Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwioffset3;
87     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
94     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
101     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
105     real             *vftab;
106     __m128i          ewitab;
107     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
108     real             *ewtab;
109     __m128d          dummy_mask,cutoff_mask;
110     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
111     __m128d          one     = _mm_set1_pd(1.0);
112     __m128d          two     = _mm_set1_pd(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_pd(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
132
133     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
134     ewtab            = fr->ic->tabq_coul_FDV0;
135     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
136     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_pd();
172         fiy0             = _mm_setzero_pd();
173         fiz0             = _mm_setzero_pd();
174         fix1             = _mm_setzero_pd();
175         fiy1             = _mm_setzero_pd();
176         fiz1             = _mm_setzero_pd();
177         fix2             = _mm_setzero_pd();
178         fiy2             = _mm_setzero_pd();
179         fiz2             = _mm_setzero_pd();
180         fix3             = _mm_setzero_pd();
181         fiy3             = _mm_setzero_pd();
182         fiz3             = _mm_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_pd();
186         vvdwsum          = _mm_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_pd(ix0,jx0);
204             dy00             = _mm_sub_pd(iy0,jy0);
205             dz00             = _mm_sub_pd(iz0,jz0);
206             dx10             = _mm_sub_pd(ix1,jx0);
207             dy10             = _mm_sub_pd(iy1,jy0);
208             dz10             = _mm_sub_pd(iz1,jz0);
209             dx20             = _mm_sub_pd(ix2,jx0);
210             dy20             = _mm_sub_pd(iy2,jy0);
211             dz20             = _mm_sub_pd(iz2,jz0);
212             dx30             = _mm_sub_pd(ix3,jx0);
213             dy30             = _mm_sub_pd(iy3,jy0);
214             dz30             = _mm_sub_pd(iz3,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
220             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
221
222             rinv00           = gmx_mm_invsqrt_pd(rsq00);
223             rinv10           = gmx_mm_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm_invsqrt_pd(rsq20);
225             rinv30           = gmx_mm_invsqrt_pd(rsq30);
226
227             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
229             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235
236             fjx0             = _mm_setzero_pd();
237             fjy0             = _mm_setzero_pd();
238             fjz0             = _mm_setzero_pd();
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             r00              = _mm_mul_pd(rsq00,rinv00);
245
246             /* Compute parameters for interactions between i and j atoms */
247             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
248                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm_mul_pd(r00,vftabscale);
252             vfitab           = _mm_cvttpd_epi32(rt);
253 #ifdef __XOP__
254             vfeps            = _mm_frcz_pd(rt);
255 #else
256             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
257 #endif
258             twovfeps         = _mm_add_pd(vfeps,vfeps);
259             vfitab           = _mm_slli_epi32(vfitab,3);
260
261             /* CUBIC SPLINE TABLE DISPERSION */
262             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
263             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
264             GMX_MM_TRANSPOSE2_PD(Y,F);
265             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
266             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(G,H);
268             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
269             VV               = _mm_macc_pd(vfeps,Fp,Y);
270             vvdw6            = _mm_mul_pd(c6_00,VV);
271             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
272             fvdw6            = _mm_mul_pd(c6_00,FF);
273
274             /* CUBIC SPLINE TABLE REPULSION */
275             vfitab           = _mm_add_epi32(vfitab,ifour);
276             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
277             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
278             GMX_MM_TRANSPOSE2_PD(Y,F);
279             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
280             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
281             GMX_MM_TRANSPOSE2_PD(G,H);
282             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
283             VV               = _mm_macc_pd(vfeps,Fp,Y);
284             vvdw12           = _mm_mul_pd(c12_00,VV);
285             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
286             fvdw12           = _mm_mul_pd(c12_00,FF);
287             vvdw             = _mm_add_pd(vvdw12,vvdw6);
288             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
292
293             fscal            = fvdw;
294
295             /* Update vectorial force */
296             fix0             = _mm_macc_pd(dx00,fscal,fix0);
297             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
298             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
299             
300             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
301             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
302             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r10              = _mm_mul_pd(rsq10,rinv10);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm_mul_pd(iq1,jq0);
312
313             /* EWALD ELECTROSTATICS */
314
315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
316             ewrt             = _mm_mul_pd(r10,ewtabscale);
317             ewitab           = _mm_cvttpd_epi32(ewrt);
318 #ifdef __XOP__
319             eweps            = _mm_frcz_pd(ewrt);
320 #else
321             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
322 #endif
323             twoeweps         = _mm_add_pd(eweps,eweps);
324             ewitab           = _mm_slli_epi32(ewitab,2);
325             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
