Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
50 #include "kernelutil_x86_avx_128_fma_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
54  * Electrostatics interaction: Ewald
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB;
77     int              j_coord_offsetA,j_coord_offsetB;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B;
89     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
100     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
104     real             *vftab;
105     __m128i          ewitab;
106     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
107     real             *ewtab;
108     __m128d          dummy_mask,cutoff_mask;
109     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
110     __m128d          one     = _mm_set1_pd(1.0);
111     __m128d          two     = _mm_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
131
132     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
133     ewtab            = fr->ic->tabq_coul_FDV0;
134     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
135     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
140     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
141     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
142     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm_setzero_pd();
171         fiy0             = _mm_setzero_pd();
172         fiz0             = _mm_setzero_pd();
173         fix1             = _mm_setzero_pd();
174         fiy1             = _mm_setzero_pd();
175         fiz1             = _mm_setzero_pd();
176         fix2             = _mm_setzero_pd();
177         fiy2             = _mm_setzero_pd();
178         fiz2             = _mm_setzero_pd();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_pd();
182         vvdwsum          = _mm_setzero_pd();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               &jx0,&jy0,&jz0);
197
198             /* Calculate displacement vector */
199             dx00             = _mm_sub_pd(ix0,jx0);
200             dy00             = _mm_sub_pd(iy0,jy0);
201             dz00             = _mm_sub_pd(iz0,jz0);
202             dx10             = _mm_sub_pd(ix1,jx0);
203             dy10             = _mm_sub_pd(iy1,jy0);
204             dz10             = _mm_sub_pd(iz1,jz0);
205             dx20             = _mm_sub_pd(ix2,jx0);
206             dy20             = _mm_sub_pd(iy2,jy0);
207             dz20             = _mm_sub_pd(iz2,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
211             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
212             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
213
214             rinv00           = gmx_mm_invsqrt_pd(rsq00);
215             rinv10           = gmx_mm_invsqrt_pd(rsq10);
216             rinv20           = gmx_mm_invsqrt_pd(rsq20);
217
218             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
219             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
220             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
224             vdwjidx0A        = 2*vdwtype[jnrA+0];
225             vdwjidx0B        = 2*vdwtype[jnrB+0];
226
227             fjx0             = _mm_setzero_pd();
228             fjy0             = _mm_setzero_pd();
229             fjz0             = _mm_setzero_pd();
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r00              = _mm_mul_pd(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm_mul_pd(iq0,jq0);
239             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
240                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
241
242             /* Calculate table index by multiplying r with table scale and truncate to integer */
243             rt               = _mm_mul_pd(r00,vftabscale);
244             vfitab           = _mm_cvttpd_epi32(rt);
245 #ifdef __XOP__
246             vfeps            = _mm_frcz_pd(rt);
247 #else
248             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
249 #endif
250             twovfeps         = _mm_add_pd(vfeps,vfeps);
251             vfitab           = _mm_slli_epi32(vfitab,3);
252
253             /* EWALD ELECTROSTATICS */
254
255             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
256             ewrt             = _mm_mul_pd(r00,ewtabscale);
257             ewitab           = _mm_cvttpd_epi32(ewrt);
258 #ifdef __XOP__
259             eweps            = _mm_frcz_pd(ewrt);
260 #else
261             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
262 #endif
263             twoeweps         = _mm_add_pd(eweps,eweps);
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
267             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
268             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
269             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
270             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
271             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
272             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
273             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
274             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
275
276             /* CUBIC SPLINE TABLE DISPERSION */
277             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
279             GMX_MM_TRANSPOSE2_PD(Y,F);
280             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
281             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
282             GMX_MM_TRANSPOSE2_PD(G,H);
283             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
284             VV               = _mm_macc_pd(vfeps,Fp,Y);
285             vvdw6            = _mm_mul_pd(c6_00,VV);
286             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
287             fvdw6            = _mm_mul_pd(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
293             GMX_MM_TRANSPOSE2_PD(Y,F);
294             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
295             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
296             GMX_MM_TRANSPOSE2_PD(G,H);
297             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
298             VV               = _mm_macc_pd(vfeps,Fp,Y);
299             vvdw12           = _mm_mul_pd(c12_00,VV);
300             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
301             fvdw12           = _mm_mul_pd(c12_00,FF);
302             vvdw             = _mm_add_pd(vvdw12,vvdw6);
303             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm_add_pd(velecsum,velec);
