Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwioffset3;
89     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
90     int              vdwjidx0A,vdwjidx0B;
91     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
103     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
107     real             *vftab;
108     __m128i          ewitab;
109     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
110     real             *ewtab;
111     __m128d          dummy_mask,cutoff_mask;
112     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
113     __m128d          one     = _mm_set1_pd(1.0);
114     __m128d          two     = _mm_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
134
135     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
136     ewtab            = fr->ic->tabq_coul_FDV0;
137     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
138     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
139
140     /* Setup water-specific parameters */
141     inr              = nlist->iinr[0];
142     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
143     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
144     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
145     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm_setzero_pd();
174         fiy0             = _mm_setzero_pd();
175         fiz0             = _mm_setzero_pd();
176         fix1             = _mm_setzero_pd();
177         fiy1             = _mm_setzero_pd();
178         fiz1             = _mm_setzero_pd();
179         fix2             = _mm_setzero_pd();
180         fiy2             = _mm_setzero_pd();
181         fiz2             = _mm_setzero_pd();
182         fix3             = _mm_setzero_pd();
183         fiy3             = _mm_setzero_pd();
184         fiz3             = _mm_setzero_pd();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_pd();
188         vvdwsum          = _mm_setzero_pd();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_pd(ix0,jx0);
206             dy00             = _mm_sub_pd(iy0,jy0);
207             dz00             = _mm_sub_pd(iz0,jz0);
208             dx10             = _mm_sub_pd(ix1,jx0);
209             dy10             = _mm_sub_pd(iy1,jy0);
210             dz10             = _mm_sub_pd(iz1,jz0);
211             dx20             = _mm_sub_pd(ix2,jx0);
212             dy20             = _mm_sub_pd(iy2,jy0);
213             dz20             = _mm_sub_pd(iz2,jz0);
214             dx30             = _mm_sub_pd(ix3,jx0);
215             dy30             = _mm_sub_pd(iy3,jy0);
216             dz30             = _mm_sub_pd(iz3,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
222             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
223
224             rinv00           = gmx_mm_invsqrt_pd(rsq00);
225             rinv10           = gmx_mm_invsqrt_pd(rsq10);
226             rinv20           = gmx_mm_invsqrt_pd(rsq20);
227             rinv30           = gmx_mm_invsqrt_pd(rsq30);
228
229             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
230             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
231             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237
238             fjx0             = _mm_setzero_pd();
239             fjy0             = _mm_setzero_pd();
240             fjz0             = _mm_setzero_pd();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_pd(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm_mul_pd(r00,vftabscale);
254             vfitab           = _mm_cvttpd_epi32(rt);
255 #ifdef __XOP__
256             vfeps            = _mm_frcz_pd(rt);
257 #else
258             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
259 #endif
260             twovfeps         = _mm_add_pd(vfeps,vfeps);
261             vfitab           = _mm_slli_epi32(vfitab,3);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
266             GMX_MM_TRANSPOSE2_PD(Y,F);
267             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
268             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
269             GMX_MM_TRANSPOSE2_PD(G,H);
270             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
271             VV               = _mm_macc_pd(vfeps,Fp,Y);
272             vvdw6            = _mm_mul_pd(c6_00,VV);
273             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
274             fvdw6            = _mm_mul_pd(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
280             GMX_MM_TRANSPOSE2_PD(Y,F);
281             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
282             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
283             GMX_MM_TRANSPOSE2_PD(G,H);
284             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
285             VV               = _mm_macc_pd(vfeps,Fp,Y);
286             vvdw12           = _mm_mul_pd(c12_00,VV);
287             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
288             fvdw12           = _mm_mul_pd(c12_00,FF);
289             vvdw             = _mm_add_pd(vvdw12,vvdw6);
290             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
294
295             fscal            = fvdw;
296
297             /* Update vectorial force */
298             fix0             = _mm_macc_pd(dx00,fscal,fix0);
299             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
300             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
301             
302             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
303             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
304             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             r10              = _mm_mul_pd(rsq10,rinv10);
311
312             /* Compute parameters for interactions between i and j atoms */
313             qq10             = _mm_mul_pd(iq1,jq0);
314
315             /* EWALD ELECTROSTATICS */
316
317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318             ewrt             = _mm_mul_pd(r10,ewtabscale);
319             ewitab           = _mm_cvttpd_epi32(ewrt);
320 #ifdef __XOP__
321             eweps            = _mm_frcz_pd(ewrt);
322 #else
323             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
324 #endif
325             twoeweps         = _mm_add_pd(eweps,eweps);
326             ewitab           = _mm_slli_epi32(ewitab,2);