326             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
327             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
328             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
329             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
330             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
331             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
332             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
333             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
334             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
335
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm_add_pd(velecsum,velec);
338
339             fscal            = felec;
340
341             /* Update vectorial force */
342             fix1             = _mm_macc_pd(dx10,fscal,fix1);
343             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
344             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
345             
346             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
347             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
348             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             r20              = _mm_mul_pd(rsq20,rinv20);
355
356             /* Compute parameters for interactions between i and j atoms */
357             qq20             = _mm_mul_pd(iq2,jq0);
358
359             /* EWALD ELECTROSTATICS */
360
361             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
362             ewrt             = _mm_mul_pd(r20,ewtabscale);
363             ewitab           = _mm_cvttpd_epi32(ewrt);
364 #ifdef __XOP__
365             eweps            = _mm_frcz_pd(ewrt);
366 #else
367             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
368 #endif
369             twoeweps         = _mm_add_pd(eweps,eweps);
370             ewitab           = _mm_slli_epi32(ewitab,2);
371             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
372             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
373             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
374             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
375             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
376             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
377             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
378             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
379             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
380             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velecsum         = _mm_add_pd(velecsum,velec);
384
385             fscal            = felec;
386
387             /* Update vectorial force */
388             fix2             = _mm_macc_pd(dx20,fscal,fix2);
389             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
390             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
391             
392             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
393             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
394             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             r30              = _mm_mul_pd(rsq30,rinv30);
401
402             /* Compute parameters for interactions between i and j atoms */
403             qq30             = _mm_mul_pd(iq3,jq0);
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408             ewrt             = _mm_mul_pd(r30,ewtabscale);
409             ewitab           = _mm_cvttpd_epi32(ewrt);
410 #ifdef __XOP__
411             eweps            = _mm_frcz_pd(ewrt);
412 #else
413             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
414 #endif
415             twoeweps         = _mm_add_pd(eweps,eweps);
416             ewitab           = _mm_slli_epi32(ewitab,2);
417             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
418             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
419             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
420             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
421             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
422             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
423             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
424             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
425             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
426             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
427
428             /* Update potential sum for this i atom from the interaction with this j atom. */
429             velecsum         = _mm_add_pd(velecsum,velec);
430
431             fscal            = felec;
432
433             /* Update vectorial force */
434             fix3             = _mm_macc_pd(dx30,fscal,fix3);
435             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
436             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
437             
438             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
439             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
440             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
441
442             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
443
444             /* Inner loop uses 194 flops */
445         }
446
447         if(jidx<j_index_end)
448         {
449
450             jnrA             = jjnr[jidx];
451             j_coord_offsetA  = DIM*jnrA;
452
453             /* load j atom coordinates */
454             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
455                                               &jx0,&jy0,&jz0);
456
457             /* Calculate displacement vector */
458             dx00             = _mm_sub_pd(ix0,jx0);
459             dy00             = _mm_sub_pd(iy0,jy0);
460             dz00             = _mm_sub_pd(iz0,jz0);
461             dx10             = _mm_sub_pd(ix1,jx0);
462             dy10             = _mm_sub_pd(iy1,jy0);
463             dz10             = _mm_sub_pd(iz1,jz0);
464             dx20             = _mm_sub_pd(ix2,jx0);
465             dy20             = _mm_sub_pd(iy2,jy0);
466             dz20             = _mm_sub_pd(iz2,jz0);
467             dx30             = _mm_sub_pd(ix3,jx0);
468             dy30             = _mm_sub_pd(iy3,jy0);
469             dz30             = _mm_sub_pd(iz3,jz0);
