Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3W3_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Water3
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     int              vdwjidx1A,vdwjidx1B;
91     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
92     int              vdwjidx2A,vdwjidx2B;
93     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
94     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
96     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
97     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
99     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
100     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
101     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
102     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
103     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
104     real             *charge;
105     int              nvdwtype;
106     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
107     int              *vdwtype;
108     real             *vdwparam;
109     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
110     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
111     __m128i          vfitab;
112     __m128i          ifour       = _mm_set1_epi32(4);
113     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
114     real             *vftab;
115     __m128i          ewitab;
116     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
117     real             *ewtab;
118     __m128d          dummy_mask,cutoff_mask;
119     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
120     __m128d          one     = _mm_set1_pd(1.0);
121     __m128d          two     = _mm_set1_pd(2.0);
122     x                = xx[0];
123     f                = ff[0];
124
125     nri              = nlist->nri;
126     iinr             = nlist->iinr;
127     jindex           = nlist->jindex;
128     jjnr             = nlist->jjnr;
129     shiftidx         = nlist->shift;
130     gid              = nlist->gid;
131     shiftvec         = fr->shift_vec[0];
132     fshift           = fr->fshift[0];
133     facel            = _mm_set1_pd(fr->epsfac);
134     charge           = mdatoms->chargeA;
135     nvdwtype         = fr->ntype;
136     vdwparam         = fr->nbfp;
137     vdwtype          = mdatoms->typeA;
138
139     vftab            = kernel_data->table_vdw->data;
140     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
141
142     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
143     ewtab            = fr->ic->tabq_coul_FDV0;
144     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
145     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
146
147     /* Setup water-specific parameters */
148     inr              = nlist->iinr[0];
149     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
150     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
151     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
152     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154     jq0              = _mm_set1_pd(charge[inr+0]);
155     jq1              = _mm_set1_pd(charge[inr+1]);
156     jq2              = _mm_set1_pd(charge[inr+2]);
157     vdwjidx0A        = 2*vdwtype[inr+0];
158     qq00             = _mm_mul_pd(iq0,jq0);
159     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
160     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
161     qq01             = _mm_mul_pd(iq0,jq1);
162     qq02             = _mm_mul_pd(iq0,jq2);
163     qq10             = _mm_mul_pd(iq1,jq0);
164     qq11             = _mm_mul_pd(iq1,jq1);
165     qq12             = _mm_mul_pd(iq1,jq2);
166     qq20             = _mm_mul_pd(iq2,jq0);
167     qq21             = _mm_mul_pd(iq2,jq1);
168     qq22             = _mm_mul_pd(iq2,jq2);
169
170     /* Avoid stupid compiler warnings */
171     jnrA = jnrB = 0;
172     j_coord_offsetA = 0;
173     j_coord_offsetB = 0;
174
175     outeriter        = 0;
176     inneriter        = 0;
177
178     /* Start outer loop over neighborlists */
179     for(iidx=0; iidx<nri; iidx++)
180     {
181         /* Load shift vector for this list */
182         i_shift_offset   = DIM*shiftidx[iidx];
183
184         /* Load limits for loop over neighbors */
185         j_index_start    = jindex[iidx];
186         j_index_end      = jindex[iidx+1];
187
188         /* Get outer coordinate index */
189         inr              = iinr[iidx];
190         i_coord_offset   = DIM*inr;
191
192         /* Load i particle coords and add shift vector */
193         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
194                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
195
196         fix0             = _mm_setzero_pd();
197         fiy0             = _mm_setzero_pd();
198         fiz0             = _mm_setzero_pd();
199         fix1             = _mm_setzero_pd();
200         fiy1             = _mm_setzero_pd();
201         fiz1             = _mm_setzero_pd();
202         fix2             = _mm_setzero_pd();
203         fiy2             = _mm_setzero_pd();
204         fiz2             = _mm_setzero_pd();
205
206         /* Reset potential sums */
207         velecsum         = _mm_setzero_pd();
208         vvdwsum          = _mm_setzero_pd();
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrA             = jjnr[jidx];
216             jnrB             = jjnr[jidx+1];
217             j_coord_offsetA  = DIM*jnrA;
218             j_coord_offsetB  = DIM*jnrB;
219
220             /* load j atom coordinates */
221             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
222                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
223
224             /* Calculate displacement vector */
225             dx00             = _mm_sub_pd(ix0,jx0);
226             dy00             = _mm_sub_pd(iy0,jy0);
227             dz00             = _mm_sub_pd(iz0,jz0);
228             dx01             = _mm_sub_pd(ix0,jx1);
229             dy01             = _mm_sub_pd(iy0,jy1);
230             dz01             = _mm_sub_pd(iz0,jz1);
231             dx02             = _mm_sub_pd(ix0,jx2);
232             dy02             = _mm_sub_pd(iy0,jy2);
233             dz02             = _mm_sub_pd(iz0,jz2);
234             dx10             = _mm_sub_pd(ix1,jx0);
235             dy10             = _mm_sub_pd(iy1,jy0);
236             dz10             = _mm_sub_pd(iz1,jz0);
237             dx11             = _mm_sub_pd(ix1,jx1);
238             dy11             = _mm_sub_pd(iy1,jy1);
239             dz11             = _mm_sub_pd(iz1,jz1);
240             dx12             = _mm_sub_pd(ix1,jx2);
241             dy12             = _mm_sub_pd(iy1,jy2);
242             dz12             = _mm_sub_pd(iz1,jz2);
243             dx20             = _mm_sub_pd(ix2,jx0);
244             dy20             = _mm_sub_pd(iy2,jy0);
245             dz20             = _mm_sub_pd(iz2,jz0);
246             dx21             = _mm_sub_pd(ix2,jx1);
247             dy21             = _mm_sub_pd(iy2,jy1);
248             dz21             = _mm_sub_pd(iz2,jz1);
249             dx22             = _mm_sub_pd(ix2,jx2);
250             dy22             = _mm_sub_pd(iy2,jy2);
251             dz22             = _mm_sub_pd(iz2,jz2);
252
253             /* Calculate squared distance and things based on it */
254             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
255             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
256             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
257             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
258             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
259             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
260             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
261             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
262             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
263
264             rinv00           = gmx_mm_invsqrt_pd(rsq00);
265             rinv01           = gmx_mm_invsqrt_pd(rsq01);
266             rinv02           = gmx_mm_invsqrt_pd(rsq02);
267             rinv10           = gmx_mm_invsqrt_pd(rsq10);
268             rinv11           = gmx_mm_invsqrt_pd(rsq11);
269             rinv12           = gmx_mm_invsqrt_pd(rsq12);
270             rinv20           = gmx_mm_invsqrt_pd(rsq20);
271             rinv21           = gmx_mm_invsqrt_pd(rsq21);
272             rinv22           = gmx_mm_invsqrt_pd(rsq22);
273
274             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
275             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
276             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
277             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
278             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
279             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
280             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
281             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
282             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
283
284             fjx0             = _mm_setzero_pd();
285             fjy0             = _mm_setzero_pd();
286             fjz0             = _mm_setzero_pd();
287             fjx1             = _mm_setzero_pd();
288             fjy1             = _mm_setzero_pd();
289             fjz1             = _mm_setzero_pd();
290             fjx2             = _mm_setzero_pd();
291             fjy2             = _mm_setzero_pd();
292             fjz2             = _mm_setzero_pd();
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r00              = _mm_mul_pd(rsq00,rinv00);
299
300             /* Calculate table index by multiplying r with table scale and truncate to integer */
301             rt               = _mm_mul_pd(r00,vftabscale);
302             vfitab           = _mm_cvttpd_epi32(rt);
303 #ifdef __XOP__
304             vfeps            = _mm_frcz_pd(rt);
305 #else
306             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
307 #endif
308             twovfeps         = _mm_add_pd(vfeps,vfeps);
309             vfitab           = _mm_slli_epi32(vfitab,3);
310
311             /* EWALD ELECTROSTATICS */
312
313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
314             ewrt             = _mm_mul_pd(r00,ewtabscale);
315             ewitab           = _mm_cvttpd_epi32(ewrt);
316 #ifdef __XOP__
317             eweps            = _mm_frcz_pd(ewrt);
318 #else
319             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
320 #endif
321             twoeweps         = _mm_add_pd(eweps,eweps);
322             ewitab           = _mm_slli_epi32(ewitab,2);
323             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
324             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
325             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
326             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
327             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
328             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
329             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
330             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
331             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
332             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
333
334             /* CUBIC SPLINE TABLE DISPERSION */
335             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
337             GMX_MM_TRANSPOSE2_PD(Y,F);
338             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
339             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
340             GMX_MM_TRANSPOSE2_PD(G,H);
341             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
342             VV               = _mm_macc_pd(vfeps,Fp,Y);
343             vvdw6            = _mm_mul_pd(c6_00,VV);
344             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
345             fvdw6            = _mm_mul_pd(c6_00,FF);
346
347             /* CUBIC SPLINE TABLE REPULSION */
348             vfitab           = _mm_add_epi32(vfitab,ifour);
349             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
350             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
351             GMX_MM_TRANSPOSE2_PD(Y,F);
352             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
353             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
354             GMX_MM_TRANSPOSE2_PD(G,H);
355             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
356             VV               = _mm_macc_pd(vfeps,Fp,Y);
357             vvdw12           = _mm_mul_pd(c12_00,VV);
358             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
359             fvdw12           = _mm_mul_pd(c12_00,FF);
360             vvdw             = _mm_add_pd(vvdw12,vvdw6);
361             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velecsum         = _mm_add_pd(velecsum,velec);
365             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
366
367             fscal            = _mm_add_pd(felec,fvdw);
368
369             /* Update vectorial force */
370             fix0             = _mm_macc_pd(dx00,fscal,fix0);
371             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
372             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
373             
374             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
375             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
376             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             r01              = _mm_mul_pd(rsq01,rinv01);
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = _mm_mul_pd(r01,ewtabscale);
388             ewitab           = _mm_cvttpd_epi32(ewrt);
389 #ifdef __XOP__
390             eweps            = _mm_frcz_pd(ewrt);
391 #else
392             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
393 #endif
394             twoeweps         = _mm_add_pd(eweps,eweps);
395             ewitab           = _mm_slli_epi32(ewitab,2);
396             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
397             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
