Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_double / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_128_fma_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_128_fma_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB;
74     int              j_coord_offsetA,j_coord_offsetB;
75     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
76     real             rcutoff_scalar;
77     real             *shiftvec,*fshift,*x,*f;
78     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
79     int              vdwioffset0;
80     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
81     int              vdwioffset1;
82     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
83     int              vdwioffset2;
84     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
85     int              vdwjidx0A,vdwjidx0B;
86     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
89     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
90     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
97     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
101     real             *vftab;
102     __m128i          ewitab;
103     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
104     real             *ewtab;
105     __m128d          dummy_mask,cutoff_mask;
106     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
107     __m128d          one     = _mm_set1_pd(1.0);
108     __m128d          two     = _mm_set1_pd(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_pd(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
128
129     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
137     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
138     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
139     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
166
167         fix0             = _mm_setzero_pd();
168         fiy0             = _mm_setzero_pd();
169         fiz0             = _mm_setzero_pd();
170         fix1             = _mm_setzero_pd();
171         fiy1             = _mm_setzero_pd();
172         fiz1             = _mm_setzero_pd();
173         fix2             = _mm_setzero_pd();
174         fiy2             = _mm_setzero_pd();
175         fiz2             = _mm_setzero_pd();
176
177         /* Reset potential sums */
178         velecsum         = _mm_setzero_pd();
179         vvdwsum          = _mm_setzero_pd();
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
183         {
184
185             /* Get j neighbor index, and coordinate index */
186             jnrA             = jjnr[jidx];
187             jnrB             = jjnr[jidx+1];
188             j_coord_offsetA  = DIM*jnrA;
189             j_coord_offsetB  = DIM*jnrB;
190
191             /* load j atom coordinates */
192             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_pd(ix0,jx0);
197             dy00             = _mm_sub_pd(iy0,jy0);
198             dz00             = _mm_sub_pd(iz0,jz0);
199             dx10             = _mm_sub_pd(ix1,jx0);
200             dy10             = _mm_sub_pd(iy1,jy0);
201             dz10             = _mm_sub_pd(iz1,jz0);
202             dx20             = _mm_sub_pd(ix2,jx0);
203             dy20             = _mm_sub_pd(iy2,jy0);
204             dz20             = _mm_sub_pd(iz2,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
208             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
209             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
210
211             rinv00           = avx128fma_invsqrt_d(rsq00);
212             rinv10           = avx128fma_invsqrt_d(rsq10);
213             rinv20           = avx128fma_invsqrt_d(rsq20);
214
215             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
216             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
217             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
218
219             /* Load parameters for j particles */
220             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
221             vdwjidx0A        = 2*vdwtype[jnrA+0];
222             vdwjidx0B        = 2*vdwtype[jnrB+0];
223
224             fjx0             = _mm_setzero_pd();
225             fjy0             = _mm_setzero_pd();
226             fjz0             = _mm_setzero_pd();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_pd(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_pd(iq0,jq0);
236             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
238
239             /* Calculate table index by multiplying r with table scale and truncate to integer */
240             rt               = _mm_mul_pd(r00,vftabscale);
241             vfitab           = _mm_cvttpd_epi32(rt);
242 #ifdef __XOP__
243             vfeps            = _mm_frcz_pd(rt);
244 #else
245             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
246 #endif
247             twovfeps         = _mm_add_pd(vfeps,vfeps);
248             vfitab           = _mm_slli_epi32(vfitab,3);
249
250             /* EWALD ELECTROSTATICS */
251
252             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
253             ewrt             = _mm_mul_pd(r00,ewtabscale);
254             ewitab           = _mm_cvttpd_epi32(ewrt);
255 #ifdef __XOP__
256             eweps            = _mm_frcz_pd(ewrt);
257 #else
258             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
259 #endif
260             twoeweps         = _mm_add_pd(eweps,eweps);
261             ewitab           = _mm_slli_epi32(ewitab,2);
262             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
263             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
264             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
265             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
266             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
267             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
268             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