470
471             /* Calculate squared distance and things based on it */
472             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
473             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
474             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
475             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
476
477             rinv00           = gmx_mm_invsqrt_pd(rsq00);
478             rinv10           = gmx_mm_invsqrt_pd(rsq10);
479             rinv20           = gmx_mm_invsqrt_pd(rsq20);
480             rinv30           = gmx_mm_invsqrt_pd(rsq30);
481
482             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
483             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
484             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
485
486             /* Load parameters for j particles */
487             jq0              = _mm_load_sd(charge+jnrA+0);
488             vdwjidx0A        = 2*vdwtype[jnrA+0];
489
490             fjx0             = _mm_setzero_pd();
491             fjy0             = _mm_setzero_pd();
492             fjz0             = _mm_setzero_pd();
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             r00              = _mm_mul_pd(rsq00,rinv00);
499
500             /* Compute parameters for interactions between i and j atoms */
501             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
502
503             /* Calculate table index by multiplying r with table scale and truncate to integer */
504             rt               = _mm_mul_pd(r00,vftabscale);
505             vfitab           = _mm_cvttpd_epi32(rt);
506 #ifdef __XOP__
507             vfeps            = _mm_frcz_pd(rt);
508 #else
509             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
510 #endif
511             twovfeps         = _mm_add_pd(vfeps,vfeps);
512             vfitab           = _mm_slli_epi32(vfitab,3);
513
514             /* CUBIC SPLINE TABLE DISPERSION */
515             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm_setzero_pd();
517             GMX_MM_TRANSPOSE2_PD(Y,F);
518             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
519             H                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(G,H);
521             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
522             VV               = _mm_macc_pd(vfeps,Fp,Y);
523             vvdw6            = _mm_mul_pd(c6_00,VV);
524             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
525             fvdw6            = _mm_mul_pd(c6_00,FF);
526
527             /* CUBIC SPLINE TABLE REPULSION */
528             vfitab           = _mm_add_epi32(vfitab,ifour);
529             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
530             F                = _mm_setzero_pd();
531             GMX_MM_TRANSPOSE2_PD(Y,F);
532             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
533             H                = _mm_setzero_pd();
534             GMX_MM_TRANSPOSE2_PD(G,H);
535             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
536             VV               = _mm_macc_pd(vfeps,Fp,Y);
537             vvdw12           = _mm_mul_pd(c12_00,VV);
538             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
539             fvdw12           = _mm_mul_pd(c12_00,FF);
540             vvdw             = _mm_add_pd(vvdw12,vvdw6);
541             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
545             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
546
547             fscal            = fvdw;
548
549             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
550
551             /* Update vectorial force */
552             fix0             = _mm_macc_pd(dx00,fscal,fix0);
553             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
554             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
555             
556             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
557             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
558             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
559
560             /**************************
561              * CALCULATE INTERACTIONS *
562              **************************/
563
564             r10              = _mm_mul_pd(rsq10,rinv10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_pd(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570
571             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572             ewrt             = _mm_mul_pd(r10,ewtabscale);
573             ewitab           = _mm_cvttpd_epi32(ewrt);
574 #ifdef __XOP__
575             eweps            = _mm_frcz_pd(ewrt);
576 #else
577             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
578 #endif
579             twoeweps         = _mm_add_pd(eweps,eweps);
580             ewitab           = _mm_slli_epi32(ewitab,2);
581             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
582             ewtabD           = _mm_setzero_pd();
583             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
584             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
585             ewtabFn          = _mm_setzero_pd();
586             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
587             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
588             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
589             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
590             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
591
592             /* Update potential sum for this i atom from the interaction with this j atom. */
593             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
594             velecsum         = _mm_add_pd(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
599
600             /* Update vectorial force */
601             fix1             = _mm_macc_pd(dx10,fscal,fix1);
602             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
603             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
604             
605             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
606             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
607             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             r20              = _mm_mul_pd(rsq20,rinv20);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq20             = _mm_mul_pd(iq2,jq0);