398             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
399             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
400             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
401             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
402             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
403             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
404             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
405             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
406
407             /* Update potential sum for this i atom from the interaction with this j atom. */
408             velecsum         = _mm_add_pd(velecsum,velec);
409
410             fscal            = felec;
411
412             /* Update vectorial force */
413             fix0             = _mm_macc_pd(dx01,fscal,fix0);
414             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
415             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
416             
417             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
418             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
419             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r02              = _mm_mul_pd(rsq02,rinv02);
426
427             /* EWALD ELECTROSTATICS */
428
429             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430             ewrt             = _mm_mul_pd(r02,ewtabscale);
431             ewitab           = _mm_cvttpd_epi32(ewrt);
432 #ifdef __XOP__
433             eweps            = _mm_frcz_pd(ewrt);
434 #else
435             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
436 #endif
437             twoeweps         = _mm_add_pd(eweps,eweps);
438             ewitab           = _mm_slli_epi32(ewitab,2);
439             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
440             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
441             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
442             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
443             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
444             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
445             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
446             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
447             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
448             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
449
450             /* Update potential sum for this i atom from the interaction with this j atom. */
451             velecsum         = _mm_add_pd(velecsum,velec);
452
453             fscal            = felec;
454
455             /* Update vectorial force */
456             fix0             = _mm_macc_pd(dx02,fscal,fix0);
457             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
458             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
459             
460             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
461             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
462             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
463
464             /**************************
465              * CALCULATE INTERACTIONS *
466              **************************/
467
468             r10              = _mm_mul_pd(rsq10,rinv10);
469
470             /* EWALD ELECTROSTATICS */
471
472             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
473             ewrt             = _mm_mul_pd(r10,ewtabscale);
474             ewitab           = _mm_cvttpd_epi32(ewrt);
475 #ifdef __XOP__
476             eweps            = _mm_frcz_pd(ewrt);
477 #else
478             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
479 #endif
480             twoeweps         = _mm_add_pd(eweps,eweps);
481             ewitab           = _mm_slli_epi32(ewitab,2);
482             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
483             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
484             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
485             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
486             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
487             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
488             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
489             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
490             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
491             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             velecsum         = _mm_add_pd(velecsum,velec);
495
496             fscal            = felec;
497
498             /* Update vectorial force */
499             fix1             = _mm_macc_pd(dx10,fscal,fix1);
500             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
501             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
502             
503             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
504             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
505             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
506
507             /**************************
508              * CALCULATE INTERACTIONS *
509              **************************/
510
511             r11              = _mm_mul_pd(rsq11,rinv11);
512
513             /* EWALD ELECTROSTATICS */
514
515             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
516             ewrt             = _mm_mul_pd(r11,ewtabscale);
517             ewitab           = _mm_cvttpd_epi32(ewrt);
518 #ifdef __XOP__
519             eweps            = _mm_frcz_pd(ewrt);
520 #else
521             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
522 #endif
523             twoeweps         = _mm_add_pd(eweps,eweps);
524             ewitab           = _mm_slli_epi32(ewitab,2);
525             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
526             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
527             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
528             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
529             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
530             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
531             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
532             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
533             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
534             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velecsum         = _mm_add_pd(velecsum,velec);
538
539             fscal            = felec;
540
541             /* Update vectorial force */
542             fix1             = _mm_macc_pd(dx11,fscal,fix1);
543             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
544             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
545             
546             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
547             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
548             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r12              = _mm_mul_pd(rsq12,rinv12);
555
556             /* EWALD ELECTROSTATICS */
557
558             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
559             ewrt             = _mm_mul_pd(r12,ewtabscale);
560             ewitab           = _mm_cvttpd_epi32(ewrt);
561 #ifdef __XOP__
562             eweps            = _mm_frcz_pd(ewrt);
563 #else
564             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
565 #endif
566             twoeweps         = _mm_add_pd(eweps,eweps);
567             ewitab           = _mm_slli_epi32(ewitab,2);
568             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
569             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
570             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
571             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
572             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
573             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
574             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
575             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
576             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
577             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velecsum         = _mm_add_pd(velecsum,velec);
581
582             fscal            = felec;
583
584             /* Update vectorial force */
585             fix1             = _mm_macc_pd(dx12,fscal,fix1);
586             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
587             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
588             
589             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
590             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
591             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
592
593             /**************************
594              * CALCULATE INTERACTIONS *
595              **************************/
596
597             r20              = _mm_mul_pd(rsq20,rinv20);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _mm_mul_pd(r20,ewtabscale);
603             ewitab           = _mm_cvttpd_epi32(ewrt);
604 #ifdef __XOP__
605             eweps            = _mm_frcz_pd(ewrt);
606 #else
607             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
608 #endif
609             twoeweps         = _mm_add_pd(eweps,eweps);
610             ewitab           = _mm_slli_epi32(ewitab,2);
611             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
612             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
613             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
614             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
615             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
616             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
617             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
618             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
619             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
620             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
621
622             /* Update potential sum for this i atom from the interaction with this j atom. */
623             velecsum         = _mm_add_pd(velecsum,velec);
624
625             fscal            = felec;
626
627             /* Update vectorial force */
628             fix2             = _mm_macc_pd(dx20,fscal,fix2);
629             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
630             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
631             
632             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
633             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
634             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             r21              = _mm_mul_pd(rsq21,rinv21);
641
642             /* EWALD ELECTROSTATICS */
643
644             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
645             ewrt             = _mm_mul_pd(r21,ewtabscale);
646             ewitab           = _mm_cvttpd_epi32(ewrt);
647 #ifdef __XOP__
648             eweps            = _mm_frcz_pd(ewrt);
649 #else
650             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
651 #endif
652             twoeweps         = _mm_add_pd(eweps,eweps);
653             ewitab           = _mm_slli_epi32(ewitab,2);
654             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
655             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
656             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
657             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
658             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
659             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
660             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
661             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
662             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
663             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
664
665             /* Update potential sum for this i atom from the interaction with this j atom. */
666             velecsum         = _mm_add_pd(velecsum,velec);
667
668             fscal            = felec;
669
670             /* Update vectorial force */
671             fix2             = _mm_macc_pd(dx21,fscal,fix2);
672             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
673             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
674             
675             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
676             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
677             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             r22              = _mm_mul_pd(rsq22,rinv22);
684
685             /* EWALD ELECTROSTATICS */
686
687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688             ewrt             = _mm_mul_pd(r22,ewtabscale);
689             ewitab           = _mm_cvttpd_epi32(ewrt);
690 #ifdef __XOP__
691             eweps            = _mm_frcz_pd(ewrt);
692 #else
693             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
694 #endif
695             twoeweps         = _mm_add_pd(eweps,eweps);
696             ewitab           = _mm_slli_epi32(ewitab,2);
697             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
698             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
699             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
700             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
701             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
702             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
703             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
704             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
705             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