269             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
270             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
271             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
272
273             /* CUBIC SPLINE TABLE DISPERSION */
274             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
276             GMX_MM_TRANSPOSE2_PD(Y,F);
277             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
278             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
279             GMX_MM_TRANSPOSE2_PD(G,H);
280             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
281             VV               = _mm_macc_pd(vfeps,Fp,Y);
282             vvdw6            = _mm_mul_pd(c6_00,VV);
283             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
284             fvdw6            = _mm_mul_pd(c6_00,FF);
285
286             /* CUBIC SPLINE TABLE REPULSION */
287             vfitab           = _mm_add_epi32(vfitab,ifour);
288             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
290             GMX_MM_TRANSPOSE2_PD(Y,F);
291             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
292             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
293             GMX_MM_TRANSPOSE2_PD(G,H);
294             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
295             VV               = _mm_macc_pd(vfeps,Fp,Y);
296             vvdw12           = _mm_mul_pd(c12_00,VV);
297             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
298             fvdw12           = _mm_mul_pd(c12_00,FF);
299             vvdw             = _mm_add_pd(vvdw12,vvdw6);
300             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm_add_pd(velecsum,velec);
304             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm_add_pd(felec,fvdw);
307
308             /* Update vectorial force */
309             fix0             = _mm_macc_pd(dx00,fscal,fix0);
310             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
311             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
312             
313             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
314             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
315             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             r10              = _mm_mul_pd(rsq10,rinv10);
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_pd(iq1,jq0);
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = _mm_mul_pd(r10,ewtabscale);
330             ewitab           = _mm_cvttpd_epi32(ewrt);
331 #ifdef __XOP__
332             eweps            = _mm_frcz_pd(ewrt);
333 #else
334             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
335 #endif
336             twoeweps         = _mm_add_pd(eweps,eweps);
337             ewitab           = _mm_slli_epi32(ewitab,2);
338             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
339             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
340             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
341             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
342             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
343             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
344             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
345             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
346             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
347             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm_add_pd(velecsum,velec);
351
352             fscal            = felec;
353
354             /* Update vectorial force */
355             fix1             = _mm_macc_pd(dx10,fscal,fix1);
356             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
357             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
358             
359             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
360             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
361             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm_mul_pd(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm_mul_pd(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm_mul_pd(r20,ewtabscale);
376             ewitab           = _mm_cvttpd_epi32(ewrt);
377 #ifdef __XOP__
378             eweps            = _mm_frcz_pd(ewrt);
379 #else
380             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
381 #endif
382             twoeweps         = _mm_add_pd(eweps,eweps);
383             ewitab           = _mm_slli_epi32(ewitab,2);
384             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
385             ewtabD           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
386             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
387             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
388             ewtabFn          = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,1) +2);
389             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
390             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
391             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
392             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
393             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             /* Update vectorial force */
401             fix2             = _mm_macc_pd(dx20,fscal,fix2);
402             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
403             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
404             
405             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
406             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
407             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
408
409             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
410
411             /* Inner loop uses 169 flops */
412         }
413
