efbbde63269c2ddab3458a1aa30612fa91d4620d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_double.h"
48 #include "kernelutil_x86_avx_128_fma_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
52  * Electrostatics interaction: Ewald
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB;
75     int              j_coord_offsetA,j_coord_offsetB;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
80     int              vdwioffset0;
81     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
82     int              vdwioffset1;
83     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
84     int              vdwioffset2;
85     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
86     int              vdwjidx0A,vdwjidx0B;
87     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
90     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
91     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
98     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
102     real             *vftab;
103     __m128i          ewitab;
104     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
105     real             *ewtab;
106     __m128d          dummy_mask,cutoff_mask;
107     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
108     __m128d          one     = _mm_set1_pd(1.0);
109     __m128d          two     = _mm_set1_pd(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_pd(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     vftab            = kernel_data->table_vdw->data;
128     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
129
130     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
131     ewtab            = fr->ic->tabq_coul_FDV0;
132     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
133     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
138     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
139     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_pd();
169         fiy0             = _mm_setzero_pd();
170         fiz0             = _mm_setzero_pd();
171         fix1             = _mm_setzero_pd();
172         fiy1             = _mm_setzero_pd();
173         fiz1             = _mm_setzero_pd();
174         fix2             = _mm_setzero_pd();
175         fiy2             = _mm_setzero_pd();
176         fiz2             = _mm_setzero_pd();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_pd();
180         vvdwsum          = _mm_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm_sub_pd(ix0,jx0);
198             dy00             = _mm_sub_pd(iy0,jy0);
199             dz00             = _mm_sub_pd(iz0,jz0);
200             dx10             = _mm_sub_pd(ix1,jx0);
201             dy10             = _mm_sub_pd(iy1,jy0);
202             dz10             = _mm_sub_pd(iz1,jz0);
203             dx20             = _mm_sub_pd(ix2,jx0);
204             dy20             = _mm_sub_pd(iy2,jy0);
205             dz20             = _mm_sub_pd(iz2,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
211
212             rinv00           = gmx_mm_invsqrt_pd(rsq00);
213             rinv10           = gmx_mm_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm_invsqrt_pd(rsq20);
215
216             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
217             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
218             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
219
220             /* Load parameters for j particles */
221             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224
225             fjx0             = _mm_setzero_pd();
226             fjy0             = _mm_setzero_pd();
227             fjz0             = _mm_setzero_pd();
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             r00              = _mm_mul_pd(rsq00,rinv00);
234
235             /* Compute parameters for interactions between i and j atoms */
236             qq00             = _mm_mul_pd(iq0,jq0);
237             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
238                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
239
240             /* Calculate table index by multiplying r with table scale and truncate to integer */
241             rt               = _mm_mul_pd(r00,vftabscale);
242             vfitab           = _mm_cvttpd_epi32(rt);
243 #ifdef __XOP__
244             vfeps            = _mm_frcz_pd(rt);
245 #else
246             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
247 #endif
248             twovfeps         = _mm_add_pd(vfeps,vfeps);
249             vfitab           = _mm_slli_epi32(vfitab,3);
250
251             /* EWALD ELECTROSTATICS */
252
253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
254             ewrt             = _mm_mul_pd(r00,ewtabscale);
255             ewitab           = _mm_cvttpd_epi32(ewrt);
256 #ifdef __XOP__
257             eweps            = _mm_frcz_pd(ewrt);
258 #else
259             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
260 #endif
261             twoeweps         = _mm_add_pd(eweps,eweps);
262             ewitab           = _mm_slli_epi32(ewitab,2);
263             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
264             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
265             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
266             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
267             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
268             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
269             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
270             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
271             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
272             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
273
274             /* CUBIC SPLINE TABLE DISPERSION */
275             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
276             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
277             GMX_MM_TRANSPOSE2_PD(Y,F);
278             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
279             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
280             GMX_MM_TRANSPOSE2_PD(G,H);
281             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
282             VV               = _mm_macc_pd(vfeps,Fp,Y);
283             vvdw6            = _mm_mul_pd(c6_00,VV);
284             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
285             fvdw6            = _mm_mul_pd(c6_00,FF);
286
287             /* CUBIC SPLINE TABLE REPULSION */
288             vfitab           = _mm_add_epi32(vfitab,ifour);
289             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