706             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
707
708             /* Update potential sum for this i atom from the interaction with this j atom. */
709             velecsum         = _mm_add_pd(velecsum,velec);
710
711             fscal            = felec;
712
713             /* Update vectorial force */
714             fix2             = _mm_macc_pd(dx22,fscal,fix2);
715             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
716             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
717             
718             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
719             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
720             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
721
722             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
723
724             /* Inner loop uses 430 flops */
725         }
726
727         if(jidx<j_index_end)
728         {
729
730             jnrA             = jjnr[jidx];
731             j_coord_offsetA  = DIM*jnrA;
732
733             /* load j atom coordinates */
734             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
735                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
736
737             /* Calculate displacement vector */
738             dx00             = _mm_sub_pd(ix0,jx0);
739             dy00             = _mm_sub_pd(iy0,jy0);
740             dz00             = _mm_sub_pd(iz0,jz0);
741             dx01             = _mm_sub_pd(ix0,jx1);
742             dy01             = _mm_sub_pd(iy0,jy1);
743             dz01             = _mm_sub_pd(iz0,jz1);
744             dx02             = _mm_sub_pd(ix0,jx2);
745             dy02             = _mm_sub_pd(iy0,jy2);
746             dz02             = _mm_sub_pd(iz0,jz2);
747             dx10             = _mm_sub_pd(ix1,jx0);
748             dy10             = _mm_sub_pd(iy1,jy0);
749             dz10             = _mm_sub_pd(iz1,jz0);
750             dx11             = _mm_sub_pd(ix1,jx1);
751             dy11             = _mm_sub_pd(iy1,jy1);
752             dz11             = _mm_sub_pd(iz1,jz1);
753             dx12             = _mm_sub_pd(ix1,jx2);
754             dy12             = _mm_sub_pd(iy1,jy2);
755             dz12             = _mm_sub_pd(iz1,jz2);
756             dx20             = _mm_sub_pd(ix2,jx0);
757             dy20             = _mm_sub_pd(iy2,jy0);
758             dz20             = _mm_sub_pd(iz2,jz0);
759             dx21             = _mm_sub_pd(ix2,jx1);
760             dy21             = _mm_sub_pd(iy2,jy1);
761             dz21             = _mm_sub_pd(iz2,jz1);
762             dx22             = _mm_sub_pd(ix2,jx2);
763             dy22             = _mm_sub_pd(iy2,jy2);
764             dz22             = _mm_sub_pd(iz2,jz2);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
768             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
769             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
770             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
771             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
772             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
773             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
774             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
775             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
776
777             rinv00           = gmx_mm_invsqrt_pd(rsq00);
778             rinv01           = gmx_mm_invsqrt_pd(rsq01);
779             rinv02           = gmx_mm_invsqrt_pd(rsq02);
780             rinv10           = gmx_mm_invsqrt_pd(rsq10);
781             rinv11           = gmx_mm_invsqrt_pd(rsq11);
782             rinv12           = gmx_mm_invsqrt_pd(rsq12);
783             rinv20           = gmx_mm_invsqrt_pd(rsq20);
784             rinv21           = gmx_mm_invsqrt_pd(rsq21);
785             rinv22           = gmx_mm_invsqrt_pd(rsq22);
786
787             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
788             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
789             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
790             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
791             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
792             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
793             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
794             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
795             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
796
797             fjx0             = _mm_setzero_pd();
798             fjy0             = _mm_setzero_pd();
799             fjz0             = _mm_setzero_pd();
800             fjx1             = _mm_setzero_pd();
801             fjy1             = _mm_setzero_pd();
802             fjz1             = _mm_setzero_pd();
803             fjx2             = _mm_setzero_pd();
804             fjy2             = _mm_setzero_pd();
805             fjz2             = _mm_setzero_pd();
806
807             /**************************
808              * CALCULATE INTERACTIONS *
809              **************************/
810
811             r00              = _mm_mul_pd(rsq00,rinv00);
812
813             /* Calculate table index by multiplying r with table scale and truncate to integer */
814             rt               = _mm_mul_pd(r00,vftabscale);
815             vfitab           = _mm_cvttpd_epi32(rt);
816 #ifdef __XOP__
817             vfeps            = _mm_frcz_pd(rt);
818 #else
819             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
820 #endif
821             twovfeps         = _mm_add_pd(vfeps,vfeps);
822             vfitab           = _mm_slli_epi32(vfitab,3);
823
824             /* EWALD ELECTROSTATICS */
825
826             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
827             ewrt             = _mm_mul_pd(r00,ewtabscale);
828             ewitab           = _mm_cvttpd_epi32(ewrt);
829 #ifdef __XOP__
830             eweps            = _mm_frcz_pd(ewrt);
831 #else
832             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
833 #endif
834             twoeweps         = _mm_add_pd(eweps,eweps);
835             ewitab           = _mm_slli_epi32(ewitab,2);
836             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
837             ewtabD           = _mm_setzero_pd();
838             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
839             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
840             ewtabFn          = _mm_setzero_pd();
841             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
842             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
843             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
844             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
845             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
846
847             /* CUBIC SPLINE TABLE DISPERSION */
848             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
849             F                = _mm_setzero_pd();
850             GMX_MM_TRANSPOSE2_PD(Y,F);
851             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
852             H                = _mm_setzero_pd();
853             GMX_MM_TRANSPOSE2_PD(G,H);
854             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
855             VV               = _mm_macc_pd(vfeps,Fp,Y);
856             vvdw6            = _mm_mul_pd(c6_00,VV);
857             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
858             fvdw6            = _mm_mul_pd(c6_00,FF);
859
860             /* CUBIC SPLINE TABLE REPULSION */
861             vfitab           = _mm_add_epi32(vfitab,ifour);
862             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
863             F                = _mm_setzero_pd();
864             GMX_MM_TRANSPOSE2_PD(Y,F);
865             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
866             H                = _mm_setzero_pd();
867             GMX_MM_TRANSPOSE2_PD(G,H);
868             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
869             VV               = _mm_macc_pd(vfeps,Fp,Y);
870             vvdw12           = _mm_mul_pd(c12_00,VV);
871             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
872             fvdw12           = _mm_mul_pd(c12_00,FF);
873             vvdw             = _mm_add_pd(vvdw12,vvdw6);
874             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
875
876             /* Update potential sum for this i atom from the interaction with this j atom. */
877             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
878             velecsum         = _mm_add_pd(velecsum,velec);
879             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
880             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
881
882             fscal            = _mm_add_pd(felec,fvdw);
883
884             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
885
886             /* Update vectorial force */
887             fix0             = _mm_macc_pd(dx00,fscal,fix0);
888             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
889             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
890             
891             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
892             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
893             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             r01              = _mm_mul_pd(rsq01,rinv01);
900
901             /* EWALD ELECTROSTATICS */
902
903             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
904             ewrt             = _mm_mul_pd(r01,ewtabscale);
905             ewitab           = _mm_cvttpd_epi32(ewrt);
906 #ifdef __XOP__
907             eweps            = _mm_frcz_pd(ewrt);
908 #else
909             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
910 #endif
911             twoeweps         = _mm_add_pd(eweps,eweps);
912             ewitab           = _mm_slli_epi32(ewitab,2);
913             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
914             ewtabD           = _mm_setzero_pd();
915             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
916             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
917             ewtabFn          = _mm_setzero_pd();
918             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
919             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
920             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
921             velec            = _mm_mul_pd(qq01,_mm_sub_pd(rinv01,velec));
922             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
923
924             /* Update potential sum for this i atom from the interaction with this j atom. */
925             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
926             velecsum         = _mm_add_pd(velecsum,velec);
927
928             fscal            = felec;
929
930             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
931
932             /* Update vectorial force */
933             fix0             = _mm_macc_pd(dx01,fscal,fix0);
934             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
935             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
936             
937             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
938             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
939             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             r02              = _mm_mul_pd(rsq02,rinv02);
946
947             /* EWALD ELECTROSTATICS */
948
949             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
950             ewrt             = _mm_mul_pd(r02,ewtabscale);
951             ewitab           = _mm_cvttpd_epi32(ewrt);
952 #ifdef __XOP__
953             eweps            = _mm_frcz_pd(ewrt);
954 #else
955             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
956 #endif
957             twoeweps         = _mm_add_pd(eweps,eweps);
958             ewitab           = _mm_slli_epi32(ewitab,2);
959             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
960             ewtabD           = _mm_setzero_pd();
961             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
962             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
963             ewtabFn          = _mm_setzero_pd();
964             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
965             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
966             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
967             velec            = _mm_mul_pd(qq02,_mm_sub_pd(rinv02,velec));
968             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
969
970             /* Update potential sum for this i atom from the interaction with this j atom. */
971             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
972             velecsum         = _mm_add_pd(velecsum,velec);
973
974             fscal            = felec;
975
976             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
977
978             /* Update vectorial force */
979             fix0             = _mm_macc_pd(dx02,fscal,fix0);
980             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
981             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
982             
983             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
984             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
985             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r10              = _mm_mul_pd(rsq10,rinv10);
992
993             /* EWALD ELECTROSTATICS */
994
995             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996             ewrt             = _mm_mul_pd(r10,ewtabscale);
997             ewitab           = _mm_cvttpd_epi32(ewrt);
998 #ifdef __XOP__
999             eweps            = _mm_frcz_pd(ewrt);
1000 #else
1001             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1002 #endif
1003             twoeweps         = _mm_add_pd(eweps,eweps);
1004             ewitab           = _mm_slli_epi32(ewitab,2);