414         if(jidx<j_index_end)
415         {
416
417             jnrA             = jjnr[jidx];
418             j_coord_offsetA  = DIM*jnrA;
419
420             /* load j atom coordinates */
421             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_pd(ix0,jx0);
426             dy00             = _mm_sub_pd(iy0,jy0);
427             dz00             = _mm_sub_pd(iz0,jz0);
428             dx10             = _mm_sub_pd(ix1,jx0);
429             dy10             = _mm_sub_pd(iy1,jy0);
430             dz10             = _mm_sub_pd(iz1,jz0);
431             dx20             = _mm_sub_pd(ix2,jx0);
432             dy20             = _mm_sub_pd(iy2,jy0);
433             dz20             = _mm_sub_pd(iz2,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
437             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
438             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
439
440             rinv00           = avx128fma_invsqrt_d(rsq00);
441             rinv10           = avx128fma_invsqrt_d(rsq10);
442             rinv20           = avx128fma_invsqrt_d(rsq20);
443
444             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
445             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
446             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
447
448             /* Load parameters for j particles */
449             jq0              = _mm_load_sd(charge+jnrA+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451
452             fjx0             = _mm_setzero_pd();
453             fjy0             = _mm_setzero_pd();
454             fjz0             = _mm_setzero_pd();
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             r00              = _mm_mul_pd(rsq00,rinv00);
461
462             /* Compute parameters for interactions between i and j atoms */
463             qq00             = _mm_mul_pd(iq0,jq0);
464             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
465
466             /* Calculate table index by multiplying r with table scale and truncate to integer */
467             rt               = _mm_mul_pd(r00,vftabscale);
468             vfitab           = _mm_cvttpd_epi32(rt);
469 #ifdef __XOP__
470             vfeps            = _mm_frcz_pd(rt);
471 #else
472             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
473 #endif
474             twovfeps         = _mm_add_pd(vfeps,vfeps);
475             vfitab           = _mm_slli_epi32(vfitab,3);
476
477             /* EWALD ELECTROSTATICS */
478
479             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
480             ewrt             = _mm_mul_pd(r00,ewtabscale);
481             ewitab           = _mm_cvttpd_epi32(ewrt);
482 #ifdef __XOP__
483             eweps            = _mm_frcz_pd(ewrt);
484 #else
485             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
486 #endif
487             twoeweps         = _mm_add_pd(eweps,eweps);
488             ewitab           = _mm_slli_epi32(ewitab,2);
489             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
490             ewtabD           = _mm_setzero_pd();
491             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
492             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
493             ewtabFn          = _mm_setzero_pd();
494             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
495             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
496             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
497             velec            = _mm_mul_pd(qq00,_mm_sub_pd(rinv00,velec));
498             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
499
500             /* CUBIC SPLINE TABLE DISPERSION */
501             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
502             F                = _mm_setzero_pd();
503             GMX_MM_TRANSPOSE2_PD(Y,F);
504             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
505             H                = _mm_setzero_pd();
506             GMX_MM_TRANSPOSE2_PD(G,H);
507             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
508             VV               = _mm_macc_pd(vfeps,Fp,Y);
509             vvdw6            = _mm_mul_pd(c6_00,VV);
510             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
511             fvdw6            = _mm_mul_pd(c6_00,FF);
512
513             /* CUBIC SPLINE TABLE REPULSION */
514             vfitab           = _mm_add_epi32(vfitab,ifour);
515             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
516             F                = _mm_setzero_pd();
517             GMX_MM_TRANSPOSE2_PD(Y,F);
518             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
519             H                = _mm_setzero_pd();
520             GMX_MM_TRANSPOSE2_PD(G,H);
521             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
522             VV               = _mm_macc_pd(vfeps,Fp,Y);
523             vvdw12           = _mm_mul_pd(c12_00,VV);
524             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
525             fvdw12           = _mm_mul_pd(c12_00,FF);
526             vvdw             = _mm_add_pd(vvdw12,vvdw6);
527             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
528
529             /* Update potential sum for this i atom from the interaction with this j atom. */
530             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
531             velecsum         = _mm_add_pd(velecsum,velec);
532             vvdw             = _mm_unpacklo_pd(vvdw,_mm_setzero_pd());
533             vvdwsum          = _mm_add_pd(vvdwsum,vvdw);
534
535             fscal            = _mm_add_pd(felec,fvdw);
536
537             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
538
539             /* Update vectorial force */
540             fix0             = _mm_macc_pd(dx00,fscal,fix0);
541             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
542             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