290             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
291             GMX_MM_TRANSPOSE2_PD(Y,F);
292             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
293             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
294             GMX_MM_TRANSPOSE2_PD(G,H);
295             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
296             VV               = _mm_macc_pd(vfeps,Fp,Y);
297             vvdw12           = _mm_mul_pd(c12_00,VV);
298             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
299             fvdw12           = _mm_mul_pd(c12_00,FF);
300             vvdw             = _mm_add_pd(vvdw12,vvdw6);
301             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             velecsum         = _mm_add_pd(velecsum,velec);
305             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
306
307             fscal            = _mm_add_pd(felec,fvdw);
308
309             /* Update vectorial force */
310             fix0             = _mm_macc_pd(dx00,fscal,fix0);
311             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
312             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
313             
314             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
315             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
316             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r10              = _mm_mul_pd(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm_mul_pd(iq1,jq0);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm_mul_pd(r10,ewtabscale);
331             ewitab           = _mm_cvttpd_epi32(ewrt);
332 #ifdef __XOP__
333             eweps            = _mm_frcz_pd(ewrt);
334 #else
335             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
336 #endif
337             twoeweps         = _mm_add_pd(eweps,eweps);
338             ewitab           = _mm_slli_epi32(ewitab,2);
339             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
340             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
341             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
342             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
343             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
344             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
345             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
346             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
347             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
348             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             /* Update vectorial force */
356             fix1             = _mm_macc_pd(dx10,fscal,fix1);
357             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
358             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
359             
360             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
361             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
362             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r20              = _mm_mul_pd(rsq20,rinv20);
369
370             /* Compute parameters for interactions between i and j atoms */
371             qq20             = _mm_mul_pd(iq2,jq0);
372
373             /* EWALD ELECTROSTATICS */
374
375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
376             ewrt             = _mm_mul_pd(r20,ewtabscale);
377             ewitab           = _mm_cvttpd_epi32(ewrt);
378 #ifdef __XOP__
379             eweps            = _mm_frcz_pd(ewrt);
380 #else
381             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
382 #endif
383             twoeweps         = _mm_add_pd(eweps,eweps);
384             ewitab           = _mm_slli_epi32(ewitab,2);
385             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
386             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
387             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
388             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
389             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
390             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
391             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
392             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
393             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
394             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
395
396             /* Update potential sum for this i atom from the interaction with this j atom. */
397             velecsum         = _mm_add_pd(velecsum,velec);
398
399             fscal            = felec;
400
401             /* Update vectorial force */
402             fix2             = _mm_macc_pd(dx20,fscal,fix2);
403             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
404             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
405             
406             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
407             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
408             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
409
410             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
411
412             /* Inner loop uses 169 flops */
413         }
414
415         if(jidx<j_index_end)
416         {
417
418             jnrA             = jjnr[jidx];
419             j_coord_offsetA  = DIM*jnrA;
420
421             /* load j atom coordinates */
422             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
423                                               &jx0,&jy0,&jz0);
424
425             /* Calculate displacement vector */
426             dx00             = _mm_sub_pd(ix0,jx0);
427             dy00             = _mm_sub_pd(iy0,jy0);
428             dz00             = _mm_sub_pd(iz0,jz0);
429             dx10             = _mm_sub_pd(ix1,jx0);
430             dy10             = _mm_sub_pd(iy1,jy0);
431             dz10             = _mm_sub_pd(iz1,jz0);
432             dx20             = _mm_sub_pd(ix2,jx0);
433             dy20             = _mm_sub_pd(iy2,jy0);
434             dz20             = _mm_sub_pd(iz2,jz0);
435
436             /* Calculate squared distance and things based on it */
437             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
438             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
439             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
440
441             rinv00           = gmx_mm_invsqrt_pd(rsq00);
442             rinv10           = gmx_mm_invsqrt_pd(rsq10);
443             rinv20           = gmx_mm_invsqrt_pd(rsq20);