307             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
308
309             fscal            = _mm_add_pd(felec,fvdw);
310
311             /* Update vectorial force */
312             fix0             = _mm_macc_pd(dx00,fscal,fix0);
313             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
314             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
315             
316             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
317             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
318             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm_mul_pd(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_pd(iq1,jq0);
328
329             /* EWALD ELECTROSTATICS */
330
331             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332             ewrt             = _mm_mul_pd(r10,ewtabscale);
333             ewitab           = _mm_cvttpd_epi32(ewrt);
334 #ifdef __XOP__
335             eweps            = _mm_frcz_pd(ewrt);
336 #else
337             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
338 #endif
339             twoeweps         = _mm_add_pd(eweps,eweps);
340             ewitab           = _mm_slli_epi32(ewitab,2);
341             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
342             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
343             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
344             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
345             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
346             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
347             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
348             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
349             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
350             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             velecsum         = _mm_add_pd(velecsum,velec);
354
355             fscal            = felec;
356
357             /* Update vectorial force */
358             fix1             = _mm_macc_pd(dx10,fscal,fix1);
359             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
360             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
361             
362             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
363             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
364             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             r20              = _mm_mul_pd(rsq20,rinv20);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm_mul_pd(iq2,jq0);
374
375             /* EWALD ELECTROSTATICS */
376
377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
378             ewrt             = _mm_mul_pd(r20,ewtabscale);
379             ewitab           = _mm_cvttpd_epi32(ewrt);
380 #ifdef __XOP__
381             eweps            = _mm_frcz_pd(ewrt);
382 #else
383             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
384 #endif
385             twoeweps         = _mm_add_pd(eweps,eweps);
386             ewitab           = _mm_slli_epi32(ewitab,2);
387             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
388             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
389             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
390             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
391             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
392             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
393             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
394             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
395             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
396             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velecsum         = _mm_add_pd(velecsum,velec);
400
401             fscal            = felec;
402
403             /* Update vectorial force */
404             fix2             = _mm_macc_pd(dx20,fscal,fix2);
405             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
406             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
407             
408             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
409             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
410             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
411
412             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
413
414             /* Inner loop uses 169 flops */
415         }
416
417         if(jidx<j_index_end)
418         {
419
420             jnrA             = jjnr[jidx];
421             j_coord_offsetA  = DIM*jnrA;
422
423             /* load j atom coordinates */
424             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
425                                               &jx0,&jy0,&jz0);
426
427             /* Calculate displacement vector */
428             dx00             = _mm_sub_pd(ix0,jx0);
429             dy00             = _mm_sub_pd(iy0,jy0);
430             dz00             = _mm_sub_pd(iz0,jz0);
431             dx10             = _mm_sub_pd(ix1,jx0);
432             dy10             = _mm_sub_pd(iy1,jy0);
433             dz10             = _mm_sub_pd(iz1,jz0);
434             dx20             = _mm_sub_pd(ix2,jx0);
435             dy20             = _mm_sub_pd(iy2,jy0);
436             dz20             = _mm_sub_pd(iz2,jz0);
437
438             /* Calculate squared distance and things based on it */
439             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
440             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
441             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
442
443             rinv00           = gmx_mm_invsqrt_pd(rsq00);
444             rinv10           = gmx_mm_invsqrt_pd(rsq10);
445             rinv20           = gmx_mm_invsqrt_pd(rsq20);
446
447             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
448             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
449             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
450
451             /* Load parameters for j particles */
452             jq0              = _mm_load_sd(charge+jnrA+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454
455             fjx0             = _mm_setzero_pd();
456             fjy0             = _mm_setzero_pd();
457             fjz0             = _mm_setzero_pd();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             r00              = _mm_mul_pd(rsq00,rinv00);
464