327             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
328             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
329             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
330             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
331             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
332             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
333             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
334             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
335             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
336             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
337
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velecsum         = _mm_add_pd(velecsum,velec);
340
341             fscal            = felec;
342
343             /* Update vectorial force */
344             fix1             = _mm_macc_pd(dx10,fscal,fix1);
345             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
346             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
347             
348             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
349             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
350             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             r20              = _mm_mul_pd(rsq20,rinv20);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_pd(iq2,jq0);
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = _mm_mul_pd(r20,ewtabscale);
365             ewitab           = _mm_cvttpd_epi32(ewrt);
366 #ifdef __XOP__
367             eweps            = _mm_frcz_pd(ewrt);
368 #else
369             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
370 #endif
371             twoeweps         = _mm_add_pd(eweps,eweps);
372             ewitab           = _mm_slli_epi32(ewitab,2);
373             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
374             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
375             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
376             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
377             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
378             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
379             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
380             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
381             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
382             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
383
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velecsum         = _mm_add_pd(velecsum,velec);
386
387             fscal            = felec;
388
389             /* Update vectorial force */
390             fix2             = _mm_macc_pd(dx20,fscal,fix2);
391             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
392             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
393             
394             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
395             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
396             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             r30              = _mm_mul_pd(rsq30,rinv30);
403
404             /* Compute parameters for interactions between i and j atoms */
405             qq30             = _mm_mul_pd(iq3,jq0);
406
407             /* EWALD ELECTROSTATICS */
408
409             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
410             ewrt             = _mm_mul_pd(r30,ewtabscale);
411             ewitab           = _mm_cvttpd_epi32(ewrt);
412 #ifdef __XOP__
413             eweps            = _mm_frcz_pd(ewrt);
414 #else
415             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
416 #endif
417             twoeweps         = _mm_add_pd(eweps,eweps);
418             ewitab           = _mm_slli_epi32(ewitab,2);
419             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
420             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
421             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
422             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
423             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
424             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
425             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
426             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
427             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
428             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
429
430             /* Update potential sum for this i atom from the interaction with this j atom. */
431             velecsum         = _mm_add_pd(velecsum,velec);
432
433             fscal            = felec;
434
435             /* Update vectorial force */
436             fix3             = _mm_macc_pd(dx30,fscal,fix3);
437             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
438             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
439             
440             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
441             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
442             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
443
444             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
445
446             /* Inner loop uses 194 flops */
447         }
448
449         if(jidx<j_index_end)
450         {
451
452             jnrA             = jjnr[jidx];
453             j_coord_offsetA  = DIM*jnrA;
454
455             /* load j atom coordinates */
456             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
457                                               &jx0,&jy0,&jz0);
458
459             /* Calculate displacement vector */
460             dx00             = _mm_sub_pd(ix0,jx0);
461             dy00             = _mm_sub_pd(iy0,jy0);
462             dz00             = _mm_sub_pd(iz0,jz0);
463             dx10             = _mm_sub_pd(ix1,jx0);
464             dy10             = _mm_sub_pd(iy1,jy0);
465             dz10             = _mm_sub_pd(iz1,jz0);
466             dx20             = _mm_sub_pd(ix2,jx0);
467             dy20             = _mm_sub_pd(iy2,jy0);
468             dz20             = _mm_sub_pd(iz2,jz0);