444
445             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
446             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
447             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
448
449             /* Load parameters for j particles */
450             jq0              = _mm_load_sd(charge+jnrA+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452
453             fjx0             = _mm_setzero_pd();
454             fjy0             = _mm_setzero_pd();
455             fjz0             = _mm_setzero_pd();
456
457             /**************************
458              * CALCULATE INTERACTIONS *
459              **************************/
460
461             r00              = _mm_mul_pd(rsq00,rinv00);
462
463             /* Compute parameters for interactions between i and j atoms */
464             qq00             = _mm_mul_pd(iq0,jq0);
465             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
466
467             /* Calculate table index by multiplying r with table scale and truncate to integer */
468             rt               = _mm_mul_pd(r00,vftabscale);
469             vfitab           = _mm_cvttpd_epi32(rt);
470 #ifdef __XOP__
471             vfeps            = _mm_frcz_pd(rt);
472 #else
473             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
474 #endif
475             twovfeps         = _mm_add_pd(vfeps,vfeps);
476             vfitab           = _mm_slli_epi32(vfitab,3);
477
478             /* EWALD ELECTROSTATICS */
479
480             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
481             ewrt             = _mm_mul_pd(r00,ewtabscale);
482             ewitab           = _mm_cvttpd_epi32(ewrt);
483 #ifdef __XOP__
484             eweps            = _mm_frcz_pd(ewrt);
485 #else
486             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
487 #endif
488             twoeweps         = _mm_add_pd(eweps,eweps);
489             ewitab           = _mm_slli_epi32(ewitab,2);
490             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
491             ewtabD           = _mm_setzero_pd();
492             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
493             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
494             ewtabFn          = _mm_setzero_pd();
495             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
496             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
497             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
498             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
499             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
500
501             /* CUBIC SPLINE TABLE DISPERSION */
502             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
503             F                = _mm_setzero_pd();
504             GMX_MM_TRANSPOSE2_PD(Y,F);
505             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
506             H                = _mm_setzero_pd();
507             GMX_MM_TRANSPOSE2_PD(G,H);
508             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
509             VV               = _mm_macc_pd(vfeps,Fp,Y);
510             vvdw6            = _mm_mul_pd(c6_00,VV);
511             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
512             fvdw6            = _mm_mul_pd(c6_00,FF);
513
514             /* CUBIC SPLINE TABLE REPULSION */
515             vfitab           = _mm_add_epi32(vfitab,ifour);
516             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
517             F                = _mm_setzero_pd();
518             GMX_MM_TRANSPOSE2_PD(Y,F);
519             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
520             H                = _mm_setzero_pd();
521             GMX_MM_TRANSPOSE2_PD(G,H);
522             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
523             VV               = _mm_macc_pd(vfeps,Fp,Y);
524             vvdw12           = _mm_mul_pd(c12_00,VV);
525             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
526             fvdw12           = _mm_mul_pd(c12_00,FF);
527             vvdw             = _mm_add_pd(vvdw12,vvdw6);
528             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
532             velecsum         = _mm_add_pd(velecsum,velec);
533             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
534             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
535
536             fscal            = _mm_add_pd(felec,fvdw);
537
538             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
539
540             /* Update vectorial force */
541             fix0             = _mm_macc_pd(dx00,fscal,fix0);
542             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
543             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
544             
545             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
546             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
547             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             r10              = _mm_mul_pd(rsq10,rinv10);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq10             = _mm_mul_pd(iq1,jq0);
557
558             /* EWALD ELECTROSTATICS */
559
560             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
561             ewrt             = _mm_mul_pd(r10,ewtabscale);
562             ewitab           = _mm_cvttpd_epi32(ewrt);
563 #ifdef __XOP__
564             eweps            = _mm_frcz_pd(ewrt);
565 #else
566             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
567 #endif
568             twoeweps         = _mm_add_pd(eweps,eweps);
569             ewitab           = _mm_slli_epi32(ewitab,2);
570             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
571             ewtabD           = _mm_setzero_pd();
572             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
573             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
574             ewtabFn          = _mm_setzero_pd();
575             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
576             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
577             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
578             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
579             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
583             velecsum         = _mm_add_pd(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
588
589             /* Update vectorial force */
590             fix1             = _mm_macc_pd(dx10,fscal,fix1);
591             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