465             /* Compute parameters for interactions between i and j atoms */
466             qq00             = _mm_mul_pd(iq0,jq0);
467             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
468
469             /* Calculate table index by multiplying r with table scale and truncate to integer */
470             rt               = _mm_mul_pd(r00,vftabscale);
471             vfitab           = _mm_cvttpd_epi32(rt);
472 #ifdef __XOP__
473             vfeps            = _mm_frcz_pd(rt);
474 #else
475             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
476 #endif
477             twovfeps         = _mm_add_pd(vfeps,vfeps);
478             vfitab           = _mm_slli_epi32(vfitab,3);
479
480             /* EWALD ELECTROSTATICS */
481
482             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
483             ewrt             = _mm_mul_pd(r00,ewtabscale);
484             ewitab           = _mm_cvttpd_epi32(ewrt);
485 #ifdef __XOP__
486             eweps            = _mm_frcz_pd(ewrt);
487 #else
488             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
489 #endif
490             twoeweps         = _mm_add_pd(eweps,eweps);
491             ewitab           = _mm_slli_epi32(ewitab,2);
492             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
493             ewtabD           = _mm_setzero_pd();
494             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
495             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
496             ewtabFn          = _mm_setzero_pd();
497             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
498             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
499             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
500             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
501             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
502
503             /* CUBIC SPLINE TABLE DISPERSION */
504             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
505             F                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(Y,F);
507             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
508             H                = _mm_setzero_pd();
509             GMX_MM_TRANSPOSE2_PD(G,H);
510             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
511             VV               = _mm_macc_pd(vfeps,Fp,Y);
512             vvdw6            = _mm_mul_pd(c6_00,VV);
513             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
514             fvdw6            = _mm_mul_pd(c6_00,FF);
515
516             /* CUBIC SPLINE TABLE REPULSION */
517             vfitab           = _mm_add_epi32(vfitab,ifour);
518             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
519             F                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(Y,F);
521             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
522             H                = _mm_setzero_pd();
523             GMX_MM_TRANSPOSE2_PD(G,H);
524             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
525             VV               = _mm_macc_pd(vfeps,Fp,Y);
526             vvdw12           = _mm_mul_pd(c12_00,VV);
527             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
528             fvdw12           = _mm_mul_pd(c12_00,FF);
529             vvdw             = _mm_add_pd(vvdw12,vvdw6);
530             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
531
532             /* Update potential sum for this i atom from the interaction with this j atom. */
533             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
534             velecsum         = _mm_add_pd(velecsum,velec);
535             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
536             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
537
538             fscal            = _mm_add_pd(felec,fvdw);
539
540             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
541
542             /* Update vectorial force */
543             fix0             = _mm_macc_pd(dx00,fscal,fix0);
544             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
545             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
546             
547             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
548             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
549             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             r10              = _mm_mul_pd(rsq10,rinv10);
556
557             /* Compute parameters for interactions between i and j atoms */
558             qq10             = _mm_mul_pd(iq1,jq0);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563             ewrt             = _mm_mul_pd(r10,ewtabscale);
564             ewitab           = _mm_cvttpd_epi32(ewrt);
565 #ifdef __XOP__
566             eweps            = _mm_frcz_pd(ewrt);
567 #else
568             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
569 #endif
570             twoeweps         = _mm_add_pd(eweps,eweps);
571             ewitab           = _mm_slli_epi32(ewitab,2);
572             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
573             ewtabD           = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
575             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
576             ewtabFn          = _mm_setzero_pd();
577             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
578             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
579             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
580             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
581             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
582
583             /* Update potential sum for this i atom from the interaction with this j atom. */
584             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
585             velecsum         = _mm_add_pd(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
590
591             /* Update vectorial force */
592             fix1             = _mm_macc_pd(dx10,fscal,fix1);
593             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
594             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
595             
596             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
597             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
598             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r20              = _mm_mul_pd(rsq20,rinv20);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq20             = _mm_mul_pd(iq2,jq0);