543             
544             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
545             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
546             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             r10              = _mm_mul_pd(rsq10,rinv10);
553
554             /* Compute parameters for interactions between i and j atoms */
555             qq10             = _mm_mul_pd(iq1,jq0);
556
557             /* EWALD ELECTROSTATICS */
558
559             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
560             ewrt             = _mm_mul_pd(r10,ewtabscale);
561             ewitab           = _mm_cvttpd_epi32(ewrt);
562 #ifdef __XOP__
563             eweps            = _mm_frcz_pd(ewrt);
564 #else
565             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
566 #endif
567             twoeweps         = _mm_add_pd(eweps,eweps);
568             ewitab           = _mm_slli_epi32(ewitab,2);
569             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
570             ewtabD           = _mm_setzero_pd();
571             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
572             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
573             ewtabFn          = _mm_setzero_pd();
574             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
575             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
576             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
577             velec            = _mm_mul_pd(qq10,_mm_sub_pd(rinv10,velec));
578             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
579
580             /* Update potential sum for this i atom from the interaction with this j atom. */
581             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
582             velecsum         = _mm_add_pd(velecsum,velec);
583
584             fscal            = felec;
585
586             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
587
588             /* Update vectorial force */
589             fix1             = _mm_macc_pd(dx10,fscal,fix1);
590             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
591             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
592             
593             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
594             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
595             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             r20              = _mm_mul_pd(rsq20,rinv20);
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq20             = _mm_mul_pd(iq2,jq0);
605
606             /* EWALD ELECTROSTATICS */
607
608             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
609             ewrt             = _mm_mul_pd(r20,ewtabscale);
610             ewitab           = _mm_cvttpd_epi32(ewrt);
611 #ifdef __XOP__
612             eweps            = _mm_frcz_pd(ewrt);
613 #else
614             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
615 #endif
616             twoeweps         = _mm_add_pd(eweps,eweps);
617             ewitab           = _mm_slli_epi32(ewitab,2);
618             ewtabF           = _mm_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
619             ewtabD           = _mm_setzero_pd();
620             GMX_MM_TRANSPOSE2_PD(ewtabF,ewtabD);
621             ewtabV           = _mm_load_sd( ewtab + _mm_extract_epi32(ewitab,0) +2);
622             ewtabFn          = _mm_setzero_pd();
623             GMX_MM_TRANSPOSE2_PD(ewtabV,ewtabFn);
624             felec            = _mm_macc_pd(eweps,ewtabD,ewtabF);
625             velec            = _mm_nmacc_pd(_mm_mul_pd(ewtabhalfspace,eweps) ,_mm_add_pd(ewtabF,felec), ewtabV);
626             velec            = _mm_mul_pd(qq20,_mm_sub_pd(rinv20,velec));
627             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_unpacklo_pd(velec,_mm_setzero_pd());
631             velecsum         = _mm_add_pd(velecsum,velec);
632
633             fscal            = felec;
634
635             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
636
637             /* Update vectorial force */
638             fix2             = _mm_macc_pd(dx20,fscal,fix2);
639             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
640             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
641             
642             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
643             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
644             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
645
646             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
647
648             /* Inner loop uses 169 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
654                                               f+i_coord_offset,fshift+i_shift_offset);
655
656         ggid                        = gid[iidx];
657         /* Update potential energies */
658         gmx_mm_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
659         gmx_mm_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
660
661         /* Increment number of inner iterations */
662         inneriter                  += j_index_end - j_index_start;
663
664         /* Outer loop uses 20 flops */
665     }
666
667     /* Increment number of outer iterations */
668     outeriter        += nri;
669
670     /* Update outer/inner flops */
671
672     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*169);
673 }
674 /*
675  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
676  * Electrostatics interaction: Ewald
677  * VdW interaction:            CubicSplineTable
678  * Geometry:                   Water3-Particle
679  * Calculate force/pot:        Force
680  */
681 void
682 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_128_fma_double
683                     (t_nblist                    * gmx_restrict       nlist,
684                      rvec                        * gmx_restrict          xx,