592             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
593             
594             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
595             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
596             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             r20              = _mm_mul_pd(rsq20,rinv20);
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _mm_mul_pd(iq2,jq0);
606
607             /* EWALD ELECTROSTATICS */
608
609             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
610             ewrt             = _mm_mul_pd(r20,ewtabscale);
611             ewitab           = _mm_cvttpd_epi32(ewrt);
612 #ifdef __XOP__
613             eweps            = _mm_frcz_pd(ewrt);
614 #else
615             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
616 #endif
617             twoeweps         = _mm_add_pd(eweps,eweps);
618             ewitab           = _mm_slli_epi32(ewitab,2);
619             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
620             ewtabD           = _mm_setzero_pd();
621             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
622             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
623             ewtabFn          = _mm_setzero_pd();
624             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
625             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
626             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
627             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
628             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
629
630             /* Update potential sum for this i atom from the interaction with this j atom. */
631             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
632             velecsum         = _mm_add_pd(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
637
638             /* Update vectorial force */
639             fix2             = _mm_macc_pd(dx20,fscal,fix2);
640             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
641             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
642             
643             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
644             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
645             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
646
647             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
648
649             /* Inner loop uses 169 flops */
650         }
651
652         /* End of innermost loop */
653
654         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
655                                               f+i_coord_offset,fshift+i_shift_offset);
656
657         ggid                        = gid[iidx];
658         /* Update potential energies */
659         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
660         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
661
662         /* Increment number of inner iterations */
663         inneriter                  += j_index_end - j_index_start;
664
665         /* Outer loop uses 20 flops */
666     }
667
668     /* Increment number of outer iterations */
669     outeriter        += nri;
670
671     /* Update outer/inner flops */
672
673     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
674 }
675 /*
676  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
677  * Electrostatics interaction: Ewald
678  * VdW interaction:            CubicSplineTable
679  * Geometry:                   Water3-Particle
680  * Calculate force/pot:        Force
681  */
682 void
683 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
684                     (t_nblist                    * gmx_restrict       nlist,
685                      rvec                        * gmx_restrict          xx,
686                      rvec                        * gmx_restrict          ff,
687                      t_forcerec                  * gmx_restrict          fr,
688                      t_mdatoms                   * gmx_restrict     mdatoms,
689                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
690                      t_nrnb                      * gmx_restrict        nrnb)
691 {
692     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
693      * just 0 for non-waters.
694      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
695      * jnr indices corresponding to data put in the four positions in the SIMD register.
696      */
697     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
698     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
699     int              jnrA,jnrB;
700     int              j_coord_offsetA,j_coord_offsetB;
701     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
702     real             rcutoff_scalar;
703     real             *shiftvec,*fshift,*x,*f;
704     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     int              vdwioffset0;
706     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     int              vdwioffset1;
708     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     int              vdwioffset2;
710     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     int              vdwjidx0A,vdwjidx0B;
712     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
714     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
715     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
716     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
717     real             *charge;
718     int              nvdwtype;
719     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
720     int              *vdwtype;
721     real             *vdwparam;
722     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
723     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
724     __m128i          vfitab;
725     __m128i          ifour       = _mm_set1_epi32(4);
726     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
727     real             *vftab;
728     __m128i          ewitab;
729     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
730     real             *ewtab;
731     __m128d          dummy_mask,cutoff_mask;
732     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
733     __m128d          one     = _mm_set1_pd(1.0);
734     __m128d          two     = _mm_set1_pd(2.0);
735     x                = xx[0];
736     f                = ff[0];
737
738     nri              = nlist->nri;
739     iinr             = nlist->iinr;
740     jindex           = nlist->jindex;
741     jjnr             = nlist->jjnr;
742     shiftidx         = nlist->shift;
743     gid              = nlist->gid;
744     shiftvec         = fr->shift_vec[0];