469             dx30             = _mm_sub_pd(ix3,jx0);
470             dy30             = _mm_sub_pd(iy3,jy0);
471             dz30             = _mm_sub_pd(iz3,jz0);
472
473             /* Calculate squared distance and things based on it */
474             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
475             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
476             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
477             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
478
479             rinv00           = gmx_mm_invsqrt_pd(rsq00);
480             rinv10           = gmx_mm_invsqrt_pd(rsq10);
481             rinv20           = gmx_mm_invsqrt_pd(rsq20);
482             rinv30           = gmx_mm_invsqrt_pd(rsq30);
483
484             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
485             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
486             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
487
488             /* Load parameters for j particles */
489             jq0              = _mm_load_sd(charge+jnrA+0);
490             vdwjidx0A        = 2*vdwtype[jnrA+0];
491
492             fjx0             = _mm_setzero_pd();
493             fjy0             = _mm_setzero_pd();
494             fjz0             = _mm_setzero_pd();
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             r00              = _mm_mul_pd(rsq00,rinv00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
504
505             /* Calculate table index by multiplying r with table scale and truncate to integer */
506             rt               = _mm_mul_pd(r00,vftabscale);
507             vfitab           = _mm_cvttpd_epi32(rt);
508 #ifdef __XOP__
509             vfeps            = _mm_frcz_pd(rt);
510 #else
511             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
512 #endif
513             twovfeps         = _mm_add_pd(vfeps,vfeps);
514             vfitab           = _mm_slli_epi32(vfitab,3);
515
516             /* CUBIC SPLINE TABLE DISPERSION */
517             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
518             F                = _mm_setzero_pd();
519             GMX_MM_TRANSPOSE2_PD(Y,F);
520             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
521             H                = _mm_setzero_pd();
522             GMX_MM_TRANSPOSE2_PD(G,H);
523             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
524             VV               = _mm_macc_pd(vfeps,Fp,Y);
525             vvdw6            = _mm_mul_pd(c6_00,VV);
526             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
527             fvdw6            = _mm_mul_pd(c6_00,FF);
528
529             /* CUBIC SPLINE TABLE REPULSION */
530             vfitab           = _mm_add_epi32(vfitab,ifour);
531             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
532             F                = _mm_setzero_pd();
533             GMX_MM_TRANSPOSE2_PD(Y,F);
534             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
535             H                = _mm_setzero_pd();
536             GMX_MM_TRANSPOSE2_PD(G,H);
537             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
538             VV               = _mm_macc_pd(vfeps,Fp,Y);
539             vvdw12           = _mm_mul_pd(c12_00,VV);
540             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
541             fvdw12           = _mm_mul_pd(c12_00,FF);
542             vvdw             = _mm_add_pd(vvdw12,vvdw6);
543             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
544
545             /* Update potential sum for this i atom from the interaction with this j atom. */
546             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
547             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
548
549             fscal            = fvdw;
550
551             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
552
553             /* Update vectorial force */
554             fix0             = _mm_macc_pd(dx00,fscal,fix0);
555             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
556             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
557             
558             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
559             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
560             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             r10              = _mm_mul_pd(rsq10,rinv10);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_pd(iq1,jq0);
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = _mm_mul_pd(r10,ewtabscale);
575             ewitab           = _mm_cvttpd_epi32(ewrt);
576 #ifdef __XOP__
577             eweps            = _mm_frcz_pd(ewrt);
578 #else
579             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
580 #endif
581             twoeweps         = _mm_add_pd(eweps,eweps);
582             ewitab           = _mm_slli_epi32(ewitab,2);
583             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
584             ewtabD           = _mm_setzero_pd();
585             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
586             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
587             ewtabFn          = _mm_setzero_pd();
588             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
589             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
590             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
591             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
592             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
593
594             /* Update potential sum for this i atom from the interaction with this j atom. */
595             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
596             velecsum         = _mm_add_pd(velecsum,velec);
597
598             fscal            = felec;
599
600             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
601
602             /* Update vectorial force */
603             fix1             = _mm_macc_pd(dx10,fscal,fix1);
604             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
605             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
606             
607             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
608             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