617
618             /* EWALD ELECTROSTATICS */
619
620             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
621             ewrt             = _mm_mul_pd(r20,ewtabscale);
622             ewitab           = _mm_cvttpd_epi32(ewrt);
623 #ifdef __XOP__
624             eweps            = _mm_frcz_pd(ewrt);
625 #else
626             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
627 #endif
628             twoeweps         = _mm_add_pd(eweps,eweps);
629             ewitab           = _mm_slli_epi32(ewitab,2);
630             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
631             ewtabD           = _mm_setzero_pd();
632             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
633             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
634             ewtabFn          = _mm_setzero_pd();
635             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
636             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
637             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
638             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
639             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
640
641             /* Update potential sum for this i atom from the interaction with this j atom. */
642             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
643             velecsum         = _mm_add_pd(velecsum,velec);
644
645             fscal            = felec;
646
647             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
648
649             /* Update vectorial force */
650             fix2             = _mm_macc_pd(dx20,fscal,fix2);
651             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
652             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
653             
654             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
655             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
656             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
657
658             /**************************
659              * CALCULATE INTERACTIONS *
660              **************************/
661
662             r30              = _mm_mul_pd(rsq30,rinv30);
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq30             = _mm_mul_pd(iq3,jq0);
666
667             /* EWALD ELECTROSTATICS */
668
669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
670             ewrt             = _mm_mul_pd(r30,ewtabscale);
671             ewitab           = _mm_cvttpd_epi32(ewrt);
672 #ifdef __XOP__
673             eweps            = _mm_frcz_pd(ewrt);
674 #else
675             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
676 #endif
677             twoeweps         = _mm_add_pd(eweps,eweps);
678             ewitab           = _mm_slli_epi32(ewitab,2);
679             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
680             ewtabD           = _mm_setzero_pd();
681             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
682             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
683             ewtabFn          = _mm_setzero_pd();
684             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
685             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
686             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
687             velec            = _mm_mul_pd(qq30,_mm_sub_pd(rinv30,velec));
688             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
689
690             /* Update potential sum for this i atom from the interaction with this j atom. */
691             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
692             velecsum         = _mm_add_pd(velecsum,velec);
693
694             fscal            = felec;
695
696             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
697
698             /* Update vectorial force */
699             fix3             = _mm_macc_pd(dx30,fscal,fix3);
700             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
701             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
702             
703             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
704             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
705             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
706
707             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
708
709             /* Inner loop uses 194 flops */
710         }
711
712         /* End of innermost loop */
713
714         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
715                                               f+i_coord_offset,fshift+i_shift_offset);
716
717         ggid                        = gid[iidx];
718         /* Update potential energies */
719         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
720         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
721
722         /* Increment number of inner iterations */
723         inneriter                  += j_index_end - j_index_start;
724
725         /* Outer loop uses 26 flops */
726     }
727
728     /* Increment number of outer iterations */
729     outeriter        += nri;
730
731     /* Update outer/inner flops */
732
733     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*194);
734 }
735 /*
736  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
737  * Electrostatics interaction: Ewald
738  * VdW interaction:            CubicSplineTable
739  * Geometry:                   Water4-Particle
740  * Calculate force/pot:        Force
741  */
742 void
743 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_128_fma_double
744                     (t_nblist                    * gmx_restrict       nlist,
745                      rvec                        * gmx_restrict          xx,
746                      rvec                        * gmx_restrict          ff,
747                      t_forcerec                  * gmx_restrict          fr,
748                      t_mdatoms                   * gmx_restrict     mdatoms,
749                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
750                      t_nrnb                      * gmx_restrict        nrnb)
751 {
752     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
753      * just 0 for non-waters.
754      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
755      * jnr indices corresponding to data put in the four positions in the SIMD register.