608
609             /* EWALD ELECTROSTATICS */
610
611             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
612             ewrt             = _mm_mul_pd(r20,ewtabscale);
613             ewitab           = _mm_cvttpd_epi32(ewrt);
614 #ifdef __XOP__
615             eweps            = _mm_frcz_pd(ewrt);
616 #else
617             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
618 #endif
619             twoeweps         = _mm_add_pd(eweps,eweps);
620             ewitab           = _mm_slli_epi32(ewitab,2);
621             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
622             ewtabD           = _mm_setzero_pd();
623             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
624             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
625             ewtabFn          = _mm_setzero_pd();
626             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
627             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
628             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
629             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
630             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
631
632             /* Update potential sum for this i atom from the interaction with this j atom. */
633             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
634             velecsum         = _mm_add_pd(velecsum,velec);
635
636             fscal            = felec;
637
638             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
639
640             /* Update vectorial force */
641             fix2             = _mm_macc_pd(dx20,fscal,fix2);
642             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
643             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
644             
645             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
646             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
647             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
648
649             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
650
651             /* Inner loop uses 169 flops */
652         }
653
654         /* End of innermost loop */
655
656         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
657                                               f+i_coord_offset,fshift+i_shift_offset);
658
659         ggid                        = gid[iidx];
660         /* Update potential energies */
661         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
662         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
663
664         /* Increment number of inner iterations */
665         inneriter                  += j_index_end - j_index_start;
666
667         /* Outer loop uses 20 flops */
668     }
669
670     /* Increment number of outer iterations */
671     outeriter        += nri;
672
673     /* Update outer/inner flops */
674
675     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
676 }
677 /*
678  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
679  * Electrostatics interaction: Ewald
680  * VdW interaction:            CubicSplineTable
681  * Geometry:                   Water3-Particle
682  * Calculate force/pot:        Force
683  */
684 void
685 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
686                     (t_nblist                    * gmx_restrict       nlist,
687                      rvec                        * gmx_restrict          xx,
688                      rvec                        * gmx_restrict          ff,
689                      t_forcerec                  * gmx_restrict          fr,
690                      t_mdatoms                   * gmx_restrict     mdatoms,
691                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
692                      t_nrnb                      * gmx_restrict        nrnb)
693 {
694     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
695      * just 0 for non-waters.
696      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
697      * jnr indices corresponding to data put in the four positions in the SIMD register.
698      */
699     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
700     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
701     int              jnrA,jnrB;
702     int              j_coord_offsetA,j_coord_offsetB;
703     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
704     real             rcutoff_scalar;
705     real             *shiftvec,*fshift,*x,*f;
706     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
707     int              vdwioffset0;
708     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
709     int              vdwioffset1;
710     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
711     int              vdwioffset2;
712     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
713     int              vdwjidx0A,vdwjidx0B;
714     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
719     real             *charge;
720     int              nvdwtype;
721     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
722     int              *vdwtype;
723     real             *vdwparam;
724     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
725     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
726     __m128i          vfitab;
727     __m128i          ifour       = _mm_set1_epi32(4);
728     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
729     real             *vftab;
730     __m128i          ewitab;
731     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
732     real             *ewtab;
733     __m128d          dummy_mask,cutoff_mask;
734     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
735     __m128d          one     = _mm_set1_pd(1.0);
736     __m128d          two     = _mm_set1_pd(2.0);
737     x                = xx[0];
738     f                = ff[0];
739
740     nri              = nlist->nri;
741     iinr             = nlist->iinr;
742     jindex           = nlist->jindex;
743     jjnr             = nlist->jjnr;
744     shiftidx         = nlist->shift;
745     gid              = nlist->gid;
746     shiftvec         = fr->shift_vec[0];
747     fshift           = fr->fshift[0];
748     facel            = _mm_set1_pd(fr->epsfac);
749     charge           = mdatoms->chargeA;
750     nvdwtype         = fr->ntype;
751     vdwparam         = fr->nbfp;
752     vdwtype          = mdatoms->typeA;
753
754     vftab            = kernel_data->table_vdw->data;
755     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
756