609             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             r20              = _mm_mul_pd(rsq20,rinv20);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq20             = _mm_mul_pd(iq2,jq0);
619
620             /* EWALD ELECTROSTATICS */
621
622             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
623             ewrt             = _mm_mul_pd(r20,ewtabscale);
624             ewitab           = _mm_cvttpd_epi32(ewrt);
625 #ifdef __XOP__
626             eweps            = _mm_frcz_pd(ewrt);
627 #else
628             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
629 #endif
630             twoeweps         = _mm_add_pd(eweps,eweps);
631             ewitab           = _mm_slli_epi32(ewitab,2);
632             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
633             ewtabD           = _mm_setzero_pd();
634             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
635             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
636             ewtabFn          = _mm_setzero_pd();
637             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
638             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
639             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
640             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
641             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
642
643             /* Update potential sum for this i atom from the interaction with this j atom. */
644             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
645             velecsum         = _mm_add_pd(velecsum,velec);
646
647             fscal            = felec;
648
649             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
650
651             /* Update vectorial force */
652             fix2             = _mm_macc_pd(dx20,fscal,fix2);
653             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
654             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
655             
656             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
657             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
658             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             r30              = _mm_mul_pd(rsq30,rinv30);
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq30             = _mm_mul_pd(iq3,jq0);
668
669             /* EWALD ELECTROSTATICS */
670
671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
672             ewrt             = _mm_mul_pd(r30,ewtabscale);
673             ewitab           = _mm_cvttpd_epi32(ewrt);
674 #ifdef __XOP__
675             eweps            = _mm_frcz_pd(ewrt);
676 #else
677             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
678 #endif
679             twoeweps         = _mm_add_pd(eweps,eweps);
680             ewitab           = _mm_slli_epi32(ewitab,2);
681             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
682             ewtabD           = _mm_setzero_pd();
683             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
684             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
685             ewtabFn          = _mm_setzero_pd();
686             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
687             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
688             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
689             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
690             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
694             velecsum         = _mm_add_pd(velecsum,velec);
695
696             fscal            = felec;
697
698             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
699
700             /* Update vectorial force */
701             fix3             = _mm_macc_pd(dx30,fscal,fix3);
702             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
703             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
704             
705             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
706             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
707             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
708
709             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
710
711             /* Inner loop uses 194 flops */
712         }
713
714         /* End of innermost loop */
715
716         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
717                                               f+i_coord_offset,fshift+i_shift_offset);
718
719         ggid                        = gid[iidx];
720         /* Update potential energies */
721         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
722         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
723
724         /* Increment number of inner iterations */
725         inneriter                  += j_index_end - j_index_start;
726
727         /* Outer loop uses 26 flops */
728     }
729
730     /* Increment number of outer iterations */
731     outeriter        += nri;
732
733     /* Update outer/inner flops */
734
735     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
736 }
737 /*
738  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
739  * Electrostatics interaction: Ewald
740  * VdW interaction:            CubicSplineTable
741  * Geometry:                   Water4-Particle
742  * Calculate force/pot:        Force
743  */
744 void
745 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
746                     (t_nblist                    * gmx_restrict       nlist,
747                      rvec                        * gmx_restrict          xx,
748                      rvec                        * gmx_restrict          ff,
749                      t_forcerec                  * gmx_restrict          fr,
750                      t_mdatoms                   * gmx_restrict     mdatoms,
751                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
752                      t_nrnb                      * gmx_restrict        nrnb)
753 {
754     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
755      * just 0 for non-waters.
756      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
757      * jnr indices corresponding to data put in the four positions in the SIMD register.