756      */
757     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
758     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
759     int              jnrA,jnrB;
760     int              j_coord_offsetA,j_coord_offsetB;
761     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
762     real             rcutoff_scalar;
763     real             *shiftvec,*fshift,*x,*f;
764     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
765     int              vdwioffset0;
766     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
767     int              vdwioffset1;
768     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
769     int              vdwioffset2;
770     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
771     int              vdwioffset3;
772     __m128d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
773     int              vdwjidx0A,vdwjidx0B;
774     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
775     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
776     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
777     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
778     __m128d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
779     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
780     real             *charge;
781     int              nvdwtype;
782     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
783     int              *vdwtype;
784     real             *vdwparam;
785     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
786     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
787     __m128i          vfitab;
788     __m128i          ifour       = _mm_set1_epi32(4);
789     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
790     real             *vftab;
791     __m128i          ewitab;
792     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
793     real             *ewtab;
794     __m128d          dummy_mask,cutoff_mask;
795     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
796     __m128d          one     = _mm_set1_pd(1.0);
797     __m128d          two     = _mm_set1_pd(2.0);
798     x                = xx[0];
799     f                = ff[0];
800
801     nri              = nlist->nri;
802     iinr             = nlist->iinr;
803     jindex           = nlist->jindex;
804     jjnr             = nlist->jjnr;
805     shiftidx         = nlist->shift;
806     gid              = nlist->gid;
807     shiftvec         = fr->shift_vec[0];
808     fshift           = fr->fshift[0];
809     facel            = _mm_set1_pd(fr->epsfac);
810     charge           = mdatoms->chargeA;
811     nvdwtype         = fr->ntype;
812     vdwparam         = fr->nbfp;
813     vdwtype          = mdatoms->typeA;
814
815     vftab            = kernel_data->table_vdw->data;
816     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
817
818     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
819     ewtab            = fr->ic->tabq_coul_F;
820     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
821     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
822
823     /* Setup water-specific parameters */
824     inr              = nlist->iinr[0];
825     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
826     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
827     iq3              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+3]));
828     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
829
830     /* Avoid stupid compiler warnings */
831     jnrA = jnrB = 0;
832     j_coord_offsetA = 0;
833     j_coord_offsetB = 0;
834
835     outeriter        = 0;
836     inneriter        = 0;
837
838     /* Start outer loop over neighborlists */
839     for(iidx=0; iidx<nri; iidx++)
840     {
841         /* Load shift vector for this list */
842         i_shift_offset   = DIM*shiftidx[iidx];
843
844         /* Load limits for loop over neighbors */
845         j_index_start    = jindex[iidx];
846         j_index_end      = jindex[iidx+1];
847
848         /* Get outer coordinate index */
849         inr              = iinr[iidx];
850         i_coord_offset   = DIM*inr;
851
852         /* Load i particle coords and add shift vector */
853         gmx_mm_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
854                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
855
856         fix0             = _mm_setzero_pd();
857         fiy0             = _mm_setzero_pd();
858         fiz0             = _mm_setzero_pd();
859         fix1             = _mm_setzero_pd();
860         fiy1             = _mm_setzero_pd();
861         fiz1             = _mm_setzero_pd();
862         fix2             = _mm_setzero_pd();
863         fiy2             = _mm_setzero_pd();
864         fiz2             = _mm_setzero_pd();
865         fix3             = _mm_setzero_pd();
866         fiy3             = _mm_setzero_pd();
867         fiz3             = _mm_setzero_pd();
868
869         /* Start inner kernel loop */
870         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
871         {
872
873             /* Get j neighbor index, and coordinate index */
874             jnrA             = jjnr[jidx];
875             jnrB             = jjnr[jidx+1];
876             j_coord_offsetA  = DIM*jnrA;
877             j_coord_offsetB  = DIM*jnrB;
878
879             /* load j atom coordinates */
880             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
881                                               &jx0,&jy0,&jz0);
882
883             /* Calculate displacement vector */
884             dx00             = _mm_sub_pd(ix0,jx0);
885             dy00             = _mm_sub_pd(iy0,jy0);
886             dz00             = _mm_sub_pd(iz0,jz0);
887             dx10             = _mm_sub_pd(ix1,jx0);
888             dy10             = _mm_sub_pd(iy1,jy0);
889             dz10             = _mm_sub_pd(iz1,jz0);
890             dx20             = _mm_sub_pd(ix2,jx0);
891             dy20             = _mm_sub_pd(iy2,jy0);
892             dz20             = _mm_sub_pd(iz2,jz0);
893             dx30             = _mm_sub_pd(ix3,jx0);
894             dy30             = _mm_sub_pd(iy3,jy0);
895             dz30             = _mm_sub_pd(iz3,jz0);
896
897             /* Calculate squared distance and things based on it */