685                      rvec                        * gmx_restrict          ff,
686                      struct t_forcerec           * gmx_restrict          fr,
687                      t_mdatoms                   * gmx_restrict     mdatoms,
688                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
689                      t_nrnb                      * gmx_restrict        nrnb)
690 {
691     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
692      * just 0 for non-waters.
693      * Suffixes A,B refer to j loop unrolling done with SSE double precision, e.g. for the two different
694      * jnr indices corresponding to data put in the four positions in the SIMD register.
695      */
696     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
697     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
698     int              jnrA,jnrB;
699     int              j_coord_offsetA,j_coord_offsetB;
700     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
701     real             rcutoff_scalar;
702     real             *shiftvec,*fshift,*x,*f;
703     __m128d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
704     int              vdwioffset0;
705     __m128d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706     int              vdwioffset1;
707     __m128d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708     int              vdwioffset2;
709     __m128d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710     int              vdwjidx0A,vdwjidx0B;
711     __m128d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
712     __m128d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
713     __m128d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
714     __m128d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
715     __m128d          velec,felec,velecsum,facel,crf,krf,krf2;
716     real             *charge;
717     int              nvdwtype;
718     __m128d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
719     int              *vdwtype;
720     real             *vdwparam;
721     __m128d          one_sixth   = _mm_set1_pd(1.0/6.0);
722     __m128d          one_twelfth = _mm_set1_pd(1.0/12.0);
723     __m128i          vfitab;
724     __m128i          ifour       = _mm_set1_epi32(4);
725     __m128d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF,twovfeps;
726     real             *vftab;
727     __m128i          ewitab;
728     __m128d          ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
729     real             *ewtab;
730     __m128d          dummy_mask,cutoff_mask;
731     __m128d          signbit   = gmx_mm_castsi128_pd( _mm_set_epi32(0x80000000,0x00000000,0x80000000,0x00000000) );
732     __m128d          one     = _mm_set1_pd(1.0);
733     __m128d          two     = _mm_set1_pd(2.0);
734     x                = xx[0];
735     f                = ff[0];
736
737     nri              = nlist->nri;
738     iinr             = nlist->iinr;
739     jindex           = nlist->jindex;
740     jjnr             = nlist->jjnr;
741     shiftidx         = nlist->shift;
742     gid              = nlist->gid;
743     shiftvec         = fr->shift_vec[0];
744     fshift           = fr->fshift[0];
745     facel            = _mm_set1_pd(fr->ic->epsfac);
746     charge           = mdatoms->chargeA;
747     nvdwtype         = fr->ntype;
748     vdwparam         = fr->nbfp;
749     vdwtype          = mdatoms->typeA;
750
751     vftab            = kernel_data->table_vdw->data;
752     vftabscale       = _mm_set1_pd(kernel_data->table_vdw->scale);
753
754     sh_ewald         = _mm_set1_pd(fr->ic->sh_ewald);
755     ewtab            = fr->ic->tabq_coul_F;
756     ewtabscale       = _mm_set1_pd(fr->ic->tabq_scale);
757     ewtabhalfspace   = _mm_set1_pd(0.5/fr->ic->tabq_scale);
758
759     /* Setup water-specific parameters */
760     inr              = nlist->iinr[0];
761     iq0              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+0]));
762     iq1              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+1]));
763     iq2              = _mm_mul_pd(facel,_mm_set1_pd(charge[inr+2]));
764     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
765
766     /* Avoid stupid compiler warnings */
767     jnrA = jnrB = 0;
768     j_coord_offsetA = 0;
769     j_coord_offsetB = 0;
770
771     outeriter        = 0;
772     inneriter        = 0;
773
774     /* Start outer loop over neighborlists */
775     for(iidx=0; iidx<nri; iidx++)
776     {
777         /* Load shift vector for this list */
778         i_shift_offset   = DIM*shiftidx[iidx];
779
780         /* Load limits for loop over neighbors */
781         j_index_start    = jindex[iidx];
782         j_index_end      = jindex[iidx+1];
783
784         /* Get outer coordinate index */
785         inr              = iinr[iidx];
786         i_coord_offset   = DIM*inr;
787
788         /* Load i particle coords and add shift vector */
789         gmx_mm_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
790                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
791
792         fix0             = _mm_setzero_pd();
793         fiy0             = _mm_setzero_pd();
794         fiz0             = _mm_setzero_pd();
795         fix1             = _mm_setzero_pd();
796         fiy1             = _mm_setzero_pd();
797         fiz1             = _mm_setzero_pd();
798         fix2             = _mm_setzero_pd();
799         fiy2             = _mm_setzero_pd();
800         fiz2             = _mm_setzero_pd();
801
802         /* Start inner kernel loop */
803         for(jidx=j_index_start; jidx<j_index_end-1; jidx+=2)
804         {
805
806             /* Get j neighbor index, and coordinate index */
807             jnrA             = jjnr[jidx];
808             jnrB             = jjnr[jidx+1];
809             j_coord_offsetA  = DIM*jnrA;
810             j_coord_offsetB  = DIM*jnrB;
811
812             /* load j atom coordinates */
813             gmx_mm_load_1rvec_2ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