758      */
759     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
760     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
761     int              jnrA,jnrB;
762     int              j_coord_offsetA,j_coord_offsetB;
763     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
764     real             rcutoff_scalar;
765     real             *shiftvec,*fshift,*x,*f;
766     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
767     int              vdwioffset0;
768     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
769     int              vdwioffset1;
770     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
771     int              vdwioffset2;
772     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
773     int              vdwioffset3;
774     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
775     int              vdwjidx0A,vdwjidx0B;
776     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
777     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
778     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
779     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
780     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
781     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
782     real             *charge;
783     int              nvdwtype;
784     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
785     int              *vdwtype;
786     real             *vdwparam;
787     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
788     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
789     __m128i          vfitab;
790     __m128i          ifour       = _mm_set1_epi32(4);
791     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
792     real             *vftab;
793     __m128i          ewitab;
794     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
795     real             *ewtab;
796     __m128d          dummy_mask,cutoff_mask;
797     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
798     __m128d          one     = _mm_set1_pd(1.0);
799     __m128d          two     = _mm_set1_pd(2.0);
800     x                = xx[0];
801     f                = ff[0];
802
803     nri              = nlist->nri;
804     iinr             = nlist->iinr;
805     jindex           = nlist->jindex;
806     jjnr             = nlist->jjnr;
807     shiftidx         = nlist->shift;
808     gid              = nlist->gid;
809     shiftvec         = fr->shift_vec[0];
810     fshift           = fr->fshift[0];
811     facel            = _mm_set1_pd(fr->epsfac);
812     charge           = mdatoms->chargeA;
813     nvdwtype         = fr->ntype;
814     vdwparam         = fr->nbfp;
815     vdwtype          = mdatoms->typeA;
816
817     vftab            = kernel_data->table_vdw->data;
818     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
819
820     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
821     ewtab            = fr->ic->tabq_coul_F;
822     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
823     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
824
825     /* Setup water-specific parameters */
826     inr              = nlist->iinr[0];
827     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
828     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
829     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
830     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
831
832     /* Avoid stupid compiler warnings */
833     jnrA = jnrB = 0;
834     j_coord_offsetA = 0;
835     j_coord_offsetB = 0;
836
837     outeriter        = 0;
838     inneriter        = 0;
839
840     /* Start outer loop over neighborlists */
841     for(iidx=0; iidx<nri; iidx++)
842     {
843         /* Load shift vector for this list */
844         i_shift_offset   = DIM*shiftidx[iidx];
845
846         /* Load limits for loop over neighbors */
847         j_index_start    = jindex[iidx];
848         j_index_end      = jindex[iidx+1];
849
850         /* Get outer coordinate index */
851         inr              = iinr[iidx];
852         i_coord_offset   = DIM*inr;
853
854         /* Load i particle coords and add shift vector */
855         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
856                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
857
858         fix0             = _mm_setzero_pd();
859         fiy0             = _mm_setzero_pd();
860         fiz0             = _mm_setzero_pd();
861         fix1             = _mm_setzero_pd();
862         fiy1             = _mm_setzero_pd();
863         fiz1             = _mm_setzero_pd();
864         fix2             = _mm_setzero_pd();
865         fiy2             = _mm_setzero_pd();
866         fiz2             = _mm_setzero_pd();
867         fix3             = _mm_setzero_pd();
868         fiy3             = _mm_setzero_pd();
869         fiz3             = _mm_setzero_pd();
870
871         /* Start inner kernel loop */
872         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
873         {
874
875             /* Get j neighbor index, and coordinate index */
876             jnrA             = jjnr[jidx];
877             jnrB             = jjnr[jidx+1];
878             j_coord_offsetA  = DIM*jnrA;
879             j_coord_offsetB  = DIM*jnrB;
880
881             /* load j atom coordinates */
882             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
883                                               &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm_sub_pd(ix0,jx0);
887             dy00             = _mm_sub_pd(iy0,jy0);
888             dz00             = _mm_sub_pd(iz0,jz0);
889             dx10             = _mm_sub_pd(ix1,jx0);
890             dy10             = _mm_sub_pd(iy1,jy0);
891             dz10             = _mm_sub_pd(iz1,jz0);
892             dx20             = _mm_sub_pd(ix2,jx0);
893             dy20             = _mm_sub_pd(iy2,jy0);
894             dz20             = _mm_sub_pd(iz2,jz0);
895             dx30             = _mm_sub_pd(ix3,jx0);
896             dy30             = _mm_sub_pd(iy3,jy0);
897             dz30             = _mm_sub_pd(iz3,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
903             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