1005             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1006             ewtabD           = _mm_setzero_pd();
1007             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1008             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1009             ewtabFn          = _mm_setzero_pd();
1010             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1011             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1012             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1013             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
1014             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1015
1016             /* Update potential sum for this i atom from the interaction with this j atom. */
1017             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1018             velecsum         = _mm_add_pd(velecsum,velec);
1019
1020             fscal            = felec;
1021
1022             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1023
1024             /* Update vectorial force */
1025             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1026             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1027             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1028             
1029             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1030             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1031             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             r11              = _mm_mul_pd(rsq11,rinv11);
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1042             ewrt             = _mm_mul_pd(r11,ewtabscale);
1043             ewitab           = _mm_cvttpd_epi32(ewrt);
1044 #ifdef __XOP__
1045             eweps            = _mm_frcz_pd(ewrt);
1046 #else
1047             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1048 #endif
1049             twoeweps         = _mm_add_pd(eweps,eweps);
1050             ewitab           = _mm_slli_epi32(ewitab,2);
1051             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1052             ewtabD           = _mm_setzero_pd();
1053             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1054             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1055             ewtabFn          = _mm_setzero_pd();
1056             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1057             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1058             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1059             velec            = _mm_mul_pd(qq11,_mm_sub_pd(rinv11,velec));
1060             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1061
1062             /* Update potential sum for this i atom from the interaction with this j atom. */
1063             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1064             velecsum         = _mm_add_pd(velecsum,velec);
1065
1066             fscal            = felec;
1067
1068             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1069
1070             /* Update vectorial force */
1071             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1072             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1073             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1074             
1075             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1076             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1077             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             r12              = _mm_mul_pd(rsq12,rinv12);
1084
1085             /* EWALD ELECTROSTATICS */
1086
1087             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088             ewrt             = _mm_mul_pd(r12,ewtabscale);
1089             ewitab           = _mm_cvttpd_epi32(ewrt);
1090 #ifdef __XOP__
1091             eweps            = _mm_frcz_pd(ewrt);
1092 #else
1093             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1094 #endif
1095             twoeweps         = _mm_add_pd(eweps,eweps);
1096             ewitab           = _mm_slli_epi32(ewitab,2);
1097             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1098             ewtabD           = _mm_setzero_pd();
1099             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1100             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1101             ewtabFn          = _mm_setzero_pd();
1102             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1103             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1104             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1105             velec            = _mm_mul_pd(qq12,_mm_sub_pd(rinv12,velec));
1106             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1107
1108             /* Update potential sum for this i atom from the interaction with this j atom. */
1109             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1110             velecsum         = _mm_add_pd(velecsum,velec);
1111
1112             fscal            = felec;
1113
1114             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1115
1116             /* Update vectorial force */
1117             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1118             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1119             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1120             
1121             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1122             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1123             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             r20              = _mm_mul_pd(rsq20,rinv20);
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = _mm_mul_pd(r20,ewtabscale);
1135             ewitab           = _mm_cvttpd_epi32(ewrt);
1136 #ifdef __XOP__
1137             eweps            = _mm_frcz_pd(ewrt);
1138 #else
1139             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1140 #endif
1141             twoeweps         = _mm_add_pd(eweps,eweps);
1142             ewitab           = _mm_slli_epi32(ewitab,2);
1143             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1144             ewtabD           = _mm_setzero_pd();
1145             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1146             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1147             ewtabFn          = _mm_setzero_pd();
1148             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1149             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1150             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1151             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
1152             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1153
1154             /* Update potential sum for this i atom from the interaction with this j atom. */
1155             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1156             velecsum         = _mm_add_pd(velecsum,velec);
1157
1158             fscal            = felec;
1159
1160             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1161
1162             /* Update vectorial force */
1163             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1164             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1165             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1166             
1167             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1168             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1169             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             r21              = _mm_mul_pd(rsq21,rinv21);
1176
1177             /* EWALD ELECTROSTATICS */
1178
1179             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1180             ewrt             = _mm_mul_pd(r21,ewtabscale);
1181             ewitab           = _mm_cvttpd_epi32(ewrt);
1182 #ifdef __XOP__
1183             eweps            = _mm_frcz_pd(ewrt);
1184 #else
1185             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1186 #endif
1187             twoeweps         = _mm_add_pd(eweps,eweps);
1188             ewitab           = _mm_slli_epi32(ewitab,2);
1189             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1190             ewtabD           = _mm_setzero_pd();
1191             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1192             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1193             ewtabFn          = _mm_setzero_pd();
1194             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1195             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1196             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1197             velec            = _mm_mul_pd(qq21,_mm_sub_pd(rinv21,velec));
1198             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1199
1200             /* Update potential sum for this i atom from the interaction with this j atom. */
1201             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1202             velecsum         = _mm_add_pd(velecsum,velec);
1203
1204             fscal            = felec;
1205
1206             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1207
1208             /* Update vectorial force */
1209             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1210             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1211             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1212             
1213             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1214             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1215             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1216
1217             /**************************
1218              * CALCULATE INTERACTIONS *
1219              **************************/
1220
1221             r22              = _mm_mul_pd(rsq22,rinv22);
1222
1223             /* EWALD ELECTROSTATICS */
1224
1225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1226             ewrt             = _mm_mul_pd(r22,ewtabscale);
1227             ewitab           = _mm_cvttpd_epi32(ewrt);
1228 #ifdef __XOP__
1229             eweps            = _mm_frcz_pd(ewrt);
1230 #else
1231             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1232 #endif
1233             twoeweps         = _mm_add_pd(eweps,eweps);
1234             ewitab           = _mm_slli_epi32(ewitab,2);
1235             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1236             ewtabD           = _mm_setzero_pd();
1237             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
1238             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
1239             ewtabFn          = _mm_setzero_pd();
1240             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
1241             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
1242             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
1243             velec            = _mm_mul_pd(qq22,_mm_sub_pd(rinv22,velec));
1244             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1245
1246             /* Update potential sum for this i atom from the interaction with this j atom. */
1247             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
1248             velecsum         = _mm_add_pd(velecsum,velec);
1249
1250             fscal            = felec;
1251
1252             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1253
1254             /* Update vectorial force */
1255             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1256             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1257             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1258             
1259             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1260             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1261             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1262
1263             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1264
1265             /* Inner loop uses 430 flops */
1266         }
1267
1268         /* End of innermost loop */
1269
1270         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1271                                               f+i_coord_offset,fshift+i_shift_offset);
1272
1273         ggid                        = gid[iidx];
1274         /* Update potential energies */
1275         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1276         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1277
1278         /* Increment number of inner iterations */
1279         inneriter                  += j_index_end - j_index_start;
1280
1281         /* Outer loop uses 20 flops */
1282     }
1283
1284     /* Increment number of outer iterations */
1285     outeriter        += nri;
1286
1287     /* Update outer/inner flops */
1288
1289     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*430);
1290 }
1291 /*
1292  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_128_fma_double
1293  * Electrostatics interaction: Ewald
1294  * VdW interaction:            CubicSplineTable
1295  * Geometry:                   Water3-Water3
1296  * Calculate force/pot:        Force
1297  */
1298 void
1299 nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_avx_128_fma_double
1300                     (t_nblist                    * gmx_restrict       nlist,
1301                      rvec                        * gmx_restrict          xx,
1302                      rvec                        * gmx_restrict          ff,
1303                      t_forcerec                  * gmx_restrict          fr,
1304                      t_mdatoms                   * gmx_restrict     mdatoms,
1305                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
1306                      t_nrnb                      * gmx_restrict        nrnb)
1307 {
1308     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
1309      * just 0 for non-waters.
1310      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
1311      * jnr indices corresponding to data put in the four positions in the SIMD register.