898             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
899             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
900             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
901             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
902
903             rinv00           = gmx_mm_invsqrt_pd(rsq00);
904             rinv10           = gmx_mm_invsqrt_pd(rsq10);
905             rinv20           = gmx_mm_invsqrt_pd(rsq20);
906             rinv30           = gmx_mm_invsqrt_pd(rsq30);
907
908             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
909             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
910             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
911
912             /* Load parameters for j particles */
913             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
914             vdwjidx0A        = 2*vdwtype[jnrA+0];
915             vdwjidx0B        = 2*vdwtype[jnrB+0];
916
917             fjx0             = _mm_setzero_pd();
918             fjy0             = _mm_setzero_pd();
919             fjz0             = _mm_setzero_pd();
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             r00              = _mm_mul_pd(rsq00,rinv00);
926
927             /* Compute parameters for interactions between i and j atoms */
928             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
929                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
930
931             /* Calculate table index by multiplying r with table scale and truncate to integer */
932             rt               = _mm_mul_pd(r00,vftabscale);
933             vfitab           = _mm_cvttpd_epi32(rt);
934 #ifdef __XOP__
935             vfeps            = _mm_frcz_pd(rt);
936 #else
937             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
938 #endif
939             twovfeps         = _mm_add_pd(vfeps,vfeps);
940             vfitab           = _mm_slli_epi32(vfitab,3);
941
942             /* CUBIC SPLINE TABLE DISPERSION */
943             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
944             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
945             GMX_MM_TRANSPOSE2_PD(Y,F);
946             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
947             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
948             GMX_MM_TRANSPOSE2_PD(G,H);
949             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
950             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
951             fvdw6            = _mm_mul_pd(c6_00,FF);
952
953             /* CUBIC SPLINE TABLE REPULSION */
954             vfitab           = _mm_add_epi32(vfitab,ifour);
955             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
956             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
957             GMX_MM_TRANSPOSE2_PD(Y,F);
958             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
959             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
960             GMX_MM_TRANSPOSE2_PD(G,H);
961             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
962             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
963             fvdw12           = _mm_mul_pd(c12_00,FF);
964             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
965
966             fscal            = fvdw;
967
968             /* Update vectorial force */
969             fix0             = _mm_macc_pd(dx00,fscal,fix0);
970             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
971             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
972             
973             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
974             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
975             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r10              = _mm_mul_pd(rsq10,rinv10);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq10             = _mm_mul_pd(iq1,jq0);
985
986             /* EWALD ELECTROSTATICS */
987
988             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
989             ewrt             = _mm_mul_pd(r10,ewtabscale);
990             ewitab           = _mm_cvttpd_epi32(ewrt);
991 #ifdef __XOP__
992             eweps            = _mm_frcz_pd(ewrt);
993 #else
994             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
995 #endif
996             twoeweps         = _mm_add_pd(eweps,eweps);
997             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
998                                          &ewtabF,&ewtabFn);
999             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1000             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1001
1002             fscal            = felec;
1003
1004             /* Update vectorial force */
1005             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1006             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1007             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1008             
1009             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1010             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1011             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             r20              = _mm_mul_pd(rsq20,rinv20);
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq20             = _mm_mul_pd(iq2,jq0);
1021
1022             /* EWALD ELECTROSTATICS */
1023
1024             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1025             ewrt             = _mm_mul_pd(r20,ewtabscale);
1026             ewitab           = _mm_cvttpd_epi32(ewrt);
1027 #ifdef __XOP__
1028             eweps            = _mm_frcz_pd(ewrt);
1029 #else
1030             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1031 #endif
1032             twoeweps         = _mm_add_pd(eweps,eweps);
1033             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1034                                          &ewtabF,&ewtabFn);
1035             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1036             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1037
1038             fscal            = felec;
1039
1040             /* Update vectorial force */