904
905             rinv00           = gmx_mm_invsqrt_pd(rsq00);
906             rinv10           = gmx_mm_invsqrt_pd(rsq10);
907             rinv20           = gmx_mm_invsqrt_pd(rsq20);
908             rinv30           = gmx_mm_invsqrt_pd(rsq30);
909
910             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
911             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
912             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
913
914             /* Load parameters for j particles */
915             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
916             vdwjidx0A        = 2*vdwtype[jnrA+0];
917             vdwjidx0B        = 2*vdwtype[jnrB+0];
918
919             fjx0             = _mm_setzero_pd();
920             fjy0             = _mm_setzero_pd();
921             fjz0             = _mm_setzero_pd();
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             r00              = _mm_mul_pd(rsq00,rinv00);
928
929             /* Compute parameters for interactions between i and j atoms */
930             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
931                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
932
933             /* Calculate table index by multiplying r with table scale and truncate to integer */
934             rt               = _mm_mul_pd(r00,vftabscale);
935             vfitab           = _mm_cvttpd_epi32(rt);
936 #ifdef __XOP__
937             vfeps            = _mm_frcz_pd(rt);
938 #else
939             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
940 #endif
941             twovfeps         = _mm_add_pd(vfeps,vfeps);
942             vfitab           = _mm_slli_epi32(vfitab,3);
943
944             /* CUBIC SPLINE TABLE DISPERSION */
945             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
946             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
947             GMX_MM_TRANSPOSE2_PD(Y,F);
948             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
949             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
950             GMX_MM_TRANSPOSE2_PD(G,H);
951             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
952             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
953             fvdw6            = _mm_mul_pd(c6_00,FF);
954
955             /* CUBIC SPLINE TABLE REPULSION */
956             vfitab           = _mm_add_epi32(vfitab,ifour);
957             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
958             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
959             GMX_MM_TRANSPOSE2_PD(Y,F);
960             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
961             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
962             GMX_MM_TRANSPOSE2_PD(G,H);
963             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
964             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
965             fvdw12           = _mm_mul_pd(c12_00,FF);
966             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
967
968             fscal            = fvdw;
969
970             /* Update vectorial force */
971             fix0             = _mm_macc_pd(dx00,fscal,fix0);
972             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
973             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
974             
975             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
976             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
977             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
978
979             /**************************
980              * CALCULATE INTERACTIONS *
981              **************************/
982
983             r10              = _mm_mul_pd(rsq10,rinv10);
984
985             /* Compute parameters for interactions between i and j atoms */
986             qq10             = _mm_mul_pd(iq1,jq0);
987
988             /* EWALD ELECTROSTATICS */
989
990             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
991             ewrt             = _mm_mul_pd(r10,ewtabscale);
992             ewitab           = _mm_cvttpd_epi32(ewrt);
993 #ifdef __XOP__
994             eweps            = _mm_frcz_pd(ewrt);
995 #else
996             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
997 #endif
998             twoeweps         = _mm_add_pd(eweps,eweps);
999             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1000                                          &ewtabF,&ewtabFn);
1001             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1002             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1003
1004             fscal            = felec;
1005
1006             /* Update vectorial force */
1007             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1008             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1009             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1010             
1011             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1012             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1013             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             r20              = _mm_mul_pd(rsq20,rinv20);
1020
1021             /* Compute parameters for interactions between i and j atoms */
1022             qq20             = _mm_mul_pd(iq2,jq0);
1023
1024             /* EWALD ELECTROSTATICS */
1025
1026             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1027             ewrt             = _mm_mul_pd(r20,ewtabscale);
1028             ewitab           = _mm_cvttpd_epi32(ewrt);
1029 #ifdef __XOP__
1030             eweps            = _mm_frcz_pd(ewrt);
1031 #else
1032             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1033 #endif
1034             twoeweps         = _mm_add_pd(eweps,eweps);
1035             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1036                                          &ewtabF,&ewtabFn);
1037             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1038             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1039
1040             fscal            = felec;