1312      */
1313     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1314     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1315     int              jnrA,jnrB;
1316     int              j_coord_offsetA,j_coord_offsetB;
1317     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1318     real             rcutoff_scalar;
1319     real             *shiftvec,*fshift,*x,*f;
1320     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1321     int              vdwioffset0;
1322     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1323     int              vdwioffset1;
1324     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1325     int              vdwioffset2;
1326     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1327     int              vdwjidx0A,vdwjidx0B;
1328     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1329     int              vdwjidx1A,vdwjidx1B;
1330     __m128d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1331     int              vdwjidx2A,vdwjidx2B;
1332     __m128d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1333     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1334     __m128d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1335     __m128d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1336     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1337     __m128d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1338     __m128d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1339     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1340     __m128d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1341     __m128d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1342     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
1343     real             *charge;
1344     int              nvdwtype;
1345     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1346     int              *vdwtype;
1347     real             *vdwparam;
1348     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
1349     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
1350     __m128i          vfitab;
1351     __m128i          ifour       = _mm_set1_epi32(4);
1352     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
1353     real             *vftab;
1354     __m128i          ewitab;
1355     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1356     real             *ewtab;
1357     __m128d          dummy_mask,cutoff_mask;
1358     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
1359     __m128d          one     = _mm_set1_pd(1.0);
1360     __m128d          two     = _mm_set1_pd(2.0);
1361     x                = xx[0];
1362     f                = ff[0];
1363
1364     nri              = nlist->nri;
1365     iinr             = nlist->iinr;
1366     jindex           = nlist->jindex;
1367     jjnr             = nlist->jjnr;
1368     shiftidx         = nlist->shift;
1369     gid              = nlist->gid;
1370     shiftvec         = fr->shift_vec[0];
1371     fshift           = fr->fshift[0];
1372     facel            = _mm_set1_pd(fr->epsfac);
1373     charge           = mdatoms->chargeA;
1374     nvdwtype         = fr->ntype;
1375     vdwparam         = fr->nbfp;
1376     vdwtype          = mdatoms->typeA;
1377
1378     vftab            = kernel_data->table_vdw->data;
1379     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
1380
1381     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
1382     ewtab            = fr->ic->tabq_coul_F;
1383     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
1384     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
1385
1386     /* Setup water-specific parameters */
1387     inr              = nlist->iinr[0];
1388     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
1389     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
1390     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
1391     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
1392
1393     jq0              = _mm_set1_pd(charge[inr+0]);
1394     jq1              = _mm_set1_pd(charge[inr+1]);
1395     jq2              = _mm_set1_pd(charge[inr+2]);
1396     vdwjidx0A        = 2*vdwtype[inr+0];
1397     qq00             = _mm_mul_pd(iq0,jq0);
1398     c6_00            = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A]);
1399     c12_00           = _mm_set1_pd(vdwparam[vdwioffset0+vdwjidx0A+1]);
1400     qq01             = _mm_mul_pd(iq0,jq1);
1401     qq02             = _mm_mul_pd(iq0,jq2);
1402     qq10             = _mm_mul_pd(iq1,jq0);
1403     qq11             = _mm_mul_pd(iq1,jq1);
1404     qq12             = _mm_mul_pd(iq1,jq2);
1405     qq20             = _mm_mul_pd(iq2,jq0);
1406     qq21             = _mm_mul_pd(iq2,jq1);
1407     qq22             = _mm_mul_pd(iq2,jq2);
1408
1409     /* Avoid stupid compiler warnings */
1410     jnrA = jnrB = 0;
1411     j_coord_offsetA = 0;
1412     j_coord_offsetB = 0;
1413
1414     outeriter        = 0;
1415     inneriter        = 0;
1416
1417     /* Start outer loop over neighborlists */
1418     for(iidx=0; iidx<nri; iidx++)
1419     {
1420         /* Load shift vector for this list */
1421         i_shift_offset   = DIM*shiftidx[iidx];
1422
1423         /* Load limits for loop over neighbors */
1424         j_index_start    = jindex[iidx];
1425         j_index_end      = jindex[iidx+1];
1426
1427         /* Get outer coordinate index */
1428         inr              = iinr[iidx];
1429         i_coord_offset   = DIM*inr;
1430
1431         /* Load i particle coords and add shift vector */
1432         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1433                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1434
1435         fix0             = _mm_setzero_pd();
1436         fiy0             = _mm_setzero_pd();
1437         fiz0             = _mm_setzero_pd();
1438         fix1             = _mm_setzero_pd();
1439         fiy1             = _mm_setzero_pd();
1440         fiz1             = _mm_setzero_pd();
1441         fix2             = _mm_setzero_pd();
1442         fiy2             = _mm_setzero_pd();
1443         fiz2             = _mm_setzero_pd();
1444
1445         /* Start inner kernel loop */
1446         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
1447         {
1448
1449             /* Get j neighbor index, and coordinate index */
1450             jnrA             = jjnr[jidx];
1451             jnrB             = jjnr[jidx+1];
1452             j_coord_offsetA  = DIM*jnrA;
1453             j_coord_offsetB  = DIM*jnrB;
1454
1455             /* load j atom coordinates */
1456             gmx_mm_load_3rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1457                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1458
1459             /* Calculate displacement vector */
1460             dx00             = _mm_sub_pd(ix0,jx0);
1461             dy00             = _mm_sub_pd(iy0,jy0);
1462             dz00             = _mm_sub_pd(iz0,jz0);
1463             dx01             = _mm_sub_pd(ix0,jx1);
1464             dy01             = _mm_sub_pd(iy0,jy1);
1465             dz01             = _mm_sub_pd(iz0,jz1);
1466             dx02             = _mm_sub_pd(ix0,jx2);
1467             dy02             = _mm_sub_pd(iy0,jy2);
1468             dz02             = _mm_sub_pd(iz0,jz2);
1469             dx10             = _mm_sub_pd(ix1,jx0);
1470             dy10             = _mm_sub_pd(iy1,jy0);
1471             dz10             = _mm_sub_pd(iz1,jz0);
1472             dx11             = _mm_sub_pd(ix1,jx1);
1473             dy11             = _mm_sub_pd(iy1,jy1);
1474             dz11             = _mm_sub_pd(iz1,jz1);
1475             dx12             = _mm_sub_pd(ix1,jx2);
1476             dy12             = _mm_sub_pd(iy1,jy2);
1477             dz12             = _mm_sub_pd(iz1,jz2);
1478             dx20             = _mm_sub_pd(ix2,jx0);
1479             dy20             = _mm_sub_pd(iy2,jy0);
1480             dz20             = _mm_sub_pd(iz2,jz0);
1481             dx21             = _mm_sub_pd(ix2,jx1);
1482             dy21             = _mm_sub_pd(iy2,jy1);
1483             dz21             = _mm_sub_pd(iz2,jz1);
1484             dx22             = _mm_sub_pd(ix2,jx2);
1485             dy22             = _mm_sub_pd(iy2,jy2);
1486             dz22             = _mm_sub_pd(iz2,jz2);
1487
1488             /* Calculate squared distance and things based on it */
1489             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1490             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1491             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1492             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1493             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1494             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1495             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1496             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1497             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1498
1499             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1500             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1501             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1502             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1503             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1504             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1505             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1506             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1507             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1508
1509             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1510             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1511             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1512             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1513             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1514             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1515             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1516             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1517             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1518
1519             fjx0             = _mm_setzero_pd();
1520             fjy0             = _mm_setzero_pd();
1521             fjz0             = _mm_setzero_pd();
1522             fjx1             = _mm_setzero_pd();
1523             fjy1             = _mm_setzero_pd();
1524             fjz1             = _mm_setzero_pd();
1525             fjx2             = _mm_setzero_pd();
1526             fjy2             = _mm_setzero_pd();
1527             fjz2             = _mm_setzero_pd();
1528
1529             /**************************
1530              * CALCULATE INTERACTIONS *
1531              **************************/
1532
1533             r00              = _mm_mul_pd(rsq00,rinv00);
1534
1535             /* Calculate table index by multiplying r with table scale and truncate to integer */
1536             rt               = _mm_mul_pd(r00,vftabscale);
1537             vfitab           = _mm_cvttpd_epi32(rt);
1538 #ifdef __XOP__
1539             vfeps            = _mm_frcz_pd(rt);
1540 #else
1541             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1542 #endif
1543             twovfeps         = _mm_add_pd(vfeps,vfeps);
1544             vfitab           = _mm_slli_epi32(vfitab,3);
1545
1546             /* EWALD ELECTROSTATICS */
1547
1548             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1549             ewrt             = _mm_mul_pd(r00,ewtabscale);
