mm_mul_pd(iq1,jq0);
1201
1202             /* EWALD ELECTROSTATICS */
1203
1204             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1205             ewrt             = _mm_mul_pd(r10,ewtabscale);
1206             ewitab           = _mm_cvttpd_epi32(ewrt);
1207 #ifdef __XOP__
1208             eweps            = _mm_frcz_pd(ewrt);
1209 #else
1210             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1211 #endif
1212             twoeweps         = _mm_add_pd(eweps,eweps);
1213             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1214             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1215             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1216
1217             fscal            = felec;
1218
1219             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1220
1221             /* Update vectorial force */
1222             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1223             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1224             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1225             
1226             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1227             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1228             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1229
1230             /**************************
1231              * CALCULATE INTERACTIONS *
1232              **************************/
1233
1234             r20              = _mm_mul_pd(rsq20,rinv20);
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq20             = _mm_mul_pd(iq2,jq0);
1238
1239             /* EWALD ELECTROSTATICS */
1240
1241             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1242             ewrt             = _mm_mul_pd(r20,ewtabscale);
1243             ewitab           = _mm_cvttpd_epi32(ewrt);
1244 #ifdef __XOP__
1245             eweps            = _mm_frcz_pd(ewrt);
1246 #else
1247             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1248 #endif
1249             twoeweps         = _mm_add_pd(eweps,eweps);
1250             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1251             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1252             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1253
1254             fscal            = felec;
1255
1256             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1257
1258             /* Update vectorial force */
1259             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1260             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1261             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1262             
1263             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1264             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1265             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1266
1267             /**************************
1268              * CALCULATE INTERACTIONS *
1269              **************************/
1270
1271             r30              = _mm_mul_pd(rsq30,rinv30);
1272
1273             /* Compute parameters for interactions between i and j atoms */
1274             qq30             = _mm_mul_pd(iq3,jq0);
1275
1276             /* EWALD ELECTROSTATICS */
1277
1278             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1279             ewrt             = _mm_mul_pd(r30,ewtabscale);
1280             ewitab           = _mm_cvttpd_epi32(ewrt);
1281 #ifdef __XOP__
1282             eweps            = _mm_frcz_pd(ewrt);
1283 #else
1284             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1285 #endif
1286             twoeweps         = _mm_add_pd(eweps,eweps);
1287             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1288             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1289             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1290
1291             fscal            = felec;
1292
1293             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1294
1295             /* Update vectorial force */
1296             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1297             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1298             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1299             
1300             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1301             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1302             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1303
1304             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1305
1306             /* Inner loop uses 171 flops */
1307         }
1308
1309         /* End of innermost loop */
1310
1311         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1312                                               f+i_coord_offset,fshift+i_shift_offset);
1313
1314         /* Increment number of inner iterations */
1315         inneriter                  += j_index_end - j_index_start;
1316
1317         /* Outer loop uses 24 flops */
1318     }
1319
1320     /* Increment number of outer iterations */
1321     outeriter        += nri;
1322
1323     /* Update outer/inner flops */
1324
1325     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1326 }