814                                               &jx0,&jy0,&jz0);
815
816             /* Calculate displacement vector */
817             dx00             = _mm_sub_pd(ix0,jx0);
818             dy00             = _mm_sub_pd(iy0,jy0);
819             dz00             = _mm_sub_pd(iz0,jz0);
820             dx10             = _mm_sub_pd(ix1,jx0);
821             dy10             = _mm_sub_pd(iy1,jy0);
822             dz10             = _mm_sub_pd(iz1,jz0);
823             dx20             = _mm_sub_pd(ix2,jx0);
824             dy20             = _mm_sub_pd(iy2,jy0);
825             dz20             = _mm_sub_pd(iz2,jz0);
826
827             /* Calculate squared distance and things based on it */
828             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
829             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
830             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
831
832             rinv00           = avx128fma_invsqrt_d(rsq00);
833             rinv10           = avx128fma_invsqrt_d(rsq10);
834             rinv20           = avx128fma_invsqrt_d(rsq20);
835
836             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
837             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
838             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
839
840             /* Load parameters for j particles */
841             jq0              = gmx_mm_load_2real_swizzle_pd(charge+jnrA+0,charge+jnrB+0);
842             vdwjidx0A        = 2*vdwtype[jnrA+0];
843             vdwjidx0B        = 2*vdwtype[jnrB+0];
844
845             fjx0             = _mm_setzero_pd();
846             fjy0             = _mm_setzero_pd();
847             fjz0             = _mm_setzero_pd();
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r00              = _mm_mul_pd(rsq00,rinv00);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq00             = _mm_mul_pd(iq0,jq0);
857             gmx_mm_load_2pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,
858                                          vdwparam+vdwioffset0+vdwjidx0B,&c6_00,&c12_00);
859
860             /* Calculate table index by multiplying r with table scale and truncate to integer */
861             rt               = _mm_mul_pd(r00,vftabscale);
862             vfitab           = _mm_cvttpd_epi32(rt);
863 #ifdef __XOP__
864             vfeps            = _mm_frcz_pd(rt);
865 #else
866             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
867 #endif
868             twovfeps         = _mm_add_pd(vfeps,vfeps);
869             vfitab           = _mm_slli_epi32(vfitab,3);
870
871             /* EWALD ELECTROSTATICS */
872
873             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
874             ewrt             = _mm_mul_pd(r00,ewtabscale);
875             ewitab           = _mm_cvttpd_epi32(ewrt);
876 #ifdef __XOP__
877             eweps            = _mm_frcz_pd(ewrt);
878 #else
879             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
880 #endif
881             twoeweps         = _mm_add_pd(eweps,eweps);
882             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
883                                          &ewtabF,&ewtabFn);
884             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
885             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
886
887             /* CUBIC SPLINE TABLE DISPERSION */
888             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
889             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
890             GMX_MM_TRANSPOSE2_PD(Y,F);
891             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
892             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
893             GMX_MM_TRANSPOSE2_PD(G,H);
894             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
895             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
896             fvdw6            = _mm_mul_pd(c6_00,FF);
897
898             /* CUBIC SPLINE TABLE REPULSION */
899             vfitab           = _mm_add_epi32(vfitab,ifour);
900             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
901             F                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
902             GMX_MM_TRANSPOSE2_PD(Y,F);
903             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
904             H                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,1) +2);
905             GMX_MM_TRANSPOSE2_PD(G,H);
906             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
907             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
908             fvdw12           = _mm_mul_pd(c12_00,FF);
909             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
910
911             fscal            = _mm_add_pd(felec,fvdw);
912
913             /* Update vectorial force */
914             fix0             = _mm_macc_pd(dx00,fscal,fix0);
915             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
916             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
917             
918             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
919             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
920             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             r10              = _mm_mul_pd(rsq10,rinv10);
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq10             = _mm_mul_pd(iq1,jq0);
930
931             /* EWALD ELECTROSTATICS */
932
933             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
934             ewrt             = _mm_mul_pd(r10,ewtabscale);
935             ewitab           = _mm_cvttpd_epi32(ewrt);
936 #ifdef __XOP__
937             eweps            = _mm_frcz_pd(ewrt);
938 #else
939             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
940 #endif
941             twoeweps         = _mm_add_pd(eweps,eweps);
942             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