1041
1042             /* Update vectorial force */
1043             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1044             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1045             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1046             
1047             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1048             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1049             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             r30              = _mm_mul_pd(rsq30,rinv30);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq30             = _mm_mul_pd(iq3,jq0);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063             ewrt             = _mm_mul_pd(r30,ewtabscale);
1064             ewitab           = _mm_cvttpd_epi32(ewrt);
1065 #ifdef __XOP__
1066             eweps            = _mm_frcz_pd(ewrt);
1067 #else
1068             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1069 #endif
1070             twoeweps         = _mm_add_pd(eweps,eweps);
1071             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1072                                          &ewtabF,&ewtabFn);
1073             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1074             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1075
1076             fscal            = felec;
1077
1078             /* Update vectorial force */
1079             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1080             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1081             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1082             
1083             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1084             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1085             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1086
1087             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1088
1089             /* Inner loop uses 171 flops */
1090         }
1091
1092         if(jidx<j_index_end)
1093         {
1094
1095             jnrA             = jjnr[jidx];
1096             j_coord_offsetA  = DIM*jnrA;
1097
1098             /* load j atom coordinates */
1099             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1100                                               &jx0,&jy0,&jz0);
1101
1102             /* Calculate displacement vector */
1103             dx00             = _mm_sub_pd(ix0,jx0);
1104             dy00             = _mm_sub_pd(iy0,jy0);
1105             dz00             = _mm_sub_pd(iz0,jz0);
1106             dx10             = _mm_sub_pd(ix1,jx0);
1107             dy10             = _mm_sub_pd(iy1,jy0);
1108             dz10             = _mm_sub_pd(iz1,jz0);
1109             dx20             = _mm_sub_pd(ix2,jx0);
1110             dy20             = _mm_sub_pd(iy2,jy0);
1111             dz20             = _mm_sub_pd(iz2,jz0);
1112             dx30             = _mm_sub_pd(ix3,jx0);
1113             dy30             = _mm_sub_pd(iy3,jy0);
1114             dz30             = _mm_sub_pd(iz3,jz0);
1115
1116             /* Calculate squared distance and things based on it */
1117             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1118             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1119             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1120             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1121
1122             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1123             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1124             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1125             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1126
1127             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1128             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1129             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1130
1131             /* Load parameters for j particles */
1132             jq0              = _mm_load_sd(charge+jnrA+0);
1133             vdwjidx0A        = 2*vdwtype[jnrA+0];
1134
1135             fjx0             = _mm_setzero_pd();
1136             fjy0             = _mm_setzero_pd();
1137             fjz0             = _mm_setzero_pd();
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             r00              = _mm_mul_pd(rsq00,rinv00);
1144
1145             /* Compute parameters for interactions between i and j atoms */
1146             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1147
1148             /* Calculate table index by multiplying r with table scale and truncate to integer */
1149             rt               = _mm_mul_pd(r00,vftabscale);
1150             vfitab           = _mm_cvttpd_epi32(rt);
1151 #ifdef __XOP__
1152             vfeps            = _mm_frcz_pd(rt);
1153 #else
1154             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1155 #endif
1156             twovfeps         = _mm_add_pd(vfeps,vfeps);
1157             vfitab           = _mm_slli_epi32(vfitab,3);
1158
1159             /* CUBIC SPLINE TABLE DISPERSION */
1160             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1161             F                = _mm_setzero_pd();
1162             GMX_MM_TRANSPOSE2_PD(Y,F);
1163             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1164             H                = _mm_setzero_pd();
1165             GMX_MM_TRANSPOSE2_PD(G,H);
1166             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1167             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1168             fvdw6            = _mm_mul_pd(c6_00,FF);
1169
1170             /* CUBIC SPLINE TABLE REPULSION */
1171             vfitab           = _mm_add_epi32(vfitab,ifour);
1172             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1173             F                = _mm_setzero_pd();
1174             GMX_MM_TRANSPOSE2_PD(Y,F);
1175             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1176             H                = _mm_setzero_pd();
1177             GMX_MM_TRANSPOSE2_PD(G,H);
1178             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1179             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1180             fvdw12           = _mm_mul_pd(c12_00,FF);