1041             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1042             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1043             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1044             
1045             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1046             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1047             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1048
1049             /**************************
1050              * CALCULATE INTERACTIONS *
1051              **************************/
1052
1053             r30              = _mm_mul_pd(rsq30,rinv30);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq30             = _mm_mul_pd(iq3,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059
1060             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1061             ewrt             = _mm_mul_pd(r30,ewtabscale);
1062             ewitab           = _mm_cvttpd_epi32(ewrt);
1063 #ifdef __XOP__
1064             eweps            = _mm_frcz_pd(ewrt);
1065 #else
1066             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1067 #endif
1068             twoeweps         = _mm_add_pd(eweps,eweps);
1069             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1070                                          &ewtabF,&ewtabFn);
1071             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1072             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1073
1074             fscal            = felec;
1075
1076             /* Update vectorial force */
1077             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1078             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1079             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1080             
1081             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1082             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1083             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1084
1085             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
1086
1087             /* Inner loop uses 171 flops */
1088         }
1089
1090         if(jidx<j_index_end)
1091         {
1092
1093             jnrA             = jjnr[jidx];
1094             j_coord_offsetA  = DIM*jnrA;
1095
1096             /* load j atom coordinates */
1097             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1098                                               &jx0,&jy0,&jz0);
1099
1100             /* Calculate displacement vector */
1101             dx00             = _mm_sub_pd(ix0,jx0);
1102             dy00             = _mm_sub_pd(iy0,jy0);
1103             dz00             = _mm_sub_pd(iz0,jz0);
1104             dx10             = _mm_sub_pd(ix1,jx0);
1105             dy10             = _mm_sub_pd(iy1,jy0);
1106             dz10             = _mm_sub_pd(iz1,jz0);
1107             dx20             = _mm_sub_pd(ix2,jx0);
1108             dy20             = _mm_sub_pd(iy2,jy0);
1109             dz20             = _mm_sub_pd(iz2,jz0);
1110             dx30             = _mm_sub_pd(ix3,jx0);
1111             dy30             = _mm_sub_pd(iy3,jy0);
1112             dz30             = _mm_sub_pd(iz3,jz0);
1113
1114             /* Calculate squared distance and things based on it */
1115             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1116             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1117             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1118             rsq30            = gmx_mm_calc_rsq_pd(dx30,dy30,dz30);
1119
1120             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1121             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1122             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1123             rinv30           = gmx_mm_invsqrt_pd(rsq30);
1124
1125             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1126             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1127             rinvsq30         = _mm_mul_pd(rinv30,rinv30);
1128
1129             /* Load parameters for j particles */
1130             jq0              = _mm_load_sd(charge+jnrA+0);
1131             vdwjidx0A        = 2*vdwtype[jnrA+0];
1132
1133             fjx0             = _mm_setzero_pd();
1134             fjy0             = _mm_setzero_pd();
1135             fjz0             = _mm_setzero_pd();
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             r00              = _mm_mul_pd(rsq00,rinv00);
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1145
1146             /* Calculate table index by multiplying r with table scale and truncate to integer */
1147             rt               = _mm_mul_pd(r00,vftabscale);
1148             vfitab           = _mm_cvttpd_epi32(rt);
1149 #ifdef __XOP__
1150             vfeps            = _mm_frcz_pd(rt);
1151 #else
1152             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1153 #endif
1154             twovfeps         = _mm_add_pd(vfeps,vfeps);
1155             vfitab           = _mm_slli_epi32(vfitab,3);
1156
1157             /* CUBIC SPLINE TABLE DISPERSION */
1158             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1159             F                = _mm_setzero_pd();
1160             GMX_MM_TRANSPOSE2_PD(Y,F);
1161             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1162             H                = _mm_setzero_pd();
1163             GMX_MM_TRANSPOSE2_PD(G,H);
1164             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1165             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1166             fvdw6            = _mm_mul_pd(c6_00,FF);
1167
1168             /* CUBIC SPLINE TABLE REPULSION */
1169             vfitab           = _mm_add_epi32(vfitab,ifour);
1170             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1171             F                = _mm_setzero_pd();
1172             GMX_MM_TRANSPOSE2_PD(Y,F);
1173             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1174             H                = _mm_setzero_pd();
1175             GMX_MM_TRANSPOSE2_PD(G,H);
1176             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1177             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1178             fvdw12           = _mm_mul_pd(c12_00,FF);