943                                          &ewtabF,&ewtabFn);
944             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
945             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
946
947             fscal            = felec;
948
949             /* Update vectorial force */
950             fix1             = _mm_macc_pd(dx10,fscal,fix1);
951             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
952             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
953             
954             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
955             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
956             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
957
958             /**************************
959              * CALCULATE INTERACTIONS *
960              **************************/
961
962             r20              = _mm_mul_pd(rsq20,rinv20);
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm_mul_pd(iq2,jq0);
966
967             /* EWALD ELECTROSTATICS */
968
969             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
970             ewrt             = _mm_mul_pd(r20,ewtabscale);
971             ewitab           = _mm_cvttpd_epi32(ewrt);
972 #ifdef __XOP__
973             eweps            = _mm_frcz_pd(ewrt);
974 #else
975             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
976 #endif
977             twoeweps         = _mm_add_pd(eweps,eweps);
978             gmx_mm_load_2pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),ewtab+_mm_extract_epi32(ewitab,1),
979                                          &ewtabF,&ewtabFn);
980             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
981             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
982
983             fscal            = felec;
984
985             /* Update vectorial force */
986             fix2             = _mm_macc_pd(dx20,fscal,fix2);
987             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
988             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
989             
990             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
991             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
992             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
993
994             gmx_mm_decrement_1rvec_2ptr_swizzle_pd(f+j_coord_offsetA,f+j_coord_offsetB,fjx0,fjy0,fjz0);
995
996             /* Inner loop uses 146 flops */
997         }
998
999         if(jidx<j_index_end)
1000         {
1001
1002             jnrA             = jjnr[jidx];
1003             j_coord_offsetA  = DIM*jnrA;
1004
1005             /* load j atom coordinates */
1006             gmx_mm_load_1rvec_1ptr_swizzle_pd(x+j_coord_offsetA,
1007                                               &jx0,&jy0,&jz0);
1008
1009             /* Calculate displacement vector */
1010             dx00             = _mm_sub_pd(ix0,jx0);
1011             dy00             = _mm_sub_pd(iy0,jy0);
1012             dz00             = _mm_sub_pd(iz0,jz0);
1013             dx10             = _mm_sub_pd(ix1,jx0);
1014             dy10             = _mm_sub_pd(iy1,jy0);
1015             dz10             = _mm_sub_pd(iz1,jz0);
1016             dx20             = _mm_sub_pd(ix2,jx0);
1017             dy20             = _mm_sub_pd(iy2,jy0);
1018             dz20             = _mm_sub_pd(iz2,jz0);
1019
1020             /* Calculate squared distance and things based on it */
1021             rsq00            = gmx_mm_calc_rsq_pd(dx00,dy00,dz00);
1022             rsq10            = gmx_mm_calc_rsq_pd(dx10,dy10,dz10);
1023             rsq20            = gmx_mm_calc_rsq_pd(dx20,dy20,dz20);
1024
1025             rinv00           = avx128fma_invsqrt_d(rsq00);
1026             rinv10           = avx128fma_invsqrt_d(rsq10);
1027             rinv20           = avx128fma_invsqrt_d(rsq20);
1028
1029             rinvsq00         = _mm_mul_pd(rinv00,rinv00);
1030             rinvsq10         = _mm_mul_pd(rinv10,rinv10);
1031             rinvsq20         = _mm_mul_pd(rinv20,rinv20);
1032
1033             /* Load parameters for j particles */
1034             jq0              = _mm_load_sd(charge+jnrA+0);
1035             vdwjidx0A        = 2*vdwtype[jnrA+0];
1036
1037             fjx0             = _mm_setzero_pd();
1038             fjy0             = _mm_setzero_pd();
1039             fjz0             = _mm_setzero_pd();
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             r00              = _mm_mul_pd(rsq00,rinv00);
1046
1047             /* Compute parameters for interactions between i and j atoms */
1048             qq00             = _mm_mul_pd(iq0,jq0);
1049             gmx_mm_load_1pair_swizzle_pd(vdwparam+vdwioffset0+vdwjidx0A,&c6_00,&c12_00);
1050
1051             /* Calculate table index by multiplying r with table scale and truncate to integer */
1052             rt               = _mm_mul_pd(r00,vftabscale);
1053             vfitab           = _mm_cvttpd_epi32(rt);
1054 #ifdef __XOP__
1055             vfeps            = _mm_frcz_pd(rt);
1056 #else
1057             vfeps            = _mm_sub_pd(rt,_mm_round_pd(rt, _MM_FROUND_FLOOR));
1058 #endif
1059             twovfeps         = _mm_add_pd(vfeps,vfeps);
1060             vfitab           = _mm_slli_epi32(vfitab,3);
1061
1062             /* EWALD ELECTROSTATICS */
1063
1064             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1065             ewrt             = _mm_mul_pd(r00,ewtabscale);
1066             ewitab           = _mm_cvttpd_epi32(ewrt);
1067 #ifdef __XOP__
1068             eweps            = _mm_frcz_pd(ewrt);
1069 #else
1070             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1071 #endif
1072             twoeweps         = _mm_add_pd(eweps,eweps);
1073             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1074             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1075             felec            = _mm_mul_pd(_mm_mul_pd(qq00,rinv00),_mm_sub_pd(rinvsq00,felec));