757     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
758     ewtab            = fr->ic->tabq_coul_F;
759     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
760     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
761
762     /* Setup water-specific parameters */
763     inr              = nlist->iinr[0];
764     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
765     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
766     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
767     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
768
769     /* Avoid stupid compiler warnings */
770     jnrA = jnrB = 0;
771     j_coord_offsetA = 0;
772     j_coord_offsetB = 0;
773
774     outeriter        = 0;
775     inneriter        = 0;
776
777     /* Start outer loop over neighborlists */
778     for(iidx=0; iidx<nri; iidx++)
779     {
780         /* Load shift vector for this list */
781         i_shift_offset   = DIM*shiftidx[iidx];
782
783         /* Load limits for loop over neighbors */
784         j_index_start    = jindex[iidx];
785         j_index_end      = jindex[iidx+1];
786
787         /* Get outer coordinate index */
788         inr              = iinr[iidx];
789         i_coord_offset   = DIM*inr;
790
791         /* Load i particle coords and add shift vector */
792         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
793                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
794
795         fix0             = _mm_setzero_pd();
796         fiy0             = _mm_setzero_pd();
797         fiz0             = _mm_setzero_pd();
798         fix1             = _mm_setzero_pd();
799         fiy1             = _mm_setzero_pd();
800         fiz1             = _mm_setzero_pd();
801         fix2             = _mm_setzero_pd();
802         fiy2             = _mm_setzero_pd();
803         fiz2             = _mm_setzero_pd();
804
805         /* Start inner kernel loop */
806         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
807         {
808
809             /* Get j neighbor index, and coordinate index */
810             jnrA             = jjnr[jidx];
811             jnrB             = jjnr[jidx+1];
812             j_coord_offsetA  = DIM*jnrA;
813             j_coord_offsetB  = DIM*jnrB;
814
815             /* load j atom coordinates */
816             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
817                                               &jx0,&jy0,&jz0);
818
819             /* Calculate displacement vector */
820             dx00             = _mm_sub_pd(ix0,jx0);
821             dy00             = _mm_sub_pd(iy0,jy0);
822             dz00             = _mm_sub_pd(iz0,jz0);
823             dx10             = _mm_sub_pd(ix1,jx0);
824             dy10             = _mm_sub_pd(iy1,jy0);
825             dz10             = _mm_sub_pd(iz1,jz0);
826             dx20             = _mm_sub_pd(ix2,jx0);
827             dy20             = _mm_sub_pd(iy2,jy0);
828             dz20             = _mm_sub_pd(iz2,jz0);
829
830             /* Calculate squared distance and things based on it */
831             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
832             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
833             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
834
835             rinv00           = gmx_mm_invsqrt_pd(rsq00);
836             rinv10           = gmx_mm_invsqrt_pd(rsq10);
837             rinv20           = gmx_mm_invsqrt_pd(rsq20);
838
839             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
840             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
841             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
842
843             /* Load parameters for j particles */
844             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
845             vdwjidx0A        = 2*vdwtype[jnrA+0];
846             vdwjidx0B        = 2*vdwtype[jnrB+0];
847
848             fjx0             = _mm_setzero_pd();
849             fjy0             = _mm_setzero_pd();
850             fjz0             = _mm_setzero_pd();
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r00              = _mm_mul_pd(rsq00,rinv00);
857
858             /* Compute parameters for interactions between i and j atoms */
859             qq00             = _mm_mul_pd(iq0,jq0);
860             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
861                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
862
863             /* Calculate table index by multiplying r with table scale and truncate to integer */
864             rt               = _mm_mul_pd(r00,vftabscale);
865             vfitab           = _mm_cvttpd_epi32(rt);
866 #ifdef __XOP__
867             vfeps            = _mm_frcz_pd(rt);
868 #else
869             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
870 #endif
871             twovfeps         = _mm_add_pd(vfeps,vfeps);
872             vfitab           = _mm_slli_epi32(vfitab,3);
873
874             /* EWALD ELECTROSTATICS */
875
876             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
877             ewrt             = _mm_mul_pd(r00,ewtabscale);
878             ewitab           = _mm_cvttpd_epi32(ewrt);
879 #ifdef __XOP__
880             eweps            = _mm_frcz_pd(ewrt);
881 #else
882             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
883 #endif
884             twoeweps         = _mm_add_pd(eweps,eweps);
885             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
886                                          &ewtabF,&ewtabFn);
887             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
888             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
889
890             /* CUBIC SPLINE TABLE DISPERSION */
891             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
892             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
893             GMX_MM_TRANSPOSE2_PD(Y,F);
894             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
895             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
896             GMX_MM_TRANSPOSE2_PD(G,H);
897             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
898             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
899             fvdw6            = _mm_mul_pd(c6_00,FF);
900
901             /* CUBIC SPLINE TABLE REPULSION */
902             vfitab           = _mm_add_epi32(vfitab,ifour);
903             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
904             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
905             GMX_MM_TRANSPOSE2_PD(Y,F);