745     fshift           = fr->fshift[0];
746     facel            = _mm_set1_pd(fr->epsfac);
747     charge           = mdatoms->chargeA;
748     nvdwtype         = fr->ntype;
749     vdwparam         = fr->nbfp;
750     vdwtype          = mdatoms->typeA;
751
752     vftab            = kernel_data->table_vdw->data;
753     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
754
755     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
756     ewtab            = fr->ic->tabq_coul_F;
757     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
758     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
759
760     /* Setup water-specific parameters */
761     inr              = nlist->iinr[0];
762     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
763     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
764     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
765     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
766
767     /* Avoid stupid compiler warnings */
768     jnrA = jnrB = 0;
769     j_coord_offsetA = 0;
770     j_coord_offsetB = 0;
771
772     outeriter        = 0;
773     inneriter        = 0;
774
775     /* Start outer loop over neighborlists */
776     for(iidx=0; iidx<nri; iidx++)
777     {
778         /* Load shift vector for this list */
779         i_shift_offset   = DIM*shiftidx[iidx];
780
781         /* Load limits for loop over neighbors */
782         j_index_start    = jindex[iidx];
783         j_index_end      = jindex[iidx+1];
784
785         /* Get outer coordinate index */
786         inr              = iinr[iidx];
787         i_coord_offset   = DIM*inr;
788
789         /* Load i particle coords and add shift vector */
790         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
791                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
792
793         fix0             = _mm_setzero_pd();
794         fiy0             = _mm_setzero_pd();
795         fiz0             = _mm_setzero_pd();
796         fix1             = _mm_setzero_pd();
797         fiy1             = _mm_setzero_pd();
798         fiz1             = _mm_setzero_pd();
799         fix2             = _mm_setzero_pd();
800         fiy2             = _mm_setzero_pd();
801         fiz2             = _mm_setzero_pd();
802
803         /* Start inner kernel loop */
804         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
805         {
806
807             /* Get j neighbor index, and coordinate index */
808             jnrA             = jjnr[jidx];
809             jnrB             = jjnr[jidx+1];
810             j_coord_offsetA  = DIM*jnrA;
811             j_coord_offsetB  = DIM*jnrB;
812
813             /* load j atom coordinates */
814             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_pd(ix0,jx0);
819             dy00             = _mm_sub_pd(iy0,jy0);
820             dz00             = _mm_sub_pd(iz0,jz0);
821             dx10             = _mm_sub_pd(ix1,jx0);
822             dy10             = _mm_sub_pd(iy1,jy0);
823             dz10             = _mm_sub_pd(iz1,jz0);
824             dx20             = _mm_sub_pd(ix2,jx0);
825             dy20             = _mm_sub_pd(iy2,jy0);
826             dz20             = _mm_sub_pd(iz2,jz0);
827
828             /* Calculate squared distance and things based on it */
829             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
830             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
831             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
832
833             rinv00           = gmx_mm_invsqrt_pd(rsq00);
834             rinv10           = gmx_mm_invsqrt_pd(rsq10);
835             rinv20           = gmx_mm_invsqrt_pd(rsq20);
836
837             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
838             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
839             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
840
841             /* Load parameters for j particles */
842             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
843             vdwjidx0A        = 2*vdwtype[jnrA+0];
844             vdwjidx0B        = 2*vdwtype[jnrB+0];
845
846             fjx0             = _mm_setzero_pd();
847             fjy0             = _mm_setzero_pd();
848             fjz0             = _mm_setzero_pd();
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             r00              = _mm_mul_pd(rsq00,rinv00);
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq00             = _mm_mul_pd(iq0,jq0);
858             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
859                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
860
861             /* Calculate table index by multiplying r with table scale and truncate to integer */
862             rt               = _mm_mul_pd(r00,vftabscale);
863             vfitab           = _mm_cvttpd_epi32(rt);
864 #ifdef __XOP__
865             vfeps            = _mm_frcz_pd(rt);
866 #else
867             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
868 #endif
869             twovfeps         = _mm_add_pd(vfeps,vfeps);
870             vfitab           = _mm_slli_epi32(vfitab,3);
871
872             /* EWALD ELECTROSTATICS */
873
874             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
875             ewrt             = _mm_mul_pd(r00,ewtabscale);
876             ewitab           = _mm_cvttpd_epi32(ewrt);
877 #ifdef __XOP__
878             eweps            = _mm_frcz_pd(ewrt);
879 #else
880             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
881 #endif
882             twoeweps         = _mm_add_pd(eweps,eweps);
883             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
884                                          &ewtabF,&ewtabFn);
885             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
886             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
887
888             /* CUBIC SPLINE TABLE DISPERSION */
889             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
890             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
891             GMX_MM_TRANSPOSE2_PD(Y,F);
892             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
893             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
894             GMX_MM_TRANSPOSE2_PD(G,H);
895             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
896             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
897             fvdw6            = _mm_mul_pd(c6_00,FF);
898
899             /* CUBIC SPLINE TABLE REPULSION */
900             vfitab           = _mm_add_epi32(vfitab,ifour);
901             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