1076
1077             /* CUBIC SPLINE TABLE DISPERSION */
1078             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1079             F                = _mm_setzero_pd();
1080             GMX_MM_TRANSPOSE2_PD(Y,F);
1081             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1082             H                = _mm_setzero_pd();
1083             GMX_MM_TRANSPOSE2_PD(G,H);
1084             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1085             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1086             fvdw6            = _mm_mul_pd(c6_00,FF);
1087
1088             /* CUBIC SPLINE TABLE REPULSION */
1089             vfitab           = _mm_add_epi32(vfitab,ifour);
1090             Y                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1091             F                = _mm_setzero_pd();
1092             GMX_MM_TRANSPOSE2_PD(Y,F);
1093             G                = _mm_load_pd( vftab + _mm_extract_epi32(vfitab,0) +2);
1094             H                = _mm_setzero_pd();
1095             GMX_MM_TRANSPOSE2_PD(G,H);
1096             Fp               = _mm_macc_pd(vfeps,_mm_macc_pd(H,vfeps,G),F);
1097             FF               = _mm_macc_pd(vfeps,_mm_macc_pd(twovfeps,H,G),Fp);
1098             fvdw12           = _mm_mul_pd(c12_00,FF);
1099             fvdw             = _mm_xor_pd(signbit,_mm_mul_pd(_mm_add_pd(fvdw6,fvdw12),_mm_mul_pd(vftabscale,rinv00)));
1100
1101             fscal            = _mm_add_pd(felec,fvdw);
1102
1103             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1104
1105             /* Update vectorial force */
1106             fix0             = _mm_macc_pd(dx00,fscal,fix0);
1107             fiy0             = _mm_macc_pd(dy00,fscal,fiy0);
1108             fiz0             = _mm_macc_pd(dz00,fscal,fiz0);
1109             
1110             fjx0             = _mm_macc_pd(dx00,fscal,fjx0);
1111             fjy0             = _mm_macc_pd(dy00,fscal,fjy0);
1112             fjz0             = _mm_macc_pd(dz00,fscal,fjz0);
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             r10              = _mm_mul_pd(rsq10,rinv10);
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq10             = _mm_mul_pd(iq1,jq0);
1122
1123             /* EWALD ELECTROSTATICS */
1124
1125             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1126             ewrt             = _mm_mul_pd(r10,ewtabscale);
1127             ewitab           = _mm_cvttpd_epi32(ewrt);
1128 #ifdef __XOP__
1129             eweps            = _mm_frcz_pd(ewrt);
1130 #else
1131             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1132 #endif
1133             twoeweps         = _mm_add_pd(eweps,eweps);
1134             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1135             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1136             felec            = _mm_mul_pd(_mm_mul_pd(qq10,rinv10),_mm_sub_pd(rinvsq10,felec));
1137
1138             fscal            = felec;
1139
1140             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1141
1142             /* Update vectorial force */
1143             fix1             = _mm_macc_pd(dx10,fscal,fix1);
1144             fiy1             = _mm_macc_pd(dy10,fscal,fiy1);
1145             fiz1             = _mm_macc_pd(dz10,fscal,fiz1);
1146             
1147             fjx0             = _mm_macc_pd(dx10,fscal,fjx0);
1148             fjy0             = _mm_macc_pd(dy10,fscal,fjy0);
1149             fjz0             = _mm_macc_pd(dz10,fscal,fjz0);
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             r20              = _mm_mul_pd(rsq20,rinv20);
1156
1157             /* Compute parameters for interactions between i and j atoms */
1158             qq20             = _mm_mul_pd(iq2,jq0);
1159
1160             /* EWALD ELECTROSTATICS */
1161
1162             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1163             ewrt             = _mm_mul_pd(r20,ewtabscale);
1164             ewitab           = _mm_cvttpd_epi32(ewrt);
1165 #ifdef __XOP__
1166             eweps            = _mm_frcz_pd(ewrt);
1167 #else
1168             eweps            = _mm_sub_pd(ewrt,_mm_round_pd(ewrt, _MM_FROUND_FLOOR));
1169 #endif
1170             twoeweps         = _mm_add_pd(eweps,eweps);
1171             gmx_mm_load_1pair_swizzle_pd(ewtab+_mm_extract_epi32(ewitab,0),&ewtabF,&ewtabFn);
1172             felec            = _mm_macc_pd(eweps,ewtabFn,_mm_mul_pd( _mm_sub_pd(one,eweps),ewtabF));
1173             felec            = _mm_mul_pd(_mm_mul_pd(qq20,rinv20),_mm_sub_pd(rinvsq20,felec));
1174
1175             fscal            = felec;
1176
1177             fscal            = _mm_unpacklo_pd(fscal,_mm_setzero_pd());
1178
1179             /* Update vectorial force */
1180             fix2             = _mm_macc_pd(dx20,fscal,fix2);
1181             fiy2             = _mm_macc_pd(dy20,fscal,fiy2);
1182             fiz2             = _mm_macc_pd(dz20,fscal,fiz2);
1183             
1184             fjx0             = _mm_macc_pd(dx20,fscal,fjx0);
1185             fjy0             = _mm_macc_pd(dy20,fscal,fjy0);
1186             fjz0             = _mm_macc_pd(dz20,fscal,fjz0);
1187
1188             gmx_mm_decrement_1rvec_1ptr_swizzle_pd(f+j_coord_offsetA,fjx0,fjy0,fjz0);
1189
1190             /* Inner loop uses 146 flops */
1191         }
1192
1193         /* End of innermost loop */
1194
1195         gmx_mm_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1196                                               f+i_coord_offset,fshift+i_shift_offset);
1197
1198         /* Increment number of inner iterations */
1199         inneriter                  += j_index_end - j_index_start;
1200
1201         /* Outer loop uses 18 flops */
1202     }
1203
1204     /* Increment number of outer iterations */
1205     outeriter        += nri;
1206
1207     /* Update outer/inner flops */
1208
1209     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*146);
1210 }