906             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
907             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
908             GMX_MM_TRANSPOSE2_PD(G,H);
909             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
910             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
911             fvdw12           = _mm_mul_pd(c12_00,FF);
912             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
913
914             fscal            = _mm_add_pd(felec,fvdw);
915
916             /* Update vectorial force */
917             fix0             = _mm_macc_pd(dx00,fscal,fix0);
918             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
919             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
920             
921             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
922             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
923             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
924
925             /**************************
926              * CALCULATE INTERACTIONS *
927              **************************/
928
929             r10              = _mm_mul_pd(rsq10,rinv10);
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq10             = _mm_mul_pd(iq1,jq0);
933
934             /* EWALD ELECTROSTATICS */
935
936             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
937             ewrt             = _mm_mul_pd(r10,ewtabscale);
938             ewitab           = _mm_cvttpd_epi32(ewrt);
939 #ifdef __XOP__
940             eweps            = _mm_frcz_pd(ewrt);
941 #else
942             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
943 #endif
944             twoeweps         = _mm_add_pd(eweps,eweps);
945             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
946                                          &ewtabF,&ewtabFn);
947             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
948             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
949
950             fscal            = felec;
951
952             /* Update vectorial force */
953             fix1             = _mm_macc_pd(dx10,fscal,fix1);
954             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
955             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
956             
957             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
958             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
959             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             r20              = _mm_mul_pd(rsq20,rinv20);
966
967             /* Compute parameters for interactions between i and j atoms */
968             qq20             = _mm_mul_pd(iq2,jq0);
969
970             /* EWALD ELECTROSTATICS */
971
972             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
973             ewrt             = _mm_mul_pd(r20,ewtabscale);
974             ewitab           = _mm_cvttpd_epi32(ewrt);
975 #ifdef __XOP__
976             eweps            = _mm_frcz_pd(ewrt);
977 #else
978             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
979 #endif
980             twoeweps         = _mm_add_pd(eweps,eweps);
981             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
982                                          &ewtabF,&ewtabFn);
983             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
984             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
985
986             fscal            = felec;
987
988             /* Update vectorial force */
989             fix2             = _mm_macc_pd(dx20,fscal,fix2);
990             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
991             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
992             
993             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
994             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
995             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
996
997             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
998
999             /* Inner loop uses 146 flops */
1000         }
1001
1002         if(jidx<j_index_end)
1003         {
1004
1005             jnrA             = jjnr[jidx];
1006             j_coord_offsetA  = DIM*jnrA;
1007
1008             /* load j atom coordinates */
1009             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1010                                               &jx0,&jy0,&jz0);
1011
1012             /* Calculate displacement vector */
1013             dx00             = _mm_sub_pd(ix0,jx0);
1014             dy00             = _mm_sub_pd(iy0,jy0);
1015             dz00             = _mm_sub_pd(iz0,jz0);
1016             dx10             = _mm_sub_pd(ix1,jx0);
1017             dy10             = _mm_sub_pd(iy1,jy0);
1018             dz10             = _mm_sub_pd(iz1,jz0);
1019             dx20             = _mm_sub_pd(ix2,jx0);
1020             dy20             = _mm_sub_pd(iy2,jy0);
1021             dz20             = _mm_sub_pd(iz2,jz0);
1022
1023             /* Calculate squared distance and things based on it */
1024             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1025             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1026             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1027
1028             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1029             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1030             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1031
1032             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1033             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1034             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1035
1036             /* Load parameters for j particles */
1037             jq0              = _mm_load_sd(charge+jnrA+0);
1038             vdwjidx0A        = 2*vdwtype[jnrA+0];
1039
1040             fjx0             = _mm_setzero_pd();
1041             fjy0             = _mm_setzero_pd();
1042             fjz0             = _mm_setzero_pd();
1043
1044             /**************************
1045              * CALCULATE INTERACTIONS *
1046              **************************/
1047
1048             r00              = _mm_mul_pd(rsq00,rinv00);
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq00             = _mm_mul_pd(iq0,jq0);
1052             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1053
1054             /* Calculate table index by multiplying r with table scale and truncate to integer */