1550             ewitab           = _mm_cvttpd_epi32(ewrt);
1551 #ifdef __XOP__
1552             eweps            = _mm_frcz_pd(ewrt);
1553 #else
1554             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1555 #endif
1556             twoeweps         = _mm_add_pd(eweps,eweps);
1557             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1558                                          &ewtabF,&ewtabFn);
1559             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1560             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1561
1562             /* CUBIC SPLINE TABLE DISPERSION */
1563             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1564             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1565             GMX_MM_TRANSPOSE2_PD(Y,F);
1566             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1567             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1568             GMX_MM_TRANSPOSE2_PD(G,H);
1569             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1570             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1571             fvdw6            = _mm_mul_pd(c6_00,FF);
1572
1573             /* CUBIC SPLINE TABLE REPULSION */
1574             vfitab           = _mm_add_epi32(vfitab,ifour);
1575             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1576             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1577             GMX_MM_TRANSPOSE2_PD(Y,F);
1578             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1579             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
1580             GMX_MM_TRANSPOSE2_PD(G,H);
1581             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1582             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1583             fvdw12           = _mm_mul_pd(c12_00,FF);
1584             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1585
1586             fscal            = _mm_add_pd(felec,fvdw);
1587
1588             /* Update vectorial force */
1589             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1590             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1591             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1592             
1593             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1594             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1595             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1596
1597             /**************************
1598              * CALCULATE INTERACTIONS *
1599              **************************/
1600
1601             r01              = _mm_mul_pd(rsq01,rinv01);
1602
1603             /* EWALD ELECTROSTATICS */
1604
1605             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1606             ewrt             = _mm_mul_pd(r01,ewtabscale);
1607             ewitab           = _mm_cvttpd_epi32(ewrt);
1608 #ifdef __XOP__
1609             eweps            = _mm_frcz_pd(ewrt);
1610 #else
1611             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1612 #endif
1613             twoeweps         = _mm_add_pd(eweps,eweps);
1614             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1615                                          &ewtabF,&ewtabFn);
1616             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1617             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
1618
1619             fscal            = felec;
1620
1621             /* Update vectorial force */
1622             fix0             = _mm_macc_pd(dx01,fscal,fix0);
1623             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
1624             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
1625             
1626             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
1627             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
1628             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
1629
1630             /**************************
1631              * CALCULATE INTERACTIONS *
1632              **************************/
1633
1634             r02              = _mm_mul_pd(rsq02,rinv02);
1635
1636             /* EWALD ELECTROSTATICS */
1637
1638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1639             ewrt             = _mm_mul_pd(r02,ewtabscale);
1640             ewitab           = _mm_cvttpd_epi32(ewrt);
1641 #ifdef __XOP__
1642             eweps            = _mm_frcz_pd(ewrt);
1643 #else
1644             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1645 #endif
1646             twoeweps         = _mm_add_pd(eweps,eweps);
1647             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1648                                          &ewtabF,&ewtabFn);
1649             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1650             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
1651
1652             fscal            = felec;
1653
1654             /* Update vectorial force */
1655             fix0             = _mm_macc_pd(dx02,fscal,fix0);
1656             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
1657             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
1658             
1659             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
1660             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
1661             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
1662
1663             /**************************
1664              * CALCULATE INTERACTIONS *
1665              **************************/
1666
1667             r10              = _mm_mul_pd(rsq10,rinv10);
1668
1669             /* EWALD ELECTROSTATICS */
1670
1671             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1672             ewrt             = _mm_mul_pd(r10,ewtabscale);
1673             ewitab           = _mm_cvttpd_epi32(ewrt);
1674 #ifdef __XOP__
1675             eweps            = _mm_frcz_pd(ewrt);
1676 #else
1677             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1678 #endif
1679             twoeweps         = _mm_add_pd(eweps,eweps);
1680             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1681                                          &ewtabF,&ewtabFn);
1682             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1683             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1684
1685             fscal            = felec;
1686
1687             /* Update vectorial force */
1688             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1689             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1690             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1691             
1692             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1693             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1694             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1695
1696             /**************************
1697              * CALCULATE INTERACTIONS *
1698              **************************/
1699
1700             r11              = _mm_mul_pd(rsq11,rinv11);
1701
1702             /* EWALD ELECTROSTATICS */
1703
1704             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1705             ewrt             = _mm_mul_pd(r11,ewtabscale);
1706             ewitab           = _mm_cvttpd_epi32(ewrt);
1707 #ifdef __XOP__
1708             eweps            = _mm_frcz_pd(ewrt);
1709 #else
1710             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1711 #endif
1712             twoeweps         = _mm_add_pd(eweps,eweps);
1713             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1714                                          &ewtabF,&ewtabFn);
1715             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1716             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
1717
1718             fscal            = felec;
1719
1720             /* Update vectorial force */
1721             fix1             = _mm_macc_pd(dx11,fscal,fix1);
1722             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
1723             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
1724             
1725             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
1726             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
1727             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
1728
1729             /**************************
1730              * CALCULATE INTERACTIONS *
1731              **************************/
1732
1733             r12              = _mm_mul_pd(rsq12,rinv12);
1734
1735             /* EWALD ELECTROSTATICS */
1736
1737             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1738             ewrt             = _mm_mul_pd(r12,ewtabscale);
1739             ewitab           = _mm_cvttpd_epi32(ewrt);
1740 #ifdef __XOP__
1741             eweps            = _mm_frcz_pd(ewrt);
1742 #else
1743             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1744 #endif
1745             twoeweps         = _mm_add_pd(eweps,eweps);
1746             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1747                                          &ewtabF,&ewtabFn);
1748             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1749             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
1750
1751             fscal            = felec;
1752
1753             /* Update vectorial force */
1754             fix1             = _mm_macc_pd(dx12,fscal,fix1);
1755             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
1756             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
1757             
1758             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
1759             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
1760             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
1761
1762             /**************************
1763              * CALCULATE INTERACTIONS *
1764              **************************/
1765
1766             r20              = _mm_mul_pd(rsq20,rinv20);
1767
1768             /* EWALD ELECTROSTATICS */
1769
1770             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1771             ewrt             = _mm_mul_pd(r20,ewtabscale);
1772             ewitab           = _mm_cvttpd_epi32(ewrt);
1773 #ifdef __XOP__
1774             eweps            = _mm_frcz_pd(ewrt);
1775 #else
1776             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1777 #endif
1778             twoeweps         = _mm_add_pd(eweps,eweps);
1779             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1780                                          &ewtabF,&ewtabFn);
1781             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1782             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1783
1784             fscal            = felec;
1785
1786             /* Update vectorial force */
1787             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1788             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1789             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1790             
1791             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1792             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1793             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1794
1795             /**************************
1796              * CALCULATE INTERACTIONS *
1797              **************************/
1798
1799             r21              = _mm_mul_pd(rsq21,rinv21);
1800
1801             /* EWALD ELECTROSTATICS */
1802