902             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
903             GMX_MM_TRANSPOSE2_PD(Y,F);
904             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
905             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
906             GMX_MM_TRANSPOSE2_PD(G,H);
907             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
908             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
909             fvdw12           = _mm_mul_pd(c12_00,FF);
910             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
911
912             fscal            = _mm_add_pd(felec,fvdw);
913
914             /* Update vectorial force */
915             fix0             = _mm_macc_pd(dx00,fscal,fix0);
916             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
917             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
918             
919             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
920             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
921             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             r10              = _mm_mul_pd(rsq10,rinv10);
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq10             = _mm_mul_pd(iq1,jq0);
931
932             /* EWALD ELECTROSTATICS */
933
934             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
935             ewrt             = _mm_mul_pd(r10,ewtabscale);
936             ewitab           = _mm_cvttpd_epi32(ewrt);
937 #ifdef __XOP__
938             eweps            = _mm_frcz_pd(ewrt);
939 #else
940             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
941 #endif
942             twoeweps         = _mm_add_pd(eweps,eweps);
943             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
944                                          &ewtabF,&ewtabFn);
945             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
946             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
947
948             fscal            = felec;
949
950             /* Update vectorial force */
951             fix1             = _mm_macc_pd(dx10,fscal,fix1);
952             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
953             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
954             
955             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
956             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
957             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
958
959             /**************************
960              * CALCULATE INTERACTIONS *
961              **************************/
962
963             r20              = _mm_mul_pd(rsq20,rinv20);
964
965             /* Compute parameters for interactions between i and j atoms */
966             qq20             = _mm_mul_pd(iq2,jq0);
967
968             /* EWALD ELECTROSTATICS */
969
970             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
971             ewrt             = _mm_mul_pd(r20,ewtabscale);
972             ewitab           = _mm_cvttpd_epi32(ewrt);
973 #ifdef __XOP__
974             eweps            = _mm_frcz_pd(ewrt);
975 #else
976             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
977 #endif
978             twoeweps         = _mm_add_pd(eweps,eweps);
979             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
980                                          &ewtabF,&ewtabFn);
981             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
982             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
983
984             fscal            = felec;
985
986             /* Update vectorial force */
987             fix2             = _mm_macc_pd(dx20,fscal,fix2);
988             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
989             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
990             
991             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
992             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
993             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
994
995             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
996
997             /* Inner loop uses 146 flops */
998         }
999
1000         if(jidx<j_index_end)
1001         {
1002
1003             jnrA             = jjnr[jidx];
1004             j_coord_offsetA  = DIM*jnrA;
1005
1006             /* load j atom coordinates */
1007             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1008                                               &jx0,&jy0,&jz0);
1009
1010             /* Calculate displacement vector */
1011             dx00             = _mm_sub_pd(ix0,jx0);
1012             dy00             = _mm_sub_pd(iy0,jy0);
1013             dz00             = _mm_sub_pd(iz0,jz0);
1014             dx10             = _mm_sub_pd(ix1,jx0);
1015             dy10             = _mm_sub_pd(iy1,jy0);
1016             dz10             = _mm_sub_pd(iz1,jz0);
1017             dx20             = _mm_sub_pd(ix2,jx0);
1018             dy20             = _mm_sub_pd(iy2,jy0);
1019             dz20             = _mm_sub_pd(iz2,jz0);
1020
1021             /* Calculate squared distance and things based on it */
1022             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1023             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1024             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1025
1026             rinv00           = gmx_mm_invsqrt_pd(rsq00);
1027             rinv10           = gmx_mm_invsqrt_pd(rsq10);
1028             rinv20           = gmx_mm_invsqrt_pd(rsq20);
1029
1030             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1031             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1032             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1033
1034             /* Load parameters for j particles */
1035             jq0              = _mm_load_sd(charge+jnrA+0);
1036             vdwjidx0A        = 2*vdwtype[jnrA+0];
1037
1038             fjx0             = _mm_setzero_pd();
1039             fjy0             = _mm_setzero_pd();
1040             fjz0             = _mm_setzero_pd();
1041
1042             /**************************
1043              * CALCULATE INTERACTIONS *
1044              **************************/
1045
1046             r00              = _mm_mul_pd(rsq00,rinv00);
1047
1048             /* Compute parameters for interactions between i and j atoms */
1049             qq00             = _mm_mul_pd(iq0,jq0);
1050             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1051