1055             rt               = _mm_mul_pd(r00,vftabscale);
1056             vfitab           = _mm_cvttpd_epi32(rt);
1057 #ifdef __XOP__
1058             vfeps            = _mm_frcz_pd(rt);
1059 #else
1060             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1061 #endif
1062             twovfeps         = _mm_add_pd(vfeps,vfeps);
1063             vfitab           = _mm_slli_epi32(vfitab,3);
1064
1065             /* EWALD ELECTROSTATICS */
1066
1067             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1068             ewrt             = _mm_mul_pd(r00,ewtabscale);
1069             ewitab           = _mm_cvttpd_epi32(ewrt);
1070 #ifdef __XOP__
1071             eweps            = _mm_frcz_pd(ewrt);
1072 #else
1073             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1074 #endif
1075             twoeweps         = _mm_add_pd(eweps,eweps);
1076             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1077             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1078             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1079
1080             /* CUBIC SPLINE TABLE DISPERSION */
1081             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1082             F                = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(Y,F);
1084             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1085             H                = _mm_setzero_pd();
1086             GMX_MM_TRANSPOSE2_PD(G,H);
1087             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1088             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1089             fvdw6            = _mm_mul_pd(c6_00,FF);
1090
1091             /* CUBIC SPLINE TABLE REPULSION */
1092             vfitab           = _mm_add_epi32(vfitab,ifour);
1093             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1094             F                = _mm_setzero_pd();
1095             GMX_MM_TRANSPOSE2_PD(Y,F);
1096             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1097             H                = _mm_setzero_pd();
1098             GMX_MM_TRANSPOSE2_PD(G,H);
1099             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1100             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1101             fvdw12           = _mm_mul_pd(c12_00,FF);
1102             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1103
1104             fscal            = _mm_add_pd(felec,fvdw);
1105
1106             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1107
1108             /* Update vectorial force */
1109             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1110             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1111             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1112             
1113             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1114             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1115             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             r10              = _mm_mul_pd(rsq10,rinv10);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq10             = _mm_mul_pd(iq1,jq0);
1125
1126             /* EWALD ELECTROSTATICS */
1127
1128             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1129             ewrt             = _mm_mul_pd(r10,ewtabscale);
1130             ewitab           = _mm_cvttpd_epi32(ewrt);
1131 #ifdef __XOP__
1132             eweps            = _mm_frcz_pd(ewrt);
1133 #else
1134             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1135 #endif
1136             twoeweps         = _mm_add_pd(eweps,eweps);
1137             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1138             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1139             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1140
1141             fscal            = felec;
1142
1143             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1144
1145             /* Update vectorial force */
1146             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1147             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1148             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1149             
1150             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1151             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1152             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r20              = _mm_mul_pd(rsq20,rinv20);
1159
1160             /* Compute parameters for interactions between i and j atoms */
1161             qq20             = _mm_mul_pd(iq2,jq0);
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = _mm_mul_pd(r20,ewtabscale);
1167             ewitab           = _mm_cvttpd_epi32(ewrt);
1168 #ifdef __XOP__
1169             eweps            = _mm_frcz_pd(ewrt);
1170 #else
1171             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1172 #endif
1173             twoeweps         = _mm_add_pd(eweps,eweps);
1174             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1175             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1176             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1177
1178             fscal            = felec;
1179
1180             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1181
1182             /* Update vectorial force */
1183             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1184             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1185             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1186             
1187             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1188             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1189             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1190
1191             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1192
1193             /* Inner loop uses 146 flops */
1194         }
1195
1196         /* End of innermost loop */
1197
1198         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1199                                               f+i_coord_offset,fshift+i_shift_offset);
1200
1201         /* Increment number of inner iterations */
1202         inneriter                  += j_index_end - j_index_start;
1203
1204         /* Outer loop uses 18 flops */
1205     }
1206
1207     /* Increment number of outer iterations */
1208     outeriter        += nri;
1209
1210     /* Update outer/inner flops */
1211
1212     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1213 }