1803             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1804             ewrt             = _mm_mul_pd(r21,ewtabscale);
1805             ewitab           = _mm_cvttpd_epi32(ewrt);
1806 #ifdef __XOP__
1807             eweps            = _mm_frcz_pd(ewrt);
1808 #else
1809             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1810 #endif
1811             twoeweps         = _mm_add_pd(eweps,eweps);
1812             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1813                                          &ewtabF,&ewtabFn);
1814             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1815             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
1816
1817             fscal            = felec;
1818
1819             /* Update vectorial force */
1820             fix2             = _mm_macc_pd(dx21,fscal,fix2);
1821             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
1822             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
1823             
1824             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
1825             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
1826             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
1827
1828             /**************************
1829              * CALCULATE INTERACTIONS *
1830              **************************/
1831
1832             r22              = _mm_mul_pd(rsq22,rinv22);
1833
1834             /* EWALD ELECTROSTATICS */
1835
1836             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1837             ewrt             = _mm_mul_pd(r22,ewtabscale);
1838             ewitab           = _mm_cvttpd_epi32(ewrt);
1839 #ifdef __XOP__
1840             eweps            = _mm_frcz_pd(ewrt);
1841 #else
1842             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1843 #endif
1844             twoeweps         = _mm_add_pd(eweps,eweps);
1845             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
1846                                          &ewtabF,&ewtabFn);
1847             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1848             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
1849
1850             fscal            = felec;
1851
1852             /* Update vectorial force */
1853             fix2             = _mm_macc_pd(dx22,fscal,fix2);
1854             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
1855             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
1856             
1857             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
1858             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
1859             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
1860
1861             gmx_mm_decrement_3rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1862
1863             /* Inner loop uses 377 flops */
1864         }
1865
1866         if(jidx<j_index_end)
1867         {
1868
1869             jnrA             = jjnr[jidx];
1870             j_coord_offsetA  = DIM*jnrA;
1871
1872             /* load j atom coordinates */
1873             gmx_mm_load_3rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1874                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1875
1876             /* Calculate displacement vector */
1877             dx00             = _mm_sub_pd(ix0,jx0);
1878             dy00             = _mm_sub_pd(iy0,jy0);
1879             dz00             = _mm_sub_pd(iz0,jz0);
1880             dx01             = _mm_sub_pd(ix0,jx1);
1881             dy01             = _mm_sub_pd(iy0,jy1);
1882             dz01             = _mm_sub_pd(iz0,jz1);
1883             dx02             = _mm_sub_pd(ix0,jx2);
1884             dy02             = _mm_sub_pd(iy0,jy2);
1885             dz02             = _mm_sub_pd(iz0,jz2);
1886             dx10             = _mm_sub_pd(ix1,jx0);
1887             dy10             = _mm_sub_pd(iy1,jy0);
1888             dz10             = _mm_sub_pd(iz1,jz0);
1889             dx11             = _mm_sub_pd(ix1,jx1);
1890             dy11             = _mm_sub_pd(iy1,jy1);
1891             dz11             = _mm_sub_pd(iz1,jz1);
1892             dx12             = _mm_sub_pd(ix1,jx2);
1893             dy12             = _mm_sub_pd(iy1,jy2);
1894             dz12             = _mm_sub_pd(iz1,jz2);
1895             dx20             = _mm_sub_pd(ix2,jx0);
1896             dy20             = _mm_sub_pd(iy2,jy0);
1897             dz20             = _mm_sub_pd(iz2,jz0);
1898             dx21             = _mm_sub_pd(ix2,jx1);
1899             dy21             = _mm_sub_pd(iy2,jy1);
1900             dz21             = _mm_sub_pd(iz2,jz1);
1901             dx22             = _mm_sub_pd(ix2,jx2);
1902             dy22             = _mm_sub_pd(iy2,jy2);
1903             dz22             = _mm_sub_pd(iz2,jz2);
1904
1905             /* Calculate squared distance and things based on it */
1906             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1907             rsq01            = gmx_mm_calc_rsq_pd(dx01,dy01,dz01);
1908             rsq02            = gmx_mm_calc_rsq_pd(dx02,dy02,dz02);
1909             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1910             rsq11            = gmx_mm_calc_rsq_pd(dx11,dy11,dz11);
1911             rsq12            = gmx_mm_calc_rsq_pd(dx12,dy12,dz12);
1912             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1913             rsq21            = gmx_mm_calc_rsq_pd(dx21,dy21,dz21);
1914             rsq22            = gmx_mm_calc_rsq_pd(dx22,dy22,dz22);
1915
1916             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1917             rinv01           = gmx_mm_invsqrt_pd(rsq01);
1918             rinv02           = gmx_mm_invsqrt_pd(rsq02);
1919             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1920             rinv11           = gmx_mm_invsqrt_pd(rsq11);
1921             rinv12           = gmx_mm_invsqrt_pd(rsq12);
1922             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1923             rinv21           = gmx_mm_invsqrt_pd(rsq21);
1924             rinv22           = gmx_mm_invsqrt_pd(rsq22);
1925
1926             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1927             rinvsq01         = _mm_mul_pd(rinv01,rinv01);
1928             rinvsq02         = _mm_mul_pd(rinv02,rinv02);
1929             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1930             rinvsq11         = _mm_mul_pd(rinv11,rinv11);
1931             rinvsq12         = _mm_mul_pd(rinv12,rinv12);
1932             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1933             rinvsq21         = _mm_mul_pd(rinv21,rinv21);
1934             rinvsq22         = _mm_mul_pd(rinv22,rinv22);
1935
1936             fjx0             = _mm_setzero_pd();
1937             fjy0             = _mm_setzero_pd();
1938             fjz0             = _mm_setzero_pd();
1939             fjx1             = _mm_setzero_pd();
1940             fjy1             = _mm_setzero_pd();
1941             fjz1             = _mm_setzero_pd();
1942             fjx2             = _mm_setzero_pd();
1943             fjy2             = _mm_setzero_pd();
1944             fjz2             = _mm_setzero_pd();
1945
1946             /**************************
1947              * CALCULATE INTERACTIONS *
1948              **************************/
1949
1950             r00              = _mm_mul_pd(rsq00,rinv00);
1951
1952             /* Calculate table index by multiplying r with table scale and truncate to integer */
1953             rt               = _mm_mul_pd(r00,vftabscale);
1954             vfitab           = _mm_cvttpd_epi32(rt);
1955 #ifdef __XOP__
1956             vfeps            = _mm_frcz_pd(rt);
1957 #else
1958             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1959 #endif
1960             twovfeps         = _mm_add_pd(vfeps,vfeps);
1961             vfitab           = _mm_slli_epi32(vfitab,3);
1962
1963             /* EWALD ELECTROSTATICS */
1964
1965             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1966             ewrt             = _mm_mul_pd(r00,ewtabscale);
1967             ewitab           = _mm_cvttpd_epi32(ewrt);
1968 #ifdef __XOP__
1969             eweps            = _mm_frcz_pd(ewrt);
1970 #else
1971             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1972 #endif
1973             twoeweps         = _mm_add_pd(eweps,eweps);
1974             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1975             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1976             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1977
1978             /* CUBIC SPLINE TABLE DISPERSION */
1979             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1980             F                = _mm_setzero_pd();
1981             GMX_MM_TRANSPOSE2_PD(Y,F);
1982             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1983             H                = _mm_setzero_pd();
1984             GMX_MM_TRANSPOSE2_PD(G,H);
1985             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1986             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1987             fvdw6            = _mm_mul_pd(c6_00,FF);
1988
1989             /* CUBIC SPLINE TABLE REPULSION */
1990             vfitab           = _mm_add_epi32(vfitab,ifour);
1991             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1992             F                = _mm_setzero_pd();
1993             GMX_MM_TRANSPOSE2_PD(Y,F);
1994             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1995             H                = _mm_setzero_pd();
1996             GMX_MM_TRANSPOSE2_PD(G,H);
1997             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1998             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1999             fvdw12           = _mm_mul_pd(c12_00,FF);
2000             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
2001
2002             fscal            = _mm_add_pd(felec,fvdw);
2003
2004             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2005
2006             /* Update vectorial force */
2007             fix0             = _mm_macc_pd(dx00,fscal,fix0);
2008             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
2009             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
2010             
2011             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
2012             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
2013             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
2014
2015             /**************************
2016              * CALCULATE INTERACTIONS *
2017              **************************/
2018
2019             r01              = _mm_mul_pd(rsq01,rinv01);
2020
2021             /* EWALD ELECTROSTATICS */
2022
2023             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2024             ewrt             = _mm_mul_pd(r01,ewtabscale);
2025             ewitab           = _mm_cvttpd_epi32(ewrt);
2026 #ifdef __XOP__
2027             eweps            = _mm_frcz_pd(ewrt);
2028 #else
2029             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2030 #endif
2031             twoeweps         = _mm_add_pd(eweps,eweps);
2032             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2033             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2034             felec            = _mm_mul_pd(_mm_mul_pd(qq01,rinv01),_mm_sub_pd(rinvsq01,felec));
2035
2036             fscal            = felec;
2037
2038             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2039
2040             /* Update vectorial force */