1179             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1180
1181             fscal            = fvdw;
1182
1183             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1184
1185             /* Update vectorial force */
1186             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1187             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1188             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1189             
1190             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1191             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1192             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1193
1194             /**************************
1195              * CALCULATE INTERACTIONS *
1196              **************************/
1197
1198             r10              = _mm_mul_pd(rsq10,rinv10);
1199
1200             /* Compute parameters for interactions between i and j atoms */
1201             qq10             = _mm_mul_pd(iq1,jq0);
1202
1203             /* EWALD ELECTROSTATICS */
1204
1205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1206             ewrt             = _mm_mul_pd(r10,ewtabscale);
1207             ewitab           = _mm_cvttpd_epi32(ewrt);
1208 #ifdef __XOP__
1209             eweps            = _mm_frcz_pd(ewrt);
1210 #else
1211             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1212 #endif
1213             twoeweps         = _mm_add_pd(eweps,eweps);
1214             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1215             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1216             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1217
1218             fscal            = felec;
1219
1220             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1221
1222             /* Update vectorial force */
1223             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1224             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1225             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1226             
1227             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1228             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1229             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1230
1231             /**************************
1232              * CALCULATE INTERACTIONS *
1233              **************************/
1234
1235             r20              = _mm_mul_pd(rsq20,rinv20);
1236
1237             /* Compute parameters for interactions between i and j atoms */
1238             qq20             = _mm_mul_pd(iq2,jq0);
1239
1240             /* EWALD ELECTROSTATICS */
1241
1242             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1243             ewrt             = _mm_mul_pd(r20,ewtabscale);
1244             ewitab           = _mm_cvttpd_epi32(ewrt);
1245 #ifdef __XOP__
1246             eweps            = _mm_frcz_pd(ewrt);
1247 #else
1248             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1249 #endif
1250             twoeweps         = _mm_add_pd(eweps,eweps);
1251             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1252             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1253             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1254
1255             fscal            = felec;
1256
1257             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1258
1259             /* Update vectorial force */
1260             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1261             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1262             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1263             
1264             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1265             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1266             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             r30              = _mm_mul_pd(rsq30,rinv30);
1273
1274             /* Compute parameters for interactions between i and j atoms */
1275             qq30             = _mm_mul_pd(iq3,jq0);
1276
1277             /* EWALD ELECTROSTATICS */
1278
1279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1280             ewrt             = _mm_mul_pd(r30,ewtabscale);
1281             ewitab           = _mm_cvttpd_epi32(ewrt);
1282 #ifdef __XOP__
1283             eweps            = _mm_frcz_pd(ewrt);
1284 #else
1285             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1286 #endif
1287             twoeweps         = _mm_add_pd(eweps,eweps);
1288             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1289             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1290             felec            = _mm_mul_pd(_mm_mul_pd(qq30,rinv30),_mm_sub_pd(rinvsq30,felec));
1291
1292             fscal            = felec;
1293
1294             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1295
1296             /* Update vectorial force */
1297             fix3             = _mm_macc_pd(dx30,fscal,fix3);
1298             fiy3             = _mm_macc_pd(dy30,fscal,fiy3);
1299             fiz3             = _mm_macc_pd(dz30,fscal,fiz3);
1300             
1301             fjx0             = _mm_macc_pd(dx30,fscal,fjx0);
1302             fjy0             = _mm_macc_pd(dy30,fscal,fjy0);
1303             fjz0             = _mm_macc_pd(dz30,fscal,fjz0);
1304
1305             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1306
1307             /* Inner loop uses 171 flops */
1308         }
1309
1310         /* End of innermost loop */
1311
1312         gmx_mm_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1313                                               f+i_coord_offset,fshift+i_shift_offset);
1314
1315         /* Increment number of inner iterations */
1316         inneriter                  += j_index_end - j_index_start;
1317
1318         /* Outer loop uses 24 flops */
1319     }
1320
1321     /* Increment number of outer iterations */
1322     outeriter        += nri;
1323
1324     /* Update outer/inner flops */
1325
1326     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*171);
1327 }