1181             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1182
1183             fscal            = fvdw;
1184
1185             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1186
1187             /* Update vectorial force */
1188             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1189             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1190             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1191             
1192             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1193             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1194             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1195
1196             /**************************
1197              * CALCULATE INTERACTIONS *
1198              **************************/
1199
1200             r10              = _mm_mul_pd(rsq10,rinv10);
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq10             = _mm_mul_pd(iq1,jq0);
1204
1205             /* EWALD ELECTROSTATICS */
1206
1207             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1208             ewrt             = _mm_mul_pd(r10,ewtabscale);
1209             ewitab           = _mm_cvttpd_epi32(ewrt);
1210 #ifdef __XOP__
1211             eweps            = _mm_frcz_pd(ewrt);
1212 #else
1213             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1214 #endif
1215             twoeweps         = _mm_add_pd(eweps,eweps);
1216             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1217             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1218             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1219
1220             fscal            = felec;
1221
1222             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1223
1224             /* Update vectorial force */
1225             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1226             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1227             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1228             
1229             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1230             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1231             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1232
1233             /**************************
1234              * CALCULATE INTERACTIONS *
1235              **************************/
1236
1237             r20              = _mm_mul_pd(rsq20,rinv20);
1238
1239             /* Compute parameters for interactions between i and j atoms */
1240             qq20             = _mm_mul_pd(iq2,jq0);
1241
1242             /* EWALD ELECTROSTATICS */
1243
1244             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1245             ewrt             = _mm_mul_pd(r20,ewtabscale);
1246             ewitab           = _mm_cvttpd_epi32(ewrt);
1247 #ifdef __XOP__
1248             eweps            = _mm_frcz_pd(ewrt);
1249 #else
1250             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1251 #endif
1252             twoeweps         = _mm_add_pd(eweps,eweps);
1253             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1254             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1255             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1256
1257             fscal            = felec;
1258
1259             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1260
1261             /* Update vectorial force */
1262             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1263             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1264             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1265             
1266             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1267             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1268             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             r30              = _mm_mul_pd(rsq30,rinv30);
1275
1276             /* Compute parameters for interactions between i and j atoms */
1277             qq30             = _mm_mul_pd(iq3,jq0);
1278
1279             /* EWALD ELECTROSTATICS */
1280
1281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282             ewrt             = _mm_mul_pd(r30,ewtabscale);
1283             ewitab           = _mm_cvttpd_epi32(ewrt);
1284 #ifdef __XOP__
1285             eweps            = _mm_frcz_pd(ewrt);
1286 #else
1287             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1288 #endif
1289             twoeweps         = _mm_add_pd(eweps,eweps);
1290             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1291             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1292             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1293
1294             fscal            = felec;
1295
1296             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1297
1298             /* Update vectorial force */
1299             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1300             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1301             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1302             
1303             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1304             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1305             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1306
1307             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1308
1309             /* Inner loop uses 171 flops */
1310         }
1311
1312         /* End of innermost loop */
1313
1314         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1315                                               f+i_coord_offset,fshift+i_shift_offset);
1316
1317         /* Increment number of inner iterations */
1318         inneriter                  += j_index_end - j_index_start;
1319
1320         /* Outer loop uses 24 flops */
1321     }
1322
1323     /* Increment number of outer iterations */
1324     outeriter        += nri;
1325
1326     /* Update outer/inner flops */
1327
1328     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1329 }