2041             fix0             = _mm_macc_pd(dx01,fscal,fix0);
2042             fiy0             = _mm_macc_pd(dy01,fscal,fiy0);
2043             fiz0             = _mm_macc_pd(dz01,fscal,fiz0);
2044             
2045             fjx1             = _mm_macc_pd(dx01,fscal,fjx1);
2046             fjy1             = _mm_macc_pd(dy01,fscal,fjy1);
2047             fjz1             = _mm_macc_pd(dz01,fscal,fjz1);
2048
2049             /**************************
2050              * CALCULATE INTERACTIONS *
2051              **************************/
2052
2053             r02              = _mm_mul_pd(rsq02,rinv02);
2054
2055             /* EWALD ELECTROSTATICS */
2056
2057             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2058             ewrt             = _mm_mul_pd(r02,ewtabscale);
2059             ewitab           = _mm_cvttpd_epi32(ewrt);
2060 #ifdef __XOP__
2061             eweps            = _mm_frcz_pd(ewrt);
2062 #else
2063             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2064 #endif
2065             twoeweps         = _mm_add_pd(eweps,eweps);
2066             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2067             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2068             felec            = _mm_mul_pd(_mm_mul_pd(qq02,rinv02),_mm_sub_pd(rinvsq02,felec));
2069
2070             fscal            = felec;
2071
2072             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2073
2074             /* Update vectorial force */
2075             fix0             = _mm_macc_pd(dx02,fscal,fix0);
2076             fiy0             = _mm_macc_pd(dy02,fscal,fiy0);
2077             fiz0             = _mm_macc_pd(dz02,fscal,fiz0);
2078             
2079             fjx2             = _mm_macc_pd(dx02,fscal,fjx2);
2080             fjy2             = _mm_macc_pd(dy02,fscal,fjy2);
2081             fjz2             = _mm_macc_pd(dz02,fscal,fjz2);
2082
2083             /**************************
2084              * CALCULATE INTERACTIONS *
2085              **************************/
2086
2087             r10              = _mm_mul_pd(rsq10,rinv10);
2088
2089             /* EWALD ELECTROSTATICS */
2090
2091             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2092             ewrt             = _mm_mul_pd(r10,ewtabscale);
2093             ewitab           = _mm_cvttpd_epi32(ewrt);
2094 #ifdef __XOP__
2095             eweps            = _mm_frcz_pd(ewrt);
2096 #else
2097             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2098 #endif
2099             twoeweps         = _mm_add_pd(eweps,eweps);
2100             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2101             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2102             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
2103
2104             fscal            = felec;
2105
2106             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2107
2108             /* Update vectorial force */
2109             fix1             = _mm_macc_pd(dx10,fscal,fix1);
2110             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
2111             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
2112             
2113             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
2114             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
2115             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
2116
2117             /**************************
2118              * CALCULATE INTERACTIONS *
2119              **************************/
2120
2121             r11              = _mm_mul_pd(rsq11,rinv11);
2122
2123             /* EWALD ELECTROSTATICS */
2124
2125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2126             ewrt             = _mm_mul_pd(r11,ewtabscale);
2127             ewitab           = _mm_cvttpd_epi32(ewrt);
2128 #ifdef __XOP__
2129             eweps            = _mm_frcz_pd(ewrt);
2130 #else
2131             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2132 #endif
2133             twoeweps         = _mm_add_pd(eweps,eweps);
2134             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2135             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2136             felec            = _mm_mul_pd(_mm_mul_pd(qq11,rinv11),_mm_sub_pd(rinvsq11,felec));
2137
2138             fscal            = felec;
2139
2140             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2141
2142             /* Update vectorial force */
2143             fix1             = _mm_macc_pd(dx11,fscal,fix1);
2144             fiy1             = _mm_macc_pd(dy11,fscal,fiy1);
2145             fiz1             = _mm_macc_pd(dz11,fscal,fiz1);
2146             
2147             fjx1             = _mm_macc_pd(dx11,fscal,fjx1);
2148             fjy1             = _mm_macc_pd(dy11,fscal,fjy1);
2149             fjz1             = _mm_macc_pd(dz11,fscal,fjz1);
2150
2151             /**************************
2152              * CALCULATE INTERACTIONS *
2153              **************************/
2154
2155             r12              = _mm_mul_pd(rsq12,rinv12);
2156
2157             /* EWALD ELECTROSTATICS */
2158
2159             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2160             ewrt             = _mm_mul_pd(r12,ewtabscale);
2161             ewitab           = _mm_cvttpd_epi32(ewrt);
2162 #ifdef __XOP__
2163             eweps            = _mm_frcz_pd(ewrt);
2164 #else
2165             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2166 #endif
2167             twoeweps         = _mm_add_pd(eweps,eweps);
2168             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2169             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2170             felec            = _mm_mul_pd(_mm_mul_pd(qq12,rinv12),_mm_sub_pd(rinvsq12,felec));
2171
2172             fscal            = felec;
2173
2174             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2175
2176             /* Update vectorial force */
2177             fix1             = _mm_macc_pd(dx12,fscal,fix1);
2178             fiy1             = _mm_macc_pd(dy12,fscal,fiy1);
2179             fiz1             = _mm_macc_pd(dz12,fscal,fiz1);
2180             
2181             fjx2             = _mm_macc_pd(dx12,fscal,fjx2);
2182             fjy2             = _mm_macc_pd(dy12,fscal,fjy2);
2183             fjz2             = _mm_macc_pd(dz12,fscal,fjz2);
2184
2185             /**************************
2186              * CALCULATE INTERACTIONS *
2187              **************************/
2188
2189             r20              = _mm_mul_pd(rsq20,rinv20);
2190
2191             /* EWALD ELECTROSTATICS */
2192
2193             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2194             ewrt             = _mm_mul_pd(r20,ewtabscale);
2195             ewitab           = _mm_cvttpd_epi32(ewrt);
2196 #ifdef __XOP__
2197             eweps            = _mm_frcz_pd(ewrt);
2198 #else
2199             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2200 #endif
2201             twoeweps         = _mm_add_pd(eweps,eweps);
2202             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2203             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2204             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
2205
2206             fscal            = felec;
2207
2208             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2209
2210             /* Update vectorial force */
2211             fix2             = _mm_macc_pd(dx20,fscal,fix2);
2212             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
2213             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
2214             
2215             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
2216             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
2217             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
2218
2219             /**************************
2220              * CALCULATE INTERACTIONS *
2221              **************************/
2222
2223             r21              = _mm_mul_pd(rsq21,rinv21);
2224
2225             /* EWALD ELECTROSTATICS */
2226
2227             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2228             ewrt             = _mm_mul_pd(r21,ewtabscale);
2229             ewitab           = _mm_cvttpd_epi32(ewrt);
2230 #ifdef __XOP__
2231             eweps            = _mm_frcz_pd(ewrt);
2232 #else
2233             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2234 #endif
2235             twoeweps         = _mm_add_pd(eweps,eweps);
2236             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2237             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2238             felec            = _mm_mul_pd(_mm_mul_pd(qq21,rinv21),_mm_sub_pd(rinvsq21,felec));
2239
2240             fscal            = felec;
2241
2242             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2243
2244             /* Update vectorial force */
2245             fix2             = _mm_macc_pd(dx21,fscal,fix2);
2246             fiy2             = _mm_macc_pd(dy21,fscal,fiy2);
2247             fiz2             = _mm_macc_pd(dz21,fscal,fiz2);
2248             
2249             fjx1             = _mm_macc_pd(dx21,fscal,fjx1);
2250             fjy1             = _mm_macc_pd(dy21,fscal,fjy1);
2251             fjz1             = _mm_macc_pd(dz21,fscal,fjz1);
2252
2253             /**************************
2254              * CALCULATE INTERACTIONS *
2255              **************************/
2256
2257             r22              = _mm_mul_pd(rsq22,rinv22);
2258
2259             /* EWALD ELECTROSTATICS */
2260
2261             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2262             ewrt             = _mm_mul_pd(r22,ewtabscale);
2263             ewitab           = _mm_cvttpd_epi32(ewrt);
2264 #ifdef __XOP__
2265             eweps            = _mm_frcz_pd(ewrt);
2266 #else
2267             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
2268 #endif
2269             twoeweps         = _mm_add_pd(eweps,eweps);
2270             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
2271             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
2272             felec            = _mm_mul_pd(_mm_mul_pd(qq22,rinv22),_mm_sub_pd(rinvsq22,felec));
2273
2274             fscal            = felec;
2275
2276             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
2277
2278             /* Update vectorial force */
2279             fix2             = _mm_macc_pd(dx22,fscal,fix2);
2280             fiy2             = _mm_macc_pd(dy22,fscal,fiy2);
2281             fiz2             = _mm_macc_pd(dz22,fscal,fiz2);
2282             
2283             fjx2             = _mm_macc_pd(dx22,fscal,fjx2);
2284             fjy2             = _mm_macc_pd(dy22,fscal,fjy2);
2285             fjz2             = _mm_macc_pd(dz22,fscal,fjz2);
2286
2287             gmx_mm_decrement_3rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2288
2289             /* Inner loop uses 377 flops */
2290         }
2291
2292         /* End of innermost loop */
2293
2294         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2295                                               f+i_coord_offset,fshift+i_shift_offset);
2296
2297         /* Increment number of inner iterations */
2298         inneriter                  += j_index_end - j_index_start;
2299
2300         /* Outer loop uses 18 flops */
2301     }
2302
2303     /* Increment number of outer iterations */
2304     outeriter        += nri;
2305
2306     /* Update outer/inner flops */
2307
2308     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*377);
2309 }