1052             /* Calculate table index by multiplying r with table scale and truncate to integer */
1053             rt               = _mm_mul_pd(r00,vftabscale);
1054             vfitab           = _mm_cvttpd_epi32(rt);
1055 #ifdef __XOP__
1056             vfeps            = _mm_frcz_pd(rt);
1057 #else
1058             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1059 #endif
1060             twovfeps         = _mm_add_pd(vfeps,vfeps);
1061             vfitab           = _mm_slli_epi32(vfitab,3);
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = _mm_mul_pd(r00,ewtabscale);
1067             ewitab           = _mm_cvttpd_epi32(ewrt);
1068 #ifdef __XOP__
1069             eweps            = _mm_frcz_pd(ewrt);
1070 #else
1071             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1072 #endif
1073             twoeweps         = _mm_add_pd(eweps,eweps);
1074             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1075             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1076             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1077
1078             /* CUBIC SPLINE TABLE DISPERSION */
1079             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1080             F                = _mm_setzero_pd();
1081             GMX_MM_TRANSPOSE2_PD(Y,F);
1082             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1083             H                = _mm_setzero_pd();
1084             GMX_MM_TRANSPOSE2_PD(G,H);
1085             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1086             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1087             fvdw6            = _mm_mul_pd(c6_00,FF);
1088
1089             /* CUBIC SPLINE TABLE REPULSION */
1090             vfitab           = _mm_add_epi32(vfitab,ifour);
1091             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1092             F                = _mm_setzero_pd();
1093             GMX_MM_TRANSPOSE2_PD(Y,F);
1094             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1095             H                = _mm_setzero_pd();
1096             GMX_MM_TRANSPOSE2_PD(G,H);
1097             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1098             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1099             fvdw12           = _mm_mul_pd(c12_00,FF);
1100             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1101
1102             fscal            = _mm_add_pd(felec,fvdw);
1103
1104             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1105
1106             /* Update vectorial force */
1107             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1108             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1109             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1110             
1111             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1112             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1113             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             r10              = _mm_mul_pd(rsq10,rinv10);
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq10             = _mm_mul_pd(iq1,jq0);
1123
1124             /* EWALD ELECTROSTATICS */
1125
1126             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1127             ewrt             = _mm_mul_pd(r10,ewtabscale);
1128             ewitab           = _mm_cvttpd_epi32(ewrt);
1129 #ifdef __XOP__
1130             eweps            = _mm_frcz_pd(ewrt);
1131 #else
1132             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1133 #endif
1134             twoeweps         = _mm_add_pd(eweps,eweps);
1135             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1136             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1137             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1138
1139             fscal            = felec;
1140
1141             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1142
1143             /* Update vectorial force */
1144             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1145             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1146             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1147             
1148             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1149             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1150             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1151
1152             /**************************
1153              * CALCULATE INTERACTIONS *
1154              **************************/
1155
1156             r20              = _mm_mul_pd(rsq20,rinv20);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             qq20             = _mm_mul_pd(iq2,jq0);
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = _mm_mul_pd(r20,ewtabscale);
1165             ewitab           = _mm_cvttpd_epi32(ewrt);
1166 #ifdef __XOP__
1167             eweps            = _mm_frcz_pd(ewrt);
1168 #else
1169             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1170 #endif
1171             twoeweps         = _mm_add_pd(eweps,eweps);
1172             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1173             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1174             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1175
1176             fscal            = felec;
1177
1178             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1179
1180             /* Update vectorial force */
1181             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1182             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1183             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1184             
1185             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1186             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1187             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1188
1189             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1190
1191             /* Inner loop uses 146 flops */
1192         }
1193
1194         /* End of innermost loop */
1195
1196         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1197                                               f+i_coord_offset,fshift+i_shift_offset);
1198
1199         /* Increment number of inner iterations */
1200         inneriter                  += j_index_end - j_index_start;
1201
1202         /* Outer loop uses 18 flops */
1203     }
1204
1205     /* Increment number of outer iterations */
1206     outeriter        += nri;
1207
1208     /* Update outer/inner flops */
1209
1210